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Dynamical Model Averaging and PWM Based Control for Pneumatic

Actuators

Sean Hodgson1, Mahdi Tavakoli1, Minh Tu Pham2, Arnaud Lelevé2

Abstract— A pneumatic actuator with solenoid valves is a
discontinuous-input system because each valve can be either in
on or off state. For such an actuator, this paper proposes a
sliding-mode control scheme based on an averaged continuous-
input equivalent model for the open-loop system. The averaged
model is obtained from the nonlinear dynamics of the open-loop
discontinuous-input system undergoing pulse-width-modulation
(PWM) at the input (i.e., valve open/close action). The PWM
duty cycle will be regarded as a continuous input to the
proposed averaged model, and thus generated by the proposed
sliding-mode controller. By adjusting the PWM duty cycle, the
controller switches between seven modes of operation of the
open-loop system in order to select the ones with necessary and
sufficient amounts of drive energy to achieve position tracking.
We will show that this results in reduced position error and
valve switching activity for the actuator. The proposed control
scheme is experimentally used in the position control of a
pneumatic actuator and the results are presented.

Index Terms— Pneumatic actuator, on/off solenoid valve,
PWM, sliding-mode control design, position tracking.

I. INTRODUCTION

In this study, we investigate the control of pneumatic

actuators used in robots. Pneumatic actuators are widely

used in many different industries and offer many advantages

such as low cost, good power/weight ratio, cleanliness, and

safety [1]. However, they suffer from drawbacks including

friction and variation of the actuator dynamics to load and

piston position along the cylinder stroke [2]. Controlling

the position of a pneumatic actuator is difficult due to the

nonlinear dynamics of the system [3].

For excitation, some pneumatic systems are equipped with

on/off solenoid valves. These valves represent a low-cost al-

ternative to servo-valves, which allow for continuous control

of the input mass flow rate. The difficulty in utilizing on/off

solenoid valves is that precise control of the piston position

will be hampered by the discrete-input (on/off) nature of

these valves. This makes the actuator position control even

more difficult.

If the nonlinear dynamics of a pneumatic system can be

approximated as an equivalent linear system, then linear

controllers can be designed [1]. However, it is preferable
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to design controllers that take into account the open-loop

system nonlinearities. PWM controllers have been developed

in the past to control the position of solenoid-valve pneu-

matic actuators [4], [5], [6], [7]. A PWM input with a high

switching frequency approximates a continuous input whose

magnitude is determined by the PWM duty cycle. This is

advantageous because it allows us to provide to a discrete-

input system what is effectively a continuous input.

On the other hand, it is possible to employ nonlinear

sliding-mode control for solenoid-valve systems [8]. Sliding-

mode control alters the dynamics of a system by the ap-

plication of a high-frequency switching control [9], [10].

Sliding-mode control is parametrically very robust and can

account for dynamic uncertainties as well as nonlinearities

of a system. While using pneumatic actuators equipped with

solenoid-valve it turns out that these systems are by essence

nonlinear with discontinuous-time dynamics. To control such

systems one can either use hybrid control theory or construct

an equivalent continuous-time dynamics of the system then

use nonlinear control theory. In [11], nonlinear model aver-

aging is combined with PWM and sliding-mode control to

control a solenoid-valve pneumatic actuator based on a three

mode model.

In our previous works, a sliding mode control based on

a seven mode switching law has been proposed [12]. It

has been shown in these works that four additional modes

allow not only to decrease the coarseness of the drive

force for lower position tracking errors but also to reduce

the number of switching. The current paper investigates a

PWM switching law, provided by a sliding mode controller,

which is designed from an averaged model of the system. In

[11], an approach based on a three mode model has been

introduced, in the current paper we provide a theoretical

extension from three modes to seven modes. Our proposal

is supported by experimental results and a comparison study

with another controller. Moreover robustness with respect to

load variations and input excitations are given to assess the

performances of the controller.

The organization of this paper is as follows. The discrete

input model of the actuator is found in Section II. A

nonlinear averaged continuous-input model of the open-loop

actuator is obtained in Section III. A sliding-mode control

for the pneumatic actuator is proposed in Section IV. The

experimental results validating the proposed controllers are

shown in Section V. Finally, the concluding remarks are
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Fig. 1. A pneumatic actuator with 4 on/off solenoid valves.

presented in Section VI.

II. DISCRETE-INPUT MODEL OF THE OPEN-LOOP

ACTUATOR

The modelling of a pneumatic actuator with its chamber

and four solenoid valves is visible in [12]. It is possible

to write the dynamics of the open-loop pneumatic actuator

in a discrete input form, assuming that the temperature

variation in chambers is negligible with respect to the supply

temperature (thus TP = TN = T ):

...
y = f +

krT

M

(

QP

l/2 + y
−

QN

l/2− y

)

+
τ̇Ext

M
(1)

f =
−bV
M

ÿ −
k

M

(

APPP

l/2 + y
+

ANPN

l/2− y

)

ẏ (2)

In this paper, we consider a 1-DOF pneumatic actuator

comprised of two chambers as shown in Figure 1. Each

chamber has two solenoid valves. These solenoid valves

allow each chamber to be in one of three states: connected to

an air supply (pressurizing), connected to exhaust pressure

(venting), or closed (no air flow in or out of chamber).

Since each chamber can be in one of the three states of

pressurizing, venting or closed, there are a total of nine

discrete modes for the two-chamber actuator [13]. These

modes are shown in Table I.

TABLE I

NINE DISCRETE MODES OF THE OPEN-LOOP ACTUATOR

M1 M2 M3 M4 M5 M6 M7 M8 M9

U1 0 1 0 0 0 1 0 0 1

U2 0 0 1 0 0 0 1 1 0

U3 0 0 0 0 1 0 1 0 1

U4 0 0 0 1 0 1 0 1 0

For each of these nine discrete modes, we obtain the

dynamic equation

...
y =

{

f + τ̇Ext

M , mode M1

f + (−1)jbj +
τ̇Ext

M , mode Mj 6= M1

(3)

where the integer j ranges from 2 to 9 and

b2 =
krT

M

Q(PS , PP )

(l/2 + y)
b3 =

krT

M

Q(PP , PE)

(l/2 + y)

b4 =
krT

M

Q(PN , PE)

(l/2− y)
b5 =

krT

M

Q(PS , PN )

(l/2− y)
b6 = b2 + b4 b7 = b5 + b3

b8 = b4 − b3 b9 = b5 − b2

Note that because PE ≤ PP ≤ PS , PE ≤ PN ≤ PS ,

−l/2 ≤ y ≤ l/2, and mass flow rates are non-negative,

functions b2 through b7 are all positive or equal to zero.

Also, b8 and b9 are approximately equal to 0 and can be

positive or negative. As in [12], we will focus on the modes

M1 to M7.

In the next section, we will obtain an averaged continuous-

input equivalent for the above discontinuous-input open-loop

model. This averaged model is obtained from the nonlinear

dynamics of the open-loop system undergoing pulse-width

modulation at the input (i.e., valve open/close action). The

PWM duty cycle will act as the continuous input to the

proposed averaged model.

III. AVERAGED CONTINUOUS-INPUT MODEL OF

THE OPEN-LOOP ACTUATOR

Let us consider a general dynamic system that may operate

in one of p distinct modes at any given time. Within a PWM

“period”, the system can switch between modes 1 through

p, due to the variations in the input provided to the system.

Switching between the modes 1 through p happens according

to the modal duty cycle (duration) di. Then,

D = [d1, d2, ..., dp]
T (4)

gives the PWM period. The total duration of the modal duty

cycles must equal the total PWM period, which is usually

normalized to unity, i.e., ||D||1 = 1. If the system has

dynamics y(n) = fi when in mode i, where n is the system

order, and we collect the system dynamics for the p modes

in the vector

F = [f1, f2, ..., fp]
T (5)

Then a time-averaged model y
(n)
a of the system dynamics

y(n) can be given by [11]

y(n)a = FTD (6)

Therefore, if we can implement the PWM period as a

function of a single continuous input u, we obtain two things:

a duty cycle mapping for the p-mode system that can be used

to operate the PWM, and a time-averaged dynamic model

which can be utilized to design the sliding control.

A. Duty Cycle Mapping for the 3-Mode System

Shen et al. have applied such a nonlinear model averaging

to a 3-mode pneumatic actuator [11]. We will first derive that

averaged model and then extend the method to the case of a



7-mode actuator model. Using (3) for a pneumatic actuator

without external disturbances, we have

fi =

{

f , i = 1

f + (−1)ibi , otherwise
(7)

for i ∈ {1, 6, 7} because, as discussed previously, these are

the three modes corresponding to “Close and Close” (mode

1), “Push and Pull” (mode 6), and “Pull and Push” (mode

7) used in [11]. For accommodating a wide range of desired

accelerations for the piston of the pneumatic actuator in the

positive direction, we would like to be able to appropriately

mix modes 1 and 6. Similarly, for creating a wide range

of desired piston accelerations in the negative direction, we

need to appropriately mix modes 1 and 7. To this end, within

each of the positive and negative actuation regions, we select

a duty cycle based switching scheme that alternates between

no actuation (mode 1) and full action (modes 6 and 7 in

the positive and negative directions, respectively). Such a

switching scheme is shown in Table II where

d(u) =
uH − u

uH − uL
(8)

with uL ≤ u ≤ uH . Also, u = 0 corresponds to no actuation.

Substituting (7) and the duty cycles d1, d6 and d7 listed in

Table II into (6), the average system model can be described

by

...
y a =

{

f + b6u , if u ≥ 0

f + b7u , if u < 0
(9)

TABLE II

THE 3-MODE DUTY CYCLE MAPPING PROFILE.

Region uL uH Duty Cycles

- −1 0 d7 = d(u), d1 = 1− d(u)
+ 0 1 d1 = d(u), d6 = 1− d(u)

The scheme for switching between modes 1 and 6 or

modes 1 and 7 according to the duty cycles listed in Table II

is illustrated in Figure 3(a) as a function of the input u. Here,

piecewise linear functions changing between 0 and 1 provide

the duration for operating different mode. At any given input

u level, the duty cycle for high-frequency switching between

the two modes present at that input level is determined by

the durations di for the two modes. Figure 2(a) shows (9) in

the plane of
...
y a − f versus u.

B. Duty Cycle Mapping for the 5-Mode System

If we extend the accepted values for the index i in (7) to be

i ∈ {1, 2, 5, 6, 7}, the system will include two more control

options: ”Push and Close” (mode 2) and ”Close and Push”

(mode 5). This mapping will result in a 5-mode system.

For a 5-mode system, similar to the 3-mode system, we

need to decide the scheme for switching between modes.

This mode selection scheme involves a new mapping of

the single input u to the duty cycle vector D. A desirable

mapping would utilize at most two modes in any PWM

period to simplify the mapping and also minimize the valves’

switching for reduced noise and extended lifespan of the

valves. Based on (7) and because bi in (3) are all positive,

we can see that the open-loop modes can be ordered in terms

of the magnitude of the resulting
...
y for each mode as

f7 ≤ f5 ≤ f1 ≤ f2 ≤ f6 (10)

Given this order of actuation level for each mode, it is

beneficial to arrange the duty cycles as shown in Table

III. Utilizing these mappings, the output
...
y a is increasing

(decreasing) with increasing (decreasing) u, only two modes

are used at a time, and ||D||1 = 1. The mapping from

Table III is plotted in Figure 3(b). Figure 3(b) has four

regions matching the same regions as in Table III.

To properly select the values of the transition points γ2 and

γ5 in Table III, we need to consider Figure 2(b). At u = 0,

mode 1 is utilized 100% of the time. As u decreases into

the negative values (region 2 in Table III), mode 5 is utilized

increasingly until u = −γ5, at which point mode 5 is utilized

100% of the time. As u further decreases (region 1), mode 5

is used increasingly less, and mode 7 is utilized increasingly

until u = −1, at which point mode 7 is utilized 100%.

The same holds for the positive range of u corresponding to

regions 3 and 4 in Table III. Now, if we select the following

values for the transition points γ2 and γ5

γ2 =
b2
b6

γ5 =
b5
b7

then we can see from Figure 2(b) that the resulting averaged

dynamics will demonstrate a straight line across the transition

points. It should be noted that any other selection of γ2 and

γ5 will lead to a non-uniformity in terms of actuation, which

will not be beneficial to the controller design. Note that since

bi in (3) are time-varying functions, γ2 and γ5 will also be

functions of time.

Straightforward calculations show that the derivation for

the 5-mode system leads to a time-averaged model that is

the same as that for the 3-mode system. This is distinctly

advantageous because we will be able to use the same control

signal u for both 3-mode and 5-mode systems. In this case,

the only difference between 3-mode and 5-mode operation

will be in the resulting valve open/close activity for a given

u.

C. Duty Cycle Mapping for the 7-Mode System

Extending the accepted values for the index i in (7) to

i ∈ {1, . . . , 7}, the system will include two more control

options: ”Pull and Close” (mode 4) and ”Close and Pull”

(mode 3). This mapping will result in a 7-mode system.

For a 7-mode system, similar to the 5-mode system, a

desirable mapping would utilize at most two modes in any

PWM period. To properly evaluate the averaged model of the

system, we will consider the 7-mode mapping through two

separate mappings: The pressurizing profile (which utilizes



modes M7, M5, M1, M2, and M6) and the venting profile

(which utilizes modes M7, M3, M1, M4, and M6). Note that

the mode selection scheme in the pressurizing profile in the

7-mode case is the same as that in the 5-mode case. Based

on (7) and because bi in (3) are all positive, we can see that

these modes can be ordered in terms of the magnitude of the

resulting
...
y for each mode as

Pressurizing Profile: f7 ≤ f5 ≤ f1 ≤ f2 ≤ f6

Venting Profile: f7 ≤ f3 ≤ f1 ≤ f4 ≤ f6

Given this order of actuation for each mode, it is beneficial

to arrange the duty cycles as shown in Table III for the

pressurizing profile and Table III for the venting profile.

Observe that for the pressurizing profile of the 7-mode

system, we are utilizing the same modes and mapping as

the 5-mode system in the previous section.

TABLE III

THE 7-MODE DUTY CYCLE MAPPING FOR PRESSURIZING AND VENTING

PROFILE.

Region uL uH Duty Cycles

1 −1 −γ5 d7 = d(u), d5 = 1− d(u)
2 −γ5 0 d5 = d(u), d1 = 1− d(u)
3 0 γ2 d1 = d(u), d2 = 1− d(u)
4 γ2 1 d2 = d(u), d6 = 1− d(u)

5 −1 −γ3 d7 = d(u), d3 = 1− d(u)
6 −γ3 0 d3 = d(u), d1 = 1− d(u)
7 0 γ4 d1 = d(u), d4 = 1− d(u)
8 γ4 1 d4 = d(u), d6 = 1− d(u)

Utilizing these mappings, the output
...
y a is increasing

(decreasing) with increasing (decreasing) u, only two modes

are used at a time, and the ||D||1 = 1. The mapping in

Table III is plotted in Figure 3(b) and 3(c).

We select the same values for the transition points γ2 and

γ5 as in 5-mode (see (11)). Applying the same methodology

to the venting profile, we select the following values for the

transition points γ4 and γ3 in the venting profile:

γ4 =
b4
b6

γ3 =
b3
b7

The derivation of the time-averaged 7-mode model is

shown in the Appendix A. As it can be seen, the time-

averaged model of the 7-mode system is the same as that for

the 3-mode and 5-mode systems. So, we can use the same

control input u for 3-mode, 5-mode, and 7-mode systems.

IV. SLIDING-MODE CONTROL OF THE PNEUMATIC

ACTUATOR

Having expressed the multi-mode discrete-input system in

the continuous-input form (9), a sliding-mode approach can

be applied for position control of the system. Selecting an

integral sliding surface as

sp =

(

d

dt
+ ωp

)3 ∫ t

0

epdτ (11)

where ep = y − yd is the position error and ωp is a positive

gain. The switching function sp provides a measure of the

+
u

- 1
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b6

-b7

u
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3 4

21 1
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(b)
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Fig. 2. Time-averaged input-output relationship for: (a) the 3-mode system,
(b) the 5-mode system or 7-mode system (pressurizing profile).
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distance from the sliding surface using the current position

error and its derivatives. One can develop a control law based

on a sliding-mode approach, in which the equivalent control

action, ueq , is derived by solving for the input when ṡp = 0.

Taking the derivative of (11) we find

ṡp =
...
y −

...
y d + 3ëpωp + 3ėpω

2
p + epω

3
p (12)

If we substitute (9) as
...
y in (12), we obtain

ṡp = f + (b+/−)u−
...
y d + 3ëpωp + 3ėpω

2
p + epω

3
p (13)

where

b+/− =

{

b6, if u ≥ 0

b7, if u < 0

Solving for u such that ṡp = 0, we find ueq as

ueq =
û

b+/−
(14)

where

û =
...
y d − f − 3ωpëp − 3ω2

p ėp − ω3
pep (15)



Utilizing the control (14) alone does not ensure con-

vergence to the sliding surface in finite time. Also,
...
y of

the discrete-input system (actual system) and
...
y a of the

continuous-input system (average system) will be somewhat

different. To study the robustness of the controller, let us

model the actual
...
y as

...
y a (from (9)) plus perturbations. We

propose the following theorem where we augment the control

action by a robustness term that also ensures convergence to

the sliding surface in finite time.

Theorem 1: Consider the perturbed system

...
y = (1 +∆f )f + (1 +∆b)(b

+/−)u (16)

where |∆f | ≤ α and (βgm)−1 ≤ (1 + ∆b) ≤ βgm

(with βgm ≥ 1).

The control input

u =
û−Ksgn(sp)

b+/−
(17)

with the time-variant robustness gain K

K = (βgm(α|f |+ ηp) + (βgm − 1)|û| (18)

will ensure convergence to the sliding surface sp = 0 in

finite time where sp is defined in (11).

Proof: To be able to analyze the closed-loop stability,

consider the Lyapunov function candidate

V =
1

2
s2p > 0 (19)

If V̇ < 0, then V will be decreasing. If V is decreasing,

|sp| will also be decreasing. Assuming sp is initially bounded

and |sp| is decreasing, then sp will be bounded and will

asymptotically approach zero. Thus, we intend to control the

system so that

V̇ = ṡpsp ≤ −ηp|sp| (20)

Substituting (15), (16), and (17) into (12), we find

ṡp = (b+/−)u− û+ (∆f )f + (∆b)(b
+/−)u (21)

Using (17) and (21), we find

ṡp = −Ksgn(sp) + (∆f )f + (∆b)(b
+/−)u (22)

Substituting (18) into (22), we find

ṡp = −sgn(sp)[βgm(α|f |+ ηp)− sgn(sp)(∆f )f

+ (βgm − 1)|û| − sgn(sp)(∆b)(b
+/−)u] (23)

Given that (βgm− 1) ≥ (∆b), and |û| ≥ sgn(sp)(b
+/−)u,

we find that

(βgm − 1)|û| − sgn(sp)(∆b)(b
+/−)u ≥ 0 (24)

and thus (23) can be simplified to

ṡp ≤ −sgn(sp)[βgm(α|f |+ ηp)− sgn(sp)(∆f )f ] (25)

Also, given that βgm ≥ 1, and α ≥ ∆f , we find

βgmα|f | − sgn(sp)(∆f )f ≥ 0 (26)

and thus (25) can be simplified to

ṡp ≤ −βgmηpsgn(sp) (27)

Since βgm ≥ 1, we get

ṡp ≤ −ηpsgn(sp) (28)

Multiply both sides of (28) by sp and we obtain

ṡpsp ≤ −ηp|sp| (29)

Thus, the system will converge to the sliding surface

sp = 0 in finite time because of (29).

The above controller leads to the closed-loop stable dy-

namics
(

d

dt
+ ωp

)3 ∫ t

0

epdτ = 0 (30)

in which the position error ep asymptotically tends towards

zero.

Utilizing the control action u obtained from (2), (15), (17),

and (18), we can apply the closed-loop control to a 3-mode

system using the mapping from Table II or to a 7-mode

system using the mapping from Table III.

For the 7-mode mapping there are two separate profiles:

the venting and pressurizing profiles. The selection between

the pressurizing and venting profiles is updated periodically

based on the larger output actuation bi.

The order of the two modes in any given PWM window

was arranged to minimize the overall switching activity,

which is the total count of switches made by all 4 solenoid

valves divided by the total time. For example, if a PWM

window ended with mode M1 and the next window contained

the M1 mode, that mode was used at the start of the next

window.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In this paper, experiments were performed with a 1-

DOF pneumatic actuator (see Figure 4). The low friction

cylinders (Airpel model M16D100D) have a 16 mm

diameter and a 100 mm stroke. The piston and shaft mass

is approximately M = 900 g. The pneumatic solenoid valves

(model GNK821213C3K from Matrix manufacturer) used to

control the air flow have switching times of approximately

1.3 ms (opening time) and 0.2 ms (closing time). With such

fast switching times, the on/off valves are appropriate for

the purposes of the proposed control. In terms of sensors, a

low-friction linear variable differential transformer (LVDT)

is connected to the cylinder in order to measure the linear

positions. The controller is implemented using a dSPACE

board (DS1104), running at a sampling rate of 500 Hz. This

sampling rate has been chosen according to the open/close

bandwidth of the valves and to enable an acceptable tracking

response. The PWM period was set to 10ms and the PWM

resolution was 0.2 (5 steps). The experimental setup has the

following model parameters:



Fig. 4. Experimental setup.

l 0.1 m Chamber Length
T 296 C Supply Temperature

Cval 3.4× 10
−9 kg/(s Pa) Mass Flow Rate Const.

PS 300, 000 Pa Supply Air Pressure
PE 100, 000 Pa Exhaust Air Pressure
k 1.2 Polytropic Constant

AP , AN 1.814 cm2 Piston Cylinder Area
bm 50 N s/m Viscosity Coefficient
M 0.9 kg Total Mass of load

B. 7-Mode Position Control of the Actuator

This section outlines the experimental testing conducted

using a 7-mode controller for the actuator as described in

Section IV. The following controller parameters were utilized

in (15), (17), and (18): ωp = 60 rad/s, α = 0.1, βgm = 1.1,

and ηp = 100 m/s3. The following sine wave test pattern

was used to test the position tracking performance of the

proposed algorithm:

yd = 0.02sin(2πft) (31)

The frequency was varied from 0.1 Hz to 3.0 Hz. The

tracking performance and switching activity was evaluated

for this test pattern over a 10 second period.

The results for different sine wave frequencies are plotted

in Figure 5(a). From these results, we find that for both the 3-

mode and the 7-mode systems, increasing the input frequency

increases the RMS tracking error. When we compare the

results for the 3-mode controller and the 7-mode controller,

we can see that for the latter there are notable decreases in

both the position error and the switching activity.

We also performed step response experiments to analyze

the transient modes (Figure 6). We can remark that the

7-mode controller provides a better tracking error on step

changes. To test the system’s ability to reject external force

disturbance, the experiment was run again utilizing the sine-

wave test input with a weight attached to the actuator via a

cord and pulley. The weights tested were 0.5 kg (Figure 5(b))

and 1.0 kg (Figure 5(c)). These weights applied a constant

gravity force in the positive direction of the actuator. To

prevent the weights attached to the actuator from pendulum-

like swinging, only frequencies from 0.1 Hz to 1.5 Hz

were tested. As the results show, position error was not

significantly increased as a result of attaching the weights,

and valve switching activity was increased only marginally.

This demonstrates the robustness of the controller to external

force disturbances.
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Fig. 5. PWM tracking and switching performance of the actuator with a
sine wave input for: (a) No Load on Pulley, (b) 0.5 kg on Pulley, or (c) 1.0
kg on Pulley.
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Fig. 6. PWM tracking of the actuator for a square input.

VI. CONCLUDING REMARKS

In this paper we present the discontinuous system of a

pneumatic actuator with solenoid valves. The system under

actuation switches between seven modes of operation of

the open-loop system. A lot of approaches already could

be used to control the discontinuous-time dynamics of such

a system and the method proposed in this paper is based

on a 7-mode mapping for the PWM to obtain a continuous

input time-averaged dynamic model. The averaged model

is obtained by averaging the nonlinear open-loop dynamics

of the discontinuous system undergoing PWM at the input.

This time-averaged model was utilized to create a sliding

control law for position control of a pneumatic actuator by

varying the PWM duty cycle as a continuous input. This

point fundamentally differs from other control techniques

on the same type of solenoid valves. This sliding control

law selects mode duty cycles for sufficient amounts of drive

energy to achieve position tracking. For this sliding control,

we developed a stability proof demonstrating convergence

of the sliding surface in finite time (and thus asymptotic

convergence of the position error).

The 7-mode control was compared experimentally against

the 3-mode control. There was a 20% improvement in

tracking performance and 30% reduction in valve switch-



ing activity for different situations: a load variation and

several sinusoidal inputs. Thus, the performance was found

to improve with the additional modes of actuation. These

additional modes of operation provided by the 7-mode con-

troller allowed for reduced, yet appropriate amounts of drive

actuation. The result was more efficient actuator control.

APPENDIX

The time-averaged model for the 7-mode PWM controller

is derived by evaluating the combination of system dynamics.

As noted in the paper, modes M8 and M9 are not utilized.

Denoting the duty cycle vector and the modal system dy-

namics vector as

D = [d1 d2 d3 d4 d5 d6 d7]
T (A1)

F = [f1 f2 f3 f4 f5 f6 f7]
T (A2)

where

fi =

{

f , i = 1

f + (−1)ibi , otherwise
(A3)

for 1 ≥ i ≥ 7, the average system dynamics are given by

(6); with (A3), we find

...
y a = FTD =

7
∑

i=1

fidi = f +

7
∑

i=2

(−1)ibidi (A4)

Please note this model does not consider external distur-

bances for model based control because these are assumed

to be unknown.

Defining the duty cycle vector as given by Table III we

can evaluate the time-averaged model for the four regions

for the pressurizing profile. To do this we evaluate the

time-averaged models partial derivative with respect to the

continuous input u

∂(
...
y a)

∂u
=

7
∑

i=2

(−1)ibi
∂di
∂u

(A5)

The di are defined by (8). Taking the derivative of (8) we

find the slope to be

−
∂d(u)

∂u
=

∂(1− d(u))

∂u
=

1

uH − uL
= md (A6)

Using these equations the derivatives for ∂di/∂u can be

found for the four regions in the pressurizing profile.

For region 1 di = 0 for i 6= {5, 7}. Therefore, for this

region the system dynamics are given by

∂(
...
y a)

∂u
= −b7

∂d7
∂u

+−b5
∂d5
∂u

= −b7(−
b7
b3
) +−b5(

b7
b3
)

= (b7 − b5)
b7
b3

=��b3
b7

��b3
= b7 (A7)

Repeating this process for the other 3 regions we can find

the time-averaged model’s partial derivative with respect to

the continuous input u.

Thus if we combine the previous results and integrate then,

we find the following time-averaged model:

∫ u

0

∂(
...
y a)

∂u
du =

{

b6u+ C , if u ≥ 0

b7u+ C , if u < 0
(A8)

Evaluating C =
...
y a|u=0 we find that C = f . Substituting,

we find the pressurizing time-averaged model to be:

...
y a =

{

f + b6u , if u ≥ 0

f + b7u , if u < 0
(A9)

Repeating the process using the duty cycle vector as given

by Table III, we find the time-averaged model for the venting

profile is the same as the pressurizing profile.

Comparing (9) and (A9) we find they are the same.

Since they have the same time-averaged model they can use

the same sliding surface switching function, sp, see (11),

the same robustness gain, K, see (18), and thus the same

continuous closed-loop control, u, see (17).
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