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THE LIQUIDITY REGIMES AND THE PREPAYMENT OPTION OF
A CORPORATE LOAN IN THE FINITE HORIZON CASE

TIMOTHEE PAPIN* AND GABRIEL TURINICI

Abstract. We investigate the prepayment option related to a corporate loan. The default
intensity of the firm is supposed to follow a Cox-Ingersoll-Ross (CIR) process and the short interest
rate is assumed constant. A liquidity term that represents the funding costs of the bank is introduced
and modeled as a continuous time discrete state Markov jump process. The prepayment option is
an American option with the payoff being an implicit function of the parameters of the problem.
We give a verification result that allows to compute the price of the option. Numerical results are
completely consistent with the theory; it is seen that the exercise domain may entirely disappear
during such a liquidity crisis meaning that it is not optimal for the borrower to prepay. The method
allows to quantify and interpret these findings.

Key words. liquidity regime, loan prepayment, mortgage option, American option, option
pricing, Snell envelope, prepayment option, CIR process, switching regimes, Markov modulated
dynamics.
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1. Introduction. A loan contract issued by a bank for its corporate clients often
includes a prepayment option which entitles the client to pay all or a fraction of its
loan earlier than the maturity. The principle of such an option is very close to the
embedded option of a callable bond, although the technical part is different.

When the interest rates are constant and the borrower default-free a simple pro-
cedure allows the borrower to decide whether the exercise of the option is worthwhile:
he compares the actualized value of the remaining payments with the nominal (out-
standing) value of the loan, denoted by K. If the difference between the former and
the latter is positive then it may be optimal to prepay.

When the interest rates are not constant or borrower is subject to default, the
computation of the actualization is less straightforward. It involves all possible sce-
narios of the interest rate and default intensity in a risk-neutral framework in order
to compute the average value of remaining payments (including the final payment of
the principal if applicable); this quantity will be called "PV RP” and denoted & and
is the present value of the remaining payments i.e., the cash amount equivalent of the
value of remaining payments.

To continue the evaluation of the prepayment option, the PV RP is compared
with the nominal value K: if £ > K then the borrower could prepay; note that it is
not always optimal to immediately when £ = K because in some situations waiting
longer can be even more worthwhile for the borrowed.

Recall that at the origination, the payments correspond to an interest rate, the
sum of the short term interest rate (e.g., LIBOR or EURIBOR) and the contractual
margin py chosen such that £ = K.

The bank, that proposes the loan, finances it through a bond program (possibly
mutualized for several loans) at some spread depending on its own credit profile and
market conditions. In order for the corporate loan to be profitable the rate of the
bond, that is also indexed on LIBOR or EURIBOR, has to be lower than the rate of
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the loan. This condition is easy to check at the origination of both contracts and is
always enforced by the bank. However if the client prepays the bank finds itself in
a risky situation: the periodic interest payments from client are terminated but the
bank still has to pay the interests (indexed on a floating rate) and principal of its
own bond; the bond does not have a prepayment option or such an option is costly.
The risk is that the amount K received from the client at prepayment time cannot be
invested in another product with interest rate superior to that of the bond. Therefore
the prepayment option is essentially a reinvestment risk and the longest the maturity
of the loan, the riskier the option.

According to the normal market practice, the borrower rarely pays a premium or
a penalty to prepay his/her loan. However, the prepayment risk is not negligible and
the bank needs to assess it to be protected against the liquidity risk.

Thus a first question is what provisions need to be made (at the bank level) in
order to handle the prepayment risk. This is a option pricing problem that can be
modeled as an embedded compound American option on a risky debt owned by the
borrower. As Monte-Carlo simulations are slow to converge to assess accurately the
continuation value of the option during the life of the loan and that the binomial
tree techniques are time-consuming for long-term loans (cf. works by D. Cossin et
al. (Cossin, 2002)), we decided to focus, in this paper, on PDE version instead of
binomial trees or Monte Carlo techniques.

Another crucial question is whether it is possible that many clients decide to
prepay simultaneously. This may occur in a post-crisis era when clients can borrow
again at lower rates. We address this question by introducing liquidity regimes to
model funding costs.

Probably the most characteristic of the liquidity is that it oscillates between
distinct regimes following the state of the economic environment. Between two crisis,
markets are confident and it is easier for the banks to issue bonds and the liquidity
market is stable. However, during a crisis, liquidity is rare and the transition between
these two distinct behaviors is rarely smooth and often sudden.

In order to model the presence of distinct liquidity regimes we simulate the lig-
uidity cost by a continuous time observable Markov chain that can have a finite list of
possible values, one for each liquidity regime. It was seen ((Papin and Turinici, 2013,
2014)) that considering several liquidity regimes explains better clients’ prepayment
behavior than a constant liquidity model.

Specific technical circumstances make the evaluation of the prepayment option
less straightforward: although the goal is to value an American option the payoff of the
option is highly non-standard (is dependent on the PV RP) and is close to a compound
option in spirit (although not exactly so). As a consequence the characterization of
the exercise region is not at all standard and technical conditions have to be met.
Furthermore our focus here is on a specific type of dynamics (of CIR type) with even
more specific interest on the situation when several regimes are present.

The most important variable throughout the paper is the borrower credit risk
defined by his/her default intensity (called in the following simply ”intensity”); it
follows a CIR stochastic process and the liquidity cost of the bank, defined as the cost
of the lender to access the cash on the market, has several distinct regimes that we
model by a Markov chain. We prove the pricing formulas and theoretically support
an algorithm to identify the boundary of the exercise region; final numerical examples
close the paper.

The plan of the paper is as follows: we discuss in Section 2 related works; then we
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introduce the model in Section 3, followed in Sections 4 and 5 by technical properties
of the PV RP. In Section 6 it is explained the term structure of the liquidity specific
to this model. The theoretical result concerning the price of the prepayment option
is given in Section 7 and the numerical results in Section 8.

2. Related literature. Historically works that involved a prepayment option
appeared in the study of mortgages, see for instance (Hillard and Slawson, 1998)
and (Chen et al., 2009) for recent contributions to that literature. In that view, the
prepayment option is a function depending on the interest rate and house price. Their
approach is based on a binomial tree with interest rate and a house value following
each a CIR process.

There also exist mortgage prepayment models that use the statistical data to
infer information about the prepayment, see (Schwartz and Torous, 1993). However
the volume and history of data in the corporate loan market are not compatible with
these methods.

Another contribution by D. Cossin et al. (Cossin, 2002) uses a binomial tree
framework and is applied to corporate loans. But the approach seems to be best
adapted for short maturity loans due to the inherent computational difficulties in the
numerical implementation of the binomial trees.

These papers considered the practical algorithm to find a solution and did not
have to consider the geometry of the exercise region because it is explicitly given by
the numerical algorithm. On the contrary we have to take this into account to check
the optimality of the solution and furthermore, to the best of our knowledge, none of
these approaches were meant to treat several liquidity regimes.

The analysis of Markov regimes has been investigated in the literature when the
underlying(s) follow the Black& Scholes dynamics with drift and volatility having
Markov jumps: Guo and Zhang (Zhang and Guo, 2004) derived the closed-form solu-
tions for vanilla American put; Guo treats in (Guo, 2001) Russian options and derives
explicit solutions for the optimal stopping time; Mamon and Rodrigo find in (Mamon
and Rodrigo, 2005) explicit solutions to vanilla European options. Buffington and El-
liott address in (Buffington and Elliott, 2009) European and American options. Other
contributions include Jobert and Rogers (2006), Yao et al. (2006), Siu et al. (2008).

A different class of contributions discuss the liquidity; among them several contri-
butions point out that the liquidity displays "regimes” that is a finite list of distinctive
macro-economic circumstances, see for instance (Dionne et al., 2011, Liang and Wang,
2012) and references within.

Works involving Markov switched regimes and CIR dynamics appears in (Elliott
and Siu, 2009) where the bond valuation problem is considered (but not in the form
of an American option; their approach will be relevant to the computation of the
payoff of our American option although in their model only the mean reverting level
is subject to Markov jumps) and in Zhou and Mamon (2011) where the term structure
of the interest rates is analysed. A relevant connected work is Siu (2010) where the
bond price is obtained when the short rate process is governed by a Markovian regime-
switching jump-diffusion version of the Vasicek model; the authors provide in addition
the suitable mathematical arguments to study piecewise Vasicek dynamics (here the
dynamics is still piecewise but CIR).

On the other hand numerical methods are proposed in Huang et al. (2011) where
it is found that a fixed point policy iteration coupled with a direct control formulation
seems to perform best.

Finally, we refer to Jaillet et al. (1990) for theoretical results concerning the
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pricing of American options in general.

The pricing of a simplified one-dimensional model was proposed in an infinite
horizon (perpetual) setting in Papin and Turinici (2013). In a second contribution in
infinite horizon (Papin and Turinici, 2014) it is investigated in addition a non-trivial
dynamics of the interest rate and a numerical algorithm is proposed together with the
introduction of adapted functional spaces. This paper is specific in that it addresses
the finite horizon case, more close to the actual practice. We also discuss the term
structure of liquidity costs which is not relevant in the perpetual setting.

3. Default intensity and theoretical regime switching framework. The
prepayment option is an option on the credit risk, intensity and the liquidity cost.
The liquidity cost is defined as the specific cost of a bank to access the cash on
the market. This cost is modeled by a continuous time discrete space Markov chain
depending on the states of the economy. We assume the interbank offered rate IBOR
r to be constant. The intensity follows a Cox-Ingersoll-Ross process (see Cox et al.
(1985), Alfonsi (2005), Lamberton and Lapeyre (2008) for theoretical and numerical
aspects of CIR processes and the situations where the CIR process has been used in
finance):

d)\t :’Y(G*At)dt+0'\/ )\tth, )\0 :)\70 (31)

It is known that if 26 > o2 the intensity is always strictly positive.
Denote by A the characteristic operator (cf. (Oksendal, 2007, Chapter 7.5)) of
the CIR process i.e. the operator that acts on any C? class function v by

(Av)(t, ) = Dot A) + (8 — Nono(t, \) + %02)\8,\,\1)(15, 2. (3.2)

We assume the economic state of the market is described by a continuous time
finite state Markov chain X = {X;,t > 0}. The state space of X is the set of
unit vectors £ = {ej,eq,...,en}, €; = (0,...,0,1,0,....,007 € RY. Here T is the
transposition operator.

Assuming the process X; is homogeneous in time and has a rate matrix A, then
if Pt = ]E[Xt] € RNZ

dpy
—=A 3.3
dt Pt, ( )
t
Xt = X() + / AXud’LL + Mt, (34)
0

where M = {M;,t > 0} is a martingale with respect to the filtration generated by X.
In differential form

dX; = AX,dt + dM;, Xo = Xo. (3.5)

We denote by I; € R the instantaneous liquidity cost of the bank when the economy
is in state X;. To ease notations we introduce the vector 1 such that:

= (LX) (3.6)

Denote by ay ; the entry on the line & and the column j of the N x [N matrix A with
ap,; > 0 for j # k and Ej\;l ai,; = 0 for any k.
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4. Analytical formulas for the PVRP. Assume the loan has a fixed coupon
corresponding to the sum of the interest rate r» and the initial contractual margin py
calculated at the inception for a par value of the loan. Let £(¢, A, X) be the present
value of the remaining payments at time t of a corporate loan where A is the intensity
at time t, T is the contractual maturity, K is the nominal amount, ¢ is the recovery
rate (in the eventuality of a default) and X; is the state of the economy at time ¢t. As
the values K, § and T are fixed, we omit them from all subsequent notations.

The loan value LV (¢, A, X) is equal to the present value of the remaining payments
&(t, A\, X), minus the prepayment option value denoted P(¢, A, X):

LV(t, A\ X) = £(t, A, X) — P(t, ), X) (4.1)

The PVRP ¢ is the present value of the cash flows discounted at the risky rate,
where the risky rate at time ¢ is the constant risk-free rate r plus the liquidity cost
l; and the intensity \;. To describe the cash flows in a term loan we add for all ¢ all
coupons K (r + pg)At + O(At) perceived between t and ¢ + At and the nominal K
reimbursed at the end if no default occurred (and otherwise the portion of nominal
recovered 0 - K). We obtain:

T i T
€t X) = E / (K (r+70)+6 K)\f)eij; Pl gz g [[ b A du
t

A=A\ X; = X} (4.2)

We consider that there is no correlation between the credit risk, i.e., the intensity A,
of the borrower and the cost to access the cash on the market, i.e. the liquidity cost
Iy, of the lender. Therefore, we have,

T ;

f(t,A,X) K(T’ +m)/ e~ r(t— t)E [ f Au du _ )\:| E [e_ft lydu
s K/ {)\ o S ]y /\} E [efflud“

A = /\] E [e S tudu

REMARK 1. The coefficients v, 6, o of the CIR process do not depend on the
regime X¢. Thus it is possible to separate the CIR dynamics and the Markov dynamics.
A different approach can extend this result by using the properties of the PVRP as
explained in Remark 5.

We obtain furthermore:

X —X} dt

&4&

+Ke "T-UE {e Ji X, = X} (4.3)

T B H
ﬂmxX%=K&+ww/’é”“”B@ﬂME%‘L““xgzx]ﬁ
t
’ i 7 "ld ;
—J- K/ e "9 B(t, 1, \E {e_ft v X, = X] di
t
T lud
+Ke " B(t, T, \)E {e_ Jo ) 5, = X} (4.4)

where for general ¢, we use the notation:

B(t, %)) = { S dudal
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The quantity B(t,#, \) shares the same mathematical expression with the price of a
zero-coupon in a model where the short interest rates follow a CIR process. This
remark allows to write (see (Cox et al., 1985, Lamberton and Lapeyre, 2008)):

B(t,T,\) = a(t, D)e PO, (4.6)
where,
~ 240
~ o2h e(rth) St o?
aft,t) = —
(t.9) 2h + (v + h)(et=t)h — 1)
5 2 (t=t)h _ 1
Bt t) = (e ~ ) , where h = /72 + 202. (4.7)

2h + (v + h)(e(t=Dh — 1)
Obviously B(t,t,\) is monotonic with respect to \.

In order to compute,

E {e— ffludu

X=X ] , (4.8)
and as the Markov chain is homogeneous in time, we obtain:

E {e— [l tudu Xy =< X. e >] _E [e— [ tudu

X;=<X, e >} . (4.9)
Let fi(t) be defined by:

folt) =E [e Jy et

Therefore one can write:

Xo =< X, e >} . (4.10)

T -
the) = K (r+m) [ e OB EN A~

5 K/ w00, B(t, T \) fi ( — 1) di
+Ke " TR TN fr(T —t). (4.11)

Let 7 be the time of the first jump from Xy =< X, e > to some other state.
We know (see Lando (Lando, 2004) paragraph 7.7 p 211) that 7 is a random variable
following an exponential distribution of parameter «j with,

ar =Y a;. (4.12)
7k

We also know that conditional to the fact that a jump has occurred at time 7 the
probability that the jump is from state e to state e; is py,;, where

(4.13)



Thus,

fu(t) =P(1r > t)e ikt £ P(7 < t)e 7 >k P =)E {e_ J7 b X, =<X,e; >}

= e~ (tan)t 4oy [ o= (htar)T > ik Prj fi(t — T)dT.

Then,

e(lk+ak)tfk(t) =14+ atk f(f ellktak)(t—7) Zj;ék Dk, [ (t—7)dr
= L4 ay fyetstons 3 ) pi;fi(s)ds.

By differentiation with respect to ¢:

% |:e(lk+ak)tfk(t):| — ake(lk+oék)t Zpk,jfj (t)
J#k
Then
df;ﬁ” + (I + ) fr(t) = ar Y pi s fi(1).
J#k

Thus,

d

f;it) = | D cnpiifi(t)| — (i + aw) fi(t). (4.14)

7k
Denote F(t) = (f1(t), f2(t), ..., fv(t))" and introduce the N x N matrix B,

o ;i j if i#]
Bm‘{—(aﬁzi) if i=j (4.15)

From equation (4.14) we obtain,

%it) = BF(t) thus F(t) = eP'F(0), (4.16)
N
F(0) = (fk(o))k:1 =(1,1,..,1)T eRV, (4.17)

We have therefore analytical formulas for the PVRP (¢, A, X). We refer the
reader to Elliott and Siu (2009) for similar considerations on a related CIR switched
dynamics.

REMARK 2. When all liquidity parameters l are equal (to some quantity 1) then
B = A —1-1d and then we obtain (after some computations) that fi(t) = e~ thus
the payoff is equal to that of a one-regime dynamics with interest rate r + I, which
is consistent with intuitive image we may have. Another limiting case is when the
switching is very fast.

The margin pg is set to satisfy the equilibrium equation:
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which expresses the fact that the present value of the future cash flows (weighted
consistently with the probability of survival) is equal to the nominal K. Therefore
according to (4.11) if Xo =< X, eg, >,

146 [ e ED0;B(t, T, A) fio (F — t)df — e ™ TV B(t, T, A) fio (T — 1)

Po = = — ~ ~ -
[ e OBt T, M) fio (- t)di
- (4.19)
REMARK 3. Ar is not defined because
§T. N\ Xo) = K, VA€ RT. (4.20)

REMARK 4. Note that we assume no additional commercial margin. If an ad-
ditional commercial margin pg is to be considered then pg is first computed as above
and then replaced by po = po + po in Equation (4.2). Equation (4.18) still holds with
some g instead of N\g. With these changes all results in the paper are valid, with the
provision that the price of the prepayment option is P(0, A, Xo).

We will also need to introduce for any k = 1, ..., N the function KZ (t) such that

€t An(t),er) = K, Vte[0,T]. (4.21)

Of course, Kg(—o(o) = Xo. Recall that Vt € [0,T], £(¢, A, ex) is decreasing with respect
to A; when £(¢,0,ex) < K there is no solution to eqn. (4.18) and we will chose by

convention KZ(t) = 0.
5. Further properties of the PVRP {. We also introduce below a PDE

formulation for £. To ease the notations we introduce the operator AR that acts on
functions v(t, A, X) as follows:

N
(AR)(t, \ er,) = (.Av)(t)\,ek)—(r—i—lk—l—)\)v(t)\,ek)—i—z ar,j (v(t,)\,ej)—v(t,/\,ek)).
j=1
(5.1)
Having defined the dynamics (3.1) and (3.5) one can use an adapted version of
the Feynman-Kac formula in order to conclude that PVRP defined by (4.2) satisfies
the equation:

{(ARE)(t,)\,ek)—|—(5~/\—|—r—|—po)K=0, (5.2)

E(T, M\ ep) =K, VA>0 and Vei € E.
REMARK 5. When the coefficients v, 6, o of the CIR process depend on the

regime (see Remark 1) the operator A™ in Equation (5.2) is replaced by the operator
AR defined as:

1
A;}(U)(t, A, ek) = 8t1)(t, A, ek) + 'yk(ék — A)a,\v(t, A, ek) + 50%)\8)\)\'0@, A, €k)

N
—(r e Vot Aer) + 3 an (v(t, Aej) — vty A, ek)) (5.3)
j=1



6. Term-structure of the liquidity cost. The continuous time Markov chain
allows to define the liquidity cost of the bank to access the cash on the market accord-
ing to several distinct regimes. Therefore in each regime we can build a term-structure
of the liquidity cost that represents the cost at different terms (time horizons). In
the more stressful regime, the curve will be inverted (convex). It is the rarest type
of curve and indicates an economic recession (see Figure 8.1). The liquidity cost L;
for a contractual maturity 7" at time ¢ is defined by the following equality:

T
oL (M=t _ g | ), lu,du’Xt e Xy > (6.1)

Therefore,

In (fi(T = 1))

Lir=—
v T—t

(6.2)

7. Valuation of the prepayment option. The valuation problem of the pre-
payment option is equivalent to that of an American call option on a risky debt owned
by the borrower. It is not a vanilla option but rather close in principle to a compound
product because the payoff is at its turn a contingent claim. The prepayment option
allows borrower to buy back and refinance his debt according to his updated credit
profile at any time during the life of the option.

As discussed above, the prepayment exercise results in a pay-off (£(t,\) — K)*
for the borrower. The option is therefore an American option with pay-off:

XA X) = (E(t, M, X) — K)™T. (7.1)

The following result allows to compute the price of the prepayment option.

THEOREM 6. For each function A : [0, T] — (Ry.)N which is C* on [0, T[ and such
that the domain {(t, )|t €]0,T[, X > Ag(t)} is locally Lipschitz for any k =1,...,N,
define Py (t, A\, X) such that:

Pa(+, -, ex) is Lipschitz continuous on [0,T] x [0, o], Vk (7.2)

PA(t7/\,€k) = X(t,)\,ek), VA e [O7Ak(t)], te [07T] (7 3)
(ARP))(t, A\ er) =0, YA > Ag(t), t €0, T[k=1,...N (7.4)

lim Py(t, A ex) =0, k=1,..,N, t € [0,T] (7.5)
—o0

PA(T, A er) =0, k=1,...N and YA > 0. (7.6)

Suppose a function A* : [0,T] — (RN (satisfying same hypotheses as above) exists
such that A*(t) € ngl[o, (po — lp) ™ /\KZ(t)] and for allk =1,...,N and ¥t €]0,T|:

A (t
H H o VT T (7.7)
P~ (t A\ X) > x(t N, X) VX, (7.8)
OPp-(t A, ex) Xt ex) |
N =7 Ap(t) >0 7.9
X ‘A:(A;(t))+ o\ ‘A:(A:(t))f if Ag(t) >0, (7.9)

N
> ak; (PA* (t, A e5) — x(t, A, ej)) +K(p+A1-0)—p) <0, (7.10)
j=1

VA €] min A5 (1), AL (D]



Then P = Pp~.

REMARK 7. The Equation (7.4) is given a meaning in the sense of viscosity solu-
tions, see Crandall et al. (1992) for an introduction, Barles and Burdeau (1995) for a
treatment of degenerate PDEs and Achdou and Pironneau (2005) for an explanation
of how the introduction of weighted Sobolev spaces can also help to give a meaning
to this equation. When some A} (t) = 0 no boundary conditions are needed at A = 0
as the solution will select by itself the right value. The requirement (7.2) selects an
unique solution to (7.3)-(7.6).

Proof. The valuation of an American option related the admissible trading and
consumptions strategies to the price P(t, A, X') of the prepayment option by computing
an optimal stopping time associated to the pay-off. Denote by 7; 1 the ensemble of
stopping times between ¢ and T, then (see Musiela and Rutkowski (2005, Chapter 5)
and also Myneni (1992), Lamberton and Lapeyre (2008)):

Pt X) = sup E {e—ft rHwbdn 4y )
TE T

)\t = )\, Xt = X:| .
We note that if 75 is the stopping time associated with exiting the domain

N
U {&N[x> Ax(t), t < T},

k=1

then:

Pr(t, )\, X) =E [e_ Jor e goxx ) = A X = X} .

Thus for any A we have P > Py; when A has some null coordinates the continuity
(ensured among others by the Remark 7) shows that we still have P > P,. In
particular for A* we obtain P > Pj«; all that remains to be proved is the reverse
inequality i.e. P < Py-~.

Note first that since A* is a C? function the curve A*(t) is C? and thus in partic-
ular the tangent is defined at any point. Both P~ and x are C? on each subdomain
delimited by A*(¢) and in particular condition (7.3) implies that the derivatives of
Pp-(-,-,ex) and x(-,-, ex) match along the tangent to Aj(t) (for any k). The condi-
tion (7.7) implies that the direction of the A\ axis is linearly independent from the
tangent to Aj(¢) and since the derivatives of Py« (-,-,ex) and x(-,-, ex) match also
along the direction of the A axis this means that they are equal in any direction.
Therefore for any k the function Py« (-, -, ex) is of C! class on the whole domain.

Now we follow the technique in Thm. 10.4.1 (@ksendal, 2007, Section 10.4 page
227) (see also Zhang and Guo (2004) for similar considerations). First one can use
the same arguments as in Oksendal (2007, Appendix D) and work as if Py- is C? (not
only C! as the hypothesis ensures).

Denote Dy~ = Ui\;l {(t, N ex)|A € [0,A(t)]} (this will be the exercise region)
and Cp~ = R%_ x E \ D~ (this will be the continuation region).

The Lemma 7.1 proves that AR P,. is non-positive everywhere (and is null on
Ca-). The Ito formula allows to write:

t t
! < Jyrteedsp iy, Xt>>) — e o T AR B (4 0, X)) dE + Y,

(7.11)
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where Y; is a martingale. Taking averages and integrating from 0 to a stopping time
T it follows from AR Py« < 0 that:

PA* (ta )‘7 X) > E |:€ fo T+lu+>\uduPA* (t7 A7'7 XT)

Ao = A, Xo :X}

SE [e— I\ rHLEd )XY A = A, Xo = X} .
Since this is true for any stopping time 7 the conclusion follows. O
REMARK 8. An alternative proof is to recall that the price P is the unique solution

of the following quasi-variational inequality, see Bensoussan and Lions (1982), Bardi
and Capuzzo-Dolcetta (1997):

max{A®P,x — P} =0. (7.12)

But Lemma 7.1 and hypothesis (7.8) imply that P~ is also a solution of this problem.
By uniqueness P = Pp«. In this approach one has nevertheless to check the technical
points related to the wiscosity interpretation of the equation for the price: formal
definition of the quasi-variational inequality, equivalence with the price, uniqueness of
the solution, a priori Lipschitz regularity of the price.

LEMMA 7.1. Under the hypothesis of the Thm. 6 the following inequality holds
(strongly except for the values (t,\, X) = (t,A},e) where it holds in the viscosity
sense):

(ARPA)(t, N, X) <0, YA > 0,VX. (7.13)

Proof. The non-trivial part of this lemma comes from the fact that if for fixed
k we have for A in a neighborhood of some A1: Py« (t, A\, ex) = x(t, A, ex) this does
not necessarily imply (ARPy+)(t, A1, ex) = (ARx) (¢, A1, ex) because AR depends on
other values Py« (¢, \, e;) with j # k.

From (7.4) the conclusion is immediately verified for X = ey, for any A €|Aj(¢), col.

We now treat the alternative A < min; A%(¢); in particular it follows that 0 <
A < minj A%(t) < Kﬁ(t) for any ¢ thus Kg(t) > 0. Note that A} (t) < KZ(t) implies
f(t,AZ(t), ek) > §(t7K2(t)7ek) = K for any k= 1. N thus X(t7 )‘7 ek‘) = E(tv >\7 ek) -

K for any A € [0,A;(t)] and any k. Furthermore since A < min; A%(f) we obtain

Pa-(t, N\ ex) = x(t, N\ ex) = &(t, A, ex) — K for any k. Fix X = e; then:

(AT Pr)(t, N en) = (ATX) (8 A, ex)

= (AR(E — K))(t, A en)

= (ARE)(t, A, er) — AR(K)

=—00-A+r+p0) K+ (r+lk+NK

— K(k+ (1— )\~ 79)

<K+ (1=8A(t)—po) <0 (7.14)
the last inequality being true by hypothesis.

The last alternative is A €] min; A7 (t), A ()[; in this case Py- (¢, A, ex) = x(t, A, ex)
but some terms Pp-(t, A, e;) for j # k may differ from x(¢, A, e;). This point arises
because the payoff x itself has a complex structure and the technical condition to be
satisfied was not treated in previous works (see for instance Zhang and Guo (2004)).
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Recalling the properties of £ one obtains (and since Pa«(t, A, ex) = x (£, A, ex)):

N

(ARPyA(t, N er) = (Ax) (A er) — (7 + 1 + N x(t, A ex) + Zak,j (PA*(t, Aej) — x(t, A, ek)>
=1
N J
= (AP0t N en) + D any (Pae (M e) = x(t Avey)
=1
! N
= (ARE)(t, N er) — AR(K) + 3 an, (PA* (t. A ) — (t,)\,ej))
j=1
N
K@ AT 470)+ (4l NE >y (PA* (t. A ej) — x(t, A, ej)) <0, (7.15)

Jj=1

where for the last inequality we use hypothesis (7.10). Finally, since we proved that
(ARPp-)(t, A, X) < 0 strongly except for the values (¢, A, X) = (t, A%(t), e) and since
Py~ is of C! class we obtain the conclusion. O

REMARK 9. Several remarks are relevant here:

1. when N > 1 checking (7.10) does not involve any computation of derivatives
and is straightforward.

2. the Theorem is a verification result i.e., only gives sufficient conditions for a
candidate to be the option price. However results in the literature (see Chen
and Chadam (2007) and references within) indicate that the boundary will
probably be even more reqular, C> on [0,T[. The behaviour near final time T
is not expected to be singular with respect to A (because there is no singularity
in the payoff function there) but we do not exclude that limyr dA (t)

which is equivalent to say that the derivative with respect to \ of the inverse
of t — Aj(t) is null.

8. Numerical Application. The numerical resolution of the partial differential
equation (7.4) is required in order to compute the value of the prepayment option.
We describe below the use of a finite difference method as discretization choice, but
some cases may require different treatment.

To avoid working with an infinite domain we truncate at \,,4,. Then a boundary
condition is imposed on M\, which leads to a numerical problem posed in the finite
domain Up_ {(t, A)|A € [Ax(t), Amaa] }-

We introduce the time step At and space step AX and look for an approxima-
tion P}, of Py(nAt, LA\, ex). The first and second derivative are approximated by
(centeréd) finite difference formula and the time propagation by a Crank-Nicholson
scheme:

P;L-:Elk - Penﬁlk " Ploye— Pty

PZkH - P, n (0 — (CAN))
2A\ 2A)\

At 2

2

PRty —2Pptt PR PR —2PR, + P
+%(€A>\) trlk Ck Lk TrrLk ok T 1

AN? AN?

Pn-‘rl + pr Pn-l—l Pn+1 pr. _ pr
—(r 4 I + (LAN)) 2k +Z kj l + 4 5 Lk

12

=0




A standard computation shows that the truncation error of this scheme is O(A#%+
AN?).

See also Remark 7 for the situation when some A () is null: there the PDE for
regime ey, is defined over the full semi-axis A > 0 and it is never optimal to exercise
in this regime. The PDE is defined with homogeneous boundary conditions at A4z
(or Neumann, see below) and without any boundary conditions at A\ = 0. To ensure
the same number of equations and unknowns the equation is discretized at A = 0 too
but the second order derivative is null there. Only first order terms and a first order
derivative remain. The first order derivative is discretized with a lateral second order
finite difference formula that involves only the function values at A = 0, A\, 2A\ using
the identity:

) = —%f(z) +2f(x—;h) — 3f(z+2h) Lom?), (8.1)

We consider a numerical application with A4, = 1000 bps, AX = 1/5 bps and
At = 1/12. Two approaches have been considered for imposing a boundary value at
Amaz: €ither consider that Py (0, Aoz, er) =0, Vk =1,...; N (homogeneous Dirichlet
boundary condition) or that %PA(O, Amazs€x) = 0, Yk = 1,..., N (homogeneous
Neumann boundary condition). Both are correct in the limit Ay — 00. We tested
the precision of the results by comparing with numerical results obtained on a much
larger grid (10 times larger) while using same AX. The Neumann boundary condition
gives much better results for the situations we considered and as such was always
chosen (see also Figure 8.5).

We consider a loan with a contractual maturity 7' = 5 years, a nominal amount
K =1, a recovery rate 6 = 40%. The borrower’s default intensity \; follows a CIR
dynamics with parameters: initial intensity Ao = 150 bps, volatility ¢ = 0.1, average
intensity # = 150 bps, reversion coefficient v = 0.5. We assume a constant interest
rate r = 1% and a liquidity cost defined by a Markov chain of three states Iy = 15 bps
(economic expansion), lo = 30 bps (economic stability) and lo = 250 bps (recession).
For N = 3 the rate 3 x 3 matrix A is defined as following,

_1 1 0
2 2
A=11 Z2 1 |. (8.2)
1 1
0 % —1

We computed the term-structure of the liquidity cost for each state which is plotted
in Figure 8.1. At inception, we assume the liquidity cost is in the state 1, so Xy = es.
Recall that a basis point, denoted "1 bp" equals 1074,

In order to find the initial contractual margin we use equation (4.19) and find
Do = 228 bps at inception in the state es. For information, the contractual margin is
Po = 175 bps in the lowest state e; and pg = 313 bps in the highest state e3. We recall
that the contractual margin takes into account the credit risk (default intensity) and
the liquidity cost.

The function Aj(t) is obtained by maximizing Py (t, X\, Xo) backward for all ¢ €
[0, T[ and each state k. To accelerate the optimization process, for the initial guess at
step at t = T — At we note that there is little time to switch from the current regime
to an other. Therefore, we use the optimal boundary for each regime independently
(one-regime model), see Figure 8.2, as initial guess. Let T; (T — At) be the optimal
boundary for the constant one-regime X = ej, option. We propose as initial guess for
A*(T — At) the vector (Y5 (T — At))2_,. This initial guess is validated by computing

13
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Fi1G. 8.1. We plot the term-structure of the liquidity cost in bps in the regime X = ey (dashed,
recession), X = ez (solid, economic stability) and the regime X = e3 (dotted, economic expansion).

the value Py (¢, Ao, Xo) for all neighbors around (Y (7 — At))4_; in the N-dimensional
space where A belongs.

Then for each time ¢t < T — At, we search the optimal boundary in the neighbor-
hood of the previous optimal boundary obtained at ¢ + At.

To be accepted, this numerical solution has to verify all conditions of the Theo-
rem 6. The hypothesis (7.8) and (7.10) are satisfied (see Figure 8.5) and the hypothesis

(7.10) is accepted after calculation. Moreover V¢ € [0, T[, A5 (t) < (po—11) /\K(l)(t) and
the analogous holds for A3(¢).

In the state Xy = e, and at inception, the present value of cash flows is at par,
s0 £(0, Ao, Xg) = 1. The prepayment option price is P(0, Ao, Xo) = 0.0136. Therefore
the loan value equals £(0, Ao, Xg) — P(0, Ao, Xo) = 0.9864.

The loan value will be equal to the nominal if the intensity decreases until the
exercise region A < A*, see Figure 8.4. The continuation and exercise regions are
depicted in Figure 8.5.

9. Conclusion. The present work proposes a procedure to compute the price of
the prepayment option of a corporate loan. The model takes into account a multi-
regime framework for the liquidity price. The numerical illustration shows that the
impact of the option may be non-negligible and should be assessed. Moreover it
is seen that the borrower may never prepay during recessions but may do so once
the economic situation stabilizes. Although the model does not take into account
the correlation between borrowers, it may indicate that the end of a recession will
trigger simultaneous prepayments of many loans, putting banks at risk. Appropriate
provisions have therefore to be set aside to cope with such an alternative and the
present model gives quantitative indications on how to evaluate them.
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