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Abstract

We provide a new projective condition for a stationary real random field indexed
by the lattice Z? to be well approximated by an orthomartingale in the sense of Cairoli
(1969). Our main result can be viewed as a multidimensional version of the martingale-
coboundary decomposition method which the idea goes back to Gordin (1969). It is a
powerfull tool for proving limit theorems or large deviations inequalities for stationary

random fields when the corresponding result is valid for orthomartingales.

1 Introduction and notations

In probability theory, a powerfull approach for proving limit theorems for stationary se-
quences of random variables is to find a way to approximate such sequences by martingales.
This idea goes back to Gordin [12]. It is a powerfull method for proving the central limit
theorem (CLT) and the weak invariance principle (WIP) for stationary sequences of depen-
dent random variables satisfying a projective condition (see in Theorem A below). More
precisely, let (X)rez be a sequence of real random variables defined on the probability space
(Q, F, ). We assume that (Xj)ez is stationary in the sense that its finite-dimensional laws
are invariant by translations and we denote by v the law of (X)rez. Let f : RZ — R
be defined by f(w) = wp and T : RZ — RZ by (Tw), = wpy1 for any w in RZ and any
k in Z. Then the sequence (f o T*)pez defined on the probability space (RZ, B(RZ),v) is
stationary with law v. So, without loss of generality, we can assume that X; = f o T*
for any k£ in Z. For any p > 1 and any o-algebra M C F, we denote by LP(Q, M, u)
the space of p-integrable real random variables defined on (€2, M, 1) and we consider the
norm ||.||, defined by [|Z||? = [, |Z(w)Pdp(w) for any Z in LP(Q, F, ). We denote also by
LP(Q, F,u) © LP(2, M, 1) the space of all Z in LP(2, F, u) such that E (Z | M) =0 a.s.



Theorem A (Gordin, 1969) Let (Q, F,u) be a probability space and let T : Q@ — Q be a
measurable function such that = Tu. Let also p > 1 and M C F be a o-algebra such that
M C T IM. If f belongs to LP(Q, M, u) © LP(Q, NiezT "M, ) such that

2_E(F 1T M), < o0 M
k>0
then there exist m in LP(Q, M, ) © LP(Q, TM, u) and g in LP(Q,TM, ) such that
f=m+g—goT. (2)

The term g — go T in is called a coboundary and equation ({2)) is called the martingale-
coboundary decomposition of f. Moreover, the stationary sequence (moT");cz is a martingale-
difference sequence with respect to the filtration (T7"M);cz (see Definition (1) below) and for
any positive integer n,

Sn(f)=Sp(m) +g—goT" (3)
where S,,(h) = 27~ hoT' for any function h : Q — R. Combining (3)) with the Billingsley-
Ibragimov CLT for martingales (see [3] or [I5]), one obtain the CLT for the stationary
sequence (f o T%).ez when the projective condition holds. Similarly, combining
with the WIP for martingales (see [4]), we derive the WIP for the stationary sequence
(foT*)ez. Thus, Gordin’s method provides a sufficient condition for proving limit theorems
for stationary sequences when such a limit theorem holds for martingale-difference sequences.
Our aim in this work is to provide an extension of Theorem A for random fields indexed by
the lattice Z¢ where d is a positive integer (see Theorem .

2 Main results

Definition 1 We say that a sequence (Xy)kez of real random variables defined on a prob-
ability space (U, F, ) is a martingale-difference (MD) sequence if there exists a filtration
(Gr)rez such that Gy, C Gry1 C F and Xy, belongs to LY (2, Gy, n) © LY(Q, Ge_1, 1) for any k
m 2.

The concept of MD sequences can be extended to the random field setting. One can refer
for example to Basu and Dorea [I] or Nahapetian [20] where MD random fields are defined
in two differents ways and limit theorems are obtained. In this paper, we are interested by
orthomartingale-difference random fields in the sense of Cairoli [5]. A good introduction to
this concept is done in the book by Khoshnevisan [16]. Let d be a positive integer. We
denote by (d) the set {1,...,d}. For any s = (s1, ..., 84) and any t = (t1, ..., tq) in Z%, we write
s <t (resp. s <t, s=tand s> t)if and only if s, < 5 (resp. sp < tx, sp = tx and s > tx)
for any k in (d) and we denote also s At = (s1 Aty,..., 54 Atg).

Definition 2 Let (2, F, u) be a probability space. A family (G;)icza of o-algebras is a com-
muting filtration if G; C G; C F for any i and j in Z* such that i < j and

]E<E (Z | gs) | gt) = E<Z | gs/\t) a.s.

for any s and t in Z¢ and any bounded random variable Z.
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Definition B is known as the “F4 condition”.

Definition 3 Let (Q, F, 1) be a probability space. A random field (Xy)yeza is an orthomartingale-
difference (OMD) random field if there exists a commuting filtration (G;);cza such that X
belongs to L' (2, Gy, ) © L (Q, Gy, ) for any 1 k and k in Z°.

Remark 1. Let k be fixed in Z? and S, = 3., X; where (X;);ez« is an OMD random
field with respect to a commuting filtration (G;);cz«. Then Sy belongs to L!(Q, Gi, 1) and
E (Sk | G1) = S for any | < k. We say that (Sk)peza is an orthomartingale (OM) random field.

Arguing as above, without loss of generality, every stationary real random field (X )eza
can be written as (f o T*),cze where f : Q — R is a measurable function and for any & in
Z4, TF : Q — € is a measure-preserving operator satisfying 7% o 779 = T for any i and j
in Z. For any s in (d), we denote T, = T where e, = (eg1 ey egd)) is the unique element
of Z¢ such that e{”) =1 and !’ = 0 for any i in (d)\{s} and Uy is the operator defined by
Ush = ho T for any function h : 2 — R. We define also U; as the product operator Il ;U
for any 0 C J C (d) and we write simply U for Uiy = Uy oUso...0oUy. Forany ) C J C (d),
we denote also by |J| the number of elements in J and by J¢ the set (d)\J. Finally, the set
of nonegative integers will be denoted by N. The main result of this paper is the following.

Theorem 1 Let (2, F, i) be a probability space and let T' : Q1 — Q be a measure-preserving
operator for any | in Z% such that T' o T9 = T for any i and j in Z%. Let p > 1 and
let M C F be a o-algebra such that (T~'M);cza is a commuting filtration. If f belongs to
LP(Q, M, 1) © LP(Q, Nyena T M, 1) and

DB ITM)||, < o0 (4)

keNd

then f admits the decomposition

feme S T - Ums =10 - s, 5
0CJC(d) s=1

cJC seJ

=

where m, g and my belong to LP(QQ, M, ), LP(Q, Hle T M, ) and LP(Q, [[,e, ToM, 1)
respectively and (U'm);eza and (Usemy);cga-is are OMD random fields for O C J C (d).

Remark 2. One can notice that condition (4]) is exactly Gordin’s condition (1) when d = 1.
It is well known that condition is not necessary for f to admit a martingale-coboundary
decomposition. In fact, in dimension d = 1, a necessary and sufficient condition for f to
admit the martingale-coboundary decomposition is the convergence in LP(2, M, u) for
p = 1 of the series Y, E (U*f | M) (see [22], Theorem 2, condition (7)). So, let (4;);0
be a decreasing sequence of real numbers such that ., 67 < oo and define ay; = J; and
agjy1 = —0; for any j > 0. If (&,)iez is a sequence of iid real random variables with zero-
mean and unit variance and f o T" = 3" aje,_; for any k in Z (we say that (f o T%)iy
is a linear process) then Y, E(U* f|M) converges in L*(Q, F, 1) while the decay of the
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sequence <Zj>k a?) o, A0 be arbitrarily slow such that the series Y-, ||E(U* fIM)||, does

not converge. That is, f = ), a;c_; is a function which admits the martingale-coboundary
decomposition even if Gordin’s condition does not hold. Finally, it will be interesting
to investigate a necessary and sufficient condition for the orthomartingale-coboundary de-
composition (5) when d > 2. This question is still an open problem and will be considered
elsewhere.

Remark 3. If d = 2 then reduces to
f =m—+ ([ — Ul)ml + (I — Ug)mg + (I — Ul)(] — Uz)g,

where m, my, my and g belong to ILP(Q, M, p1) such that (U'm);cz is an OMD random field
and (USm)rez and (UFmy)rez are MD sequences. If d = 3 then becomes

f=m+{UI—-U)mi+ I —Us)ms+ (I —Us)ms
(I = U)(I = Up)myray + (I — U)(I = Usymyrsy + (I — Un)(I — Us)myasy
+{ = U)I = Us)(I - Us)g
where m, mq, ma, ms, My 2y, My1,33, My23) and g belong to LP(Q, M, p) such that (U'm);ezs,
(UE273}m1)iezz, (UE173}m2)iGZ2 and (Ufl,z}mg)ieza are OMD random fields and (Ufmyz 3} )kez,
(U§m{173})kez and (Ué“m{m})kez are MD sequences.

Remark 4. A decomposition similar to (5)) was obtained by Gordin [I3] but with reversed
orthomartingales and under an assumption on the so-called Poisson equation.

Proposition 1 Let (X;);cza be an OMD random field. There exists a positive constant k
such that for any p > 2 and any n in N9,

1/2
> Xil| < rp™? ( > ||Xk|!§> (6)

0<k=<n 0<k=<n

p

and the constant p*? in @ 15 optimal in the following sense: there exists a stationary OMD
random field (Zy)reza with || Zo|| . =1 and a positive constant k such that for any p > 2

> 2

0xk=<n

1/2
inf{ C >0 ; <C ( > szui) Vn € N? 3 > kp?2. (7)

0k=<n

p
Combining Proposition (1| and Theorem (1| we obtain the following result.
Proposition 2 Let (X;);cza be a stationary real random field defined on a probability space

(Q, F,p) and (F;)ieza be a commuting filtration such that X; is F;-measurable for each i in
Z2. If there exists p = 2 such that Xy belongs to 1LP(Q, Fo, 1) © LP(Q, NyenaF _, 1) and

> IEXo | Fop)ll, < oo (8)

keNd



then for any n = (ny,...,ng) in N9,

> %

0<k=<n

< Cap™ [n|*? Y I (Xo | Foi)l, (9)

d
» keN

where |n| = Hle n; and Cy is a positive constant depending only on d.

Remark 5. A Young function 1 is a real convex nondecreasingfunction defined on R™
which satisfies lim; o 9 (f) = oo and ¢(0) = 0. We denote by L, (€2, F, 1) the Orlicz space
associated to the Young function 1, that is the space of real random variables Z defined
on (2, F,u) such that E (¢(|Z]/c)) < oo for some ¢ > 0. The Orlicz space L,(Q, F, p)
equipped with the so-called Luxemburg norm ||.||,, defined for any real random variable Z
by [|Z|ly = inf{c > 0; E[¢)(|Z|/c)] < 1} is a Banach space. For any p > 1, if ¢, is the
function defined by ¢,(x) = 2P for any nonegative real x then ¢, is a Young function and
the Orlicz space Ly, (€2, F, p) reduces to LP(Q2, F, u) equipped with the norm |[[.|[,. For more
about Young functions and Orlicz spaces one can refer to Krasnosel’skii and Rutickii [I8].
Combining (9) and Lemma 4 in [I1], we obtain Kahane-Khintchine inequalities: for any
0 < g < 2/d, there exists a positive constant C' depending only on d and ¢ such that for any

n in N%,
> X

0<k=<n

<Oy |E(Xo | Foi)

Vg keNd

where 3(q) = 2q/(2 — dq) and 1), is the Young function defined for any x € Rt by

Va(2) = exp((z + ha)*) —exp(hg) with ha = (1= a)/a)* Ljpcac

[ (10)

for any real a > 0. Using Markov inequality and the definition of the Luxembourg norm, we
derive the following large deviations inequalities: for any 0 < g < 2/d, there exists a positive
constant C' depending only on d and ¢ such that for any n in N? and any positive real z,

q
q xr
1 Xul >z | <(1+eh exp | — +h .
(Z : ) et ((crnrdﬂzkewumxo|fk>u%) ))

0xk=n
(11)
Finally, one can check that and still hold for ¢ = 2/d if X is bounded.

Proposition 3 Let (X;);eza be a stationary real random field defined on a probability space
(Q, F,p) and (F;)ieza be a commuting filtration such that X; is F;-measurable for each i in
Z°. If X belongs to L2(2, Fo, ) OL2(Q, Npena F—i, 1) and >y cna |[E (Xo | Foi)]|, < oo then
Y kezd [E(XoXy) | < oo and

2
li Ik X = E (XX,
e (Z ) 2 E(XoXy)

0<k=<n kezd

where |n| — +o0o means that min; ;<4 n; — +00.
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Now, we are able to investigate the WIP for random fields. Let (X;);cza be a stationary real
random field defined on a probability space (€2, F,u). Let also A be a collection of Borel
subsets of [0, 1]? and consider the process {S,(A); A € A} defined by

Su(A) = > AnANR)X, (12)

i€(n)d

where R; =|i; — 1,41] X ...X]ig — 1,44] is the unit cube with upper corner at i = (i1, ..., 74) in
(n)? and X is the Lebesgue measure on R%. The collection A is equipped with the pseudo-
metric p defined by p(A, B) = \/A(AAB) for any A and B in A. Let ¢ > 0 and let H(A, p,¢)
be the logarithm of the smallest number N (A, p, ) of open balls of radius £ with respect to
p which form a covering of A. The function H(A,p,.) is called the metric entropy of the
class A and allows us to control the size of the collection A. Let (C(.A),|.]|.4) be the Banach
space of continuous real functions on A equipped with the uniform norm ||.|| 4 defined by
| flla =supaecalf(A)]. A standard Brownian motion indexed by A is a mean zero Gaussian
process W with sample paths in C(.A) such that Cov(W (A), W(B)) = A(ANB) and we know
from Dudley [8] that such a process is well defined if fol VH(A, p,e)de < co. We say that
the WIP holds if the sequence of processes {n=%2S,(A); A € A} converges in distribution
in C(A) to a mixture of A-indexed Brownian motion. The first weak convergence results
for Q4-indexed partial sum processes were established for i.i.d. real random fields where Q
is the collection {[0,t]; ¢t € [0,1]?} of lower-left quadrants in [0,1]?. They were proved by
Wichura [25] under a finite variance condition and earlier by Kuelbs [19] under additional
moment restrictions. If d = 1, these results coincide with the original invariance principle of
Donsker [7]. Many others WIP have been established for dependent random fields indexed
by large classes of sets. One can refer for example to [6], [9], [I0] or [II]. In the sequel,
we are going to apply Theorem [1] in order to establish a WIP (Theorem [2)) for Qg-indexed
partial sum dependent random fields. Let n be a positive integer. For simplicity, we denote
Sn(t) = S,([0,1]) for any [0,¢] in Q4. More precisely, for any ¢ in [0, 1]¢,

Sa(t) = D A0, nt] N R)X; (13)
i€(n)4

Recall that the standard d-parameter Brownian sheet on [0,1]% denoted by B = (By),c(o,1j4 is

a mean-zero Gaussian random field such that Cov(Bg, B;) = Hle siAt; for any s = (s1, ..., Sq)

and t = (t,...,tq) in [0,1]%. Since the CLT does not hold for general OMD random fields
(see [24], example 1, page 12), we restrict ourselves to the case of a filtration generated by
iid random variables which is necessarily a commuting filtration (see Proposition 8.1 in [24]).

Theorem 2 Let (&;);cza be an iid real random field defined on a probability space (2, F, 11).
Denote by (F;)icza the commuting filtration where F; is the o-algebra generated by ; for
j<iandiinZ% Let (X;);cza be a stationary real random field such that X, belongs to
L2(Q, Fo, 1) © LA, Npena F g, 1) and holds for p = 2. Then the sequence of processes
{n=425,(t); t € [0,1]?} converges in distribution in C(Qq) to /7B where B is a standard
d-Brownian sheet and n =", 4 E(XoX}).



Remark 6. El Machkouri et al. [II] and Wang and Woodroofe [24] obtained also a WIP for
random fields (X})peze which can be expressed as a functional of iid real random variables
but under the more restrictive condition that Xy belongs to LP(2, F, ) with p > 2. In a
recent work, Wang and Volny [23] obtained the WIP for p = 2 under a multidimensional
version of the so-called Hannan’s condition for time series. Their condition is less restrictive
than but condition gives also an orthomartingale approximation for the considered
random field which is of independent interest (see Theorem . In particular, provides
not only a WIP but also large deviations inequalities (see Proposition [2/ and Remark 5).

Proposition 4 Let (¢;);cza be an iid real random field defined on a probability space (2, F, 1)
such that g has zero mean and belongs to 1LP(Q2, F, u) for some p > 2. Consider the linear
random field (Xy)peza defined for any k in Z¢ by X; = ZjeNd ajep—; where (a;)jend is @

family of real numbers satisfying > . na a? < o0. Then the condition holds if and only if

jEN
Z Z%z' < 00. (14)
keNd \| gk

Remark 7. Proposition 4] ensures that the conclusion of Theorem [2| still hold for linear
random fields with iid innovations under assumption . Let (Xk)reze be a linear random
field defined as in Proposition [d] In [24], Wang and Woodroofe obtained a WIP for (Xj)ecza
under a weaker condition than but again with the additional assumption that ¢y belongs
to LP(Q, F, ) with p > 2. In [2], Biermé and Durieu obtained also a WIP under the so-
called stability condition Y, ya|ax| < oo which is less restrictive than (14). In fact, let
ap :=k;®.. . k;*for 1 <a<3/2and k = (ki, ..., kq) in N then the linear process (Xj)peze
satisfies the stability condition but does not hold. Indeed, is equivalent to the

convergence of the series > . /> ;17%* and this last one is not convergent since there

j=0

exists a positive constant C, such that >-,_17>* > C, j'7?* for each j > 0. Nevertheless,

provides the orthomartingale-coboundary decomposition while it is not the case

for the stability condition even when d = 1. In fact, let (by)r>0 be a decreasing sequence

of real numbers such that b, goes to zero as k goes to infinity and Z,@O b2 = 400 and let

ar, = by, — by for any k > 0. So, we have » _,_ |ax| < oo but if Fq is the o-algebra generated
2

by all ¢; for j < 0 then HZZJL E(XZ-|.7-—0)H = 1oo(biy1 — bipn)? for any positive integer N.
2 =

Since, for any positive integer L, we have

L

L
Sl;fp Z(blﬂ —bin)’ > Z bl2+1a
1=0 1=0

2

we obtain sup, HZ?LIE(XAM)H = +oo. Consequently, the martingale-coboundary de-
2

composition does not hold.

We now provide an application of Theorem [I| to the WIP in Hoélder spaces. We consider
for 0 < v < 1 the space H,([0,1]%) as the space of all continuous functions g for which
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there exists a constant K such that |g(s) — g(t)] < K||s — t||” for each s and ¢ in [0, 1]¢
where ||| denotes the Euclidian norm on RY. We endow this function space with the norm
gl == [9(0)| + sups sef0,1),5¢ [9(t) — g(s)|/||t — s||” and we consider the partial sum process
(Sn(t))teo,1ye defined by as an element of HL, ([0, 1]9).

Theorem 3 If the assumptions of Theorem|d hold with p > 4x (log,(4d/(4d—3)))~* then the
sequence of processes {n~2S,(t); t € [0,1]%},51 converges in distribution in H,([0,1]¢) to
VB for eachy < 1/2—d/p where B is a standard d-Brownian sheet andn =, ;4 E (XoX}).

Remark 8. In [21], a necessary and sufficient condition was obtained for iid random fields
to satisfy the WIP in Holder spaces. Our result provides a sufficient condition for stationary
real random fields which can be expressed as a functional of iid real random variables.

3 Proofs

In this section, the letter x will denote a universal positive constant which the value may
change from line to line. The proof of Theorem [1| will be done by induction on d. We shall
need the following lemma.

Lemma 1 Let (Q, F,p) be a probability space. Let d be a positive integer and T' : Q — Q
be a measure-preserving operator for any l in Z' such that T? o TV = T for any i and
jin ZY. Letp > 1 and M C F be a o-algebra such that (T~°M);czasr is a commuting
filtration. Assume that f belongs to LP(Q2, M, u) © LP(Q, Npenat1 T*M, 1) and

STE(S I TM)||) < o (15)

keNd+1

Then there exist M € LP(Q2, M, u) © LP(Q, Tya M, ) and G € LP(Q, Ty1 M, 1) such that
F=M+G—GoTyu (16)

and
DEM | TEOM)|| + B (G [ THOM)]| < oo. (17)
keNd

Proof of Lemma . First, the decomposition (16) is a direct consequence of Theorem A (see

section 1). Moreover, a carefull reading of the proof of Theorem A (see Volny [22]) ensures
the following expressions of M and G:

M =Y "E[UJ f | M| —E[U},f | TeM] and G =) E[Ul,f|TpmaM].  (18)

320 §=0

Let k = (ki, ..., kq) be fixed in N¢. Since

E (M | TEOM) = 3BV | TEOM] = 3 EUL f | TV M)

Jj=0 Jj=0



we derive

B (M | T*OM)|, < 2D |[EULLS I TOMI|, =2 [[BLF [ T M|,

j=0 Jj=0
Finally, using (15)), we obtain
DB TEOM)|| <2y > |[EIf | THIM]||) < oo (19)
keNd keNd j=0

Similarly, we have also ), ||IE (G | T(k’O)M) Hp < 00. The proof of Lemma |1|is complete.

Proof of Theorem [1. We are going to prove Theorem [I] by induction on the dimension
d. First, for d = 1, the result reduces to Gordin’s martingale-difference coboundary decom-
position (see Theorem A above). Let d be a positive integer. We assume that our result
is true for d and we have to show that it is true for d + 1. We thus consider a measure-
preserving operator 7% : Q — € for any [ in Z%*! such that 7% o T9 = T"* for any i and j
in Z4!. Let p > 1 and let M C F be a o-algebra such that (TM),cza1 is a commuting
filtration. Assume that f belongs to LP(2, M, u) and satisfies (I5). By Lemma [I] there
exist M € LP(Q, M, ) ©LP(Q, Ty 1y M, p) and G € LP(2, T4 M, p1) such that and
hold. So, by the induction hypothesis, we have

M=m'+ > J[I-Uv)m,+ ][ -U.g, (20)

DCJC(d) s€J s=1

G=m"+ Y J[Uu-U)m +H1 Us)g (21)

0CJIC(d) s€J

where
e m’ and m” belong to LP(Q, M, ) © LP(Q, T; M, 1) for each i in (d).
o m/; and m/; belong to LP(, T[], ., TeM, ) OLP(Q, T; [ [, TsM, ) for each i in (d) \ J.
e ¢ and ¢” belong to L?(£2, Hle T M, 1);

Since E[M | Ty41M] = 0 and using (20), we derive

d

~E|[[t - U)g' | TanM| . (22)

s=1

Elm | TypaM] == Y E|]JU = U)m)y | TugaM

0cIC(d)  LseJ




) € J < (d) be fixed and recall that |J| is the number of elements of J. So, if
J:{]h;j\ﬂ} then

E|\[](I-U)m) | ToaM

seJ

[J]| i
Z(_l)i H Uy | Ty M
=0 s=1

|J]|

HUjsm/J | Taa M

s=1

HU]E

where we used the convention [[._, U, = I and the property E[U.h | G] = U,E[h | T.G] for
any s in (d), any o-algebra G C F and any integrable function h. Let 0 < i < |J| be fixed.
Since (T7*M)czan1 is a commuting filtration, we have

mJ ‘ H Td+1M

E |m | HTJM

s=1

E|m)| [ 7. TeaM

s=1

| TdHM] |

Using the measurability of m/; with respect to Hizl T;, M, we obtain

E |m | [ 7. Tea M| = Elm)y | TyaM].
s=1
Consequently,
/] L
E H(I — Us)mi] | Td+1M = Z(—l)l H USE [m'J | Td+1M] = H(I—US>E [mf] | Td+1M] .
se/ =0 s=1 seJ

Similarly, since ¢’ is Hle T, M-measurable, we have also

E[[0-U)d | Td+1/\/l] =] -U)ElY | TosaM].

s=1 s=1

Using , we derive

d
[ | Td+1M Z H I U mJ ‘ Td+1M H g ‘ Td+1M] (23)
s=1

d) seJ

So, denoting m :=m' — E[m' | Ty;1M] and combining and we obtain

M =m+ > [[a-U) (m)y —Em) | T MY+ ] [U-U,) (¢ = E[g | TizaM]). (24)

DCJC(d) s€J s=1

10



Moreover, m is M-measurable and E[m | T,,M] = 0 for each s in (d + 1). Combining
and (24)), one can write

d
f=mt D J10 =00 6oy =B | Tan M) + ][ - U (7~ Elg' | Tara M)
0CJC(d) s€J
+ (= Ug) [m"+ > [T -U)m +HI U,)g
BCIC(d) seJ
which is of the form (5 for d + 1 instead of d. Indeed, let § C J C (d + 1) be fixed. If

d+1 € J, we denote

m” it ={d+1)
_ 25
s {m{;\{dﬂ} i\ {d+ 1) £0 (25)

and if d+ 1 ¢ J, we denote

(26)

o =Bl | Tan M) it T # ()
¢ —Elg | Tun M) if J = (d).

Finally, denoting g = ¢”, we obtain

d+1

f=m+ > JJu- UmJ—i-HI Uy)yg

DCJC(d+1) s€J

The proof of Theorem [I] is complete.

Proof of Proposition . For simplicity, we consider only the case d = 2. Let (X; ;)¢ jyez2 be
an OMD random field with respect to a commuting filtration (F; ;)i jez2. Let (n1,m2) be
fixed in N? and consider (Y;);cz defined for any 7 in Z by Y; = E;ZO X j. One can notice
that (Y;)iez is a MD sequence with respect to the filtration (V;ezF; ;)icz. Consequently, by
Burkholder’s inequality, we have

ni no ni 1/2
ZZXW < Ky/D (Z |m||;> :
=0 7=0 =0

Moreover, since for any i in Z, (X;;)jez is a MD sequence with respect to the filtration

(ViezFi;)jez, we have also
- 1/2
2
kP (Z HXz',ij) :
=0

11

n2

d X

J=0

I1Yill, =




Consequently, we obtain

3

ny ng

. 1/2

Xl < ( r\Xi,j\rf,) . (27)
=0 j=0 =0 j=0

In order to prove the optimality of the constant p in , arguing as in Wang and Woodroofe
[24] (Example 1, page 12), we consider a sequence (1;);cz of iid real random variables satis-
fying u(no = 1) = u(ng = —1) = 1/2. Let also (n});ez be an independent copy of (1;);ez and
consider the filtrations (G )rez and (Hy)rez defined for any & in Z by Gy = o(ns; s < k) and
Hi = o(n;s < k). For any (i,7) in Z*, we denote Z;; = n;1);. Then (Z; ;)i jez> is an OMD
random field with respect to the commuting filtration (F; ;) j)ez2 defined by F;; = G; vV H;
for any (7,7) in Z2. Let C be a positive constant such that for any (ny,n,) in N2,

p

ni  na ni  no 1/2
ZZZM <C (ZZHZHH) < Oy,
=0 j=0 i=0 j=0

p

Applying the CLT for iid real random variables, we derive C' > ||N Hi where N is a standard

normal random variable. Since there exists x > 0 such that ||V ”127 > kp, we derive (7). The
proof of Proposition (1| is complete.

Proof of Proposition[3 We start with the following lemma.

Lemma 2 If f is a function satisfying the assumptions of Theorem[]] for some p > 2 then
there exists a constant Cy depending only on d such that

max { ], . ml, . lgll, } < Ca Balf.p) (28)

where m, g and my are defined by and Ng(f,p) == D e HIE[f | Tk/\/l]”p.

Proof of Lemma [3 We prove this lemma by induction on d. The case d = 1 is a direct
consequence of (| . Let d be a positive integer and let p > 2. We assume that Lemma [2
is true for d and we are going to prove that it is true for d + 1. Assume that Ay ((f,p) is
finite. Using Lemma [I] and arguing as in the proof of Theorem [I we have

d+1

f=m+ > JJu- UmJ—i-H[ U,)g

0CJC(d+1) s€J

where m is given by and (26), g = ¢” and m :=m’ — E[m’ | Ty41. M| (see the last part
of the proof of Theorem . Keeping in mind and arguing as in the proof of Lemma
(see (19)), we derive

max {Ad<M7 p)a Ad(va)} < 2Ad+1(f> p) (29)

12



The induction hypothesis yields [|m/||, < C4Aq(M, p). Since [[m||, < 2 ||m’[|,, using (29), we
obtain
Imll, < 4CaAgir(f,p)-

Similarly, we have
lgll = 1l9"ll, < Cala(G,p) < 2CaDa11(f,p).

Let J be a nonempty subset of (d + 1).

e If d+1 € J then using and the induction hypothesis, we have ||m,||, < Cala(G, p).

Hence by ,
HmJHp < 204A011(f, ).

e Similarly, using (26)), if d +1 ¢ J and J # (d) then
Imall, < 2[[m)ll, < 2CaAa(M, p) < 4CaA411(f, p)
and |[m ||, <21l9'll, < 4Calas(f,p)-
Finally, it suffices to define Cyyy := 4Cy. The proof of Lemma [2]is complete.

Without loss of generality, one can write X; = f o T for any i in Z¢ where f = X, and
(T%),cza is a family of measure-preserving operators on ) such that 7% o T' = T**! for any
k and [ in Z¢. Let n be fixed in N%. In the sequel, we denote A,, = {i € N?; 0 < i < n} and
Sn(h) = ;cp, hoT* for any function h defined on Q. Applying Theorem (1} we have

Su(f) = Sulm)+ > S, (H(z —~ Us)mJ> + S, (H(I —~ Us)g> . (30)

0CIC(d) seJ s=1

Let € J C (d) and k = (ky, ..., k) € N? be fixed and define k) = (ki)ic(ans. We have

S, (H([ —~ Us)mj> =[[u-vry > ] Ufms
seJ seJ 0=k gn()) ie(d)\J

Since the operator [ [, ,(I —U*!) may be written as a sum of 2171 isometries, the inequality

Sn (H(I — Us)mJ>

sedJ

<2 S0 T g (31)
p

p 0<k(N<xn(D) ie(d)\J

takes place and an application of Proposition [I] yields

1/2
Z H Ufimy|| < sp™? (Hm) [mgll,,- (32)

0=k gn (D) ie{d)\J » seJ

13



Combining and , we get
Sn <H<I — Us)mJ>

sed

< 2Mlkp®2[n| 2 Iy, -

p

Moreover, since
d d
Sn (H(I - Us)g> =z -vrg
s=1 s=1

and [, (I — Ur*) is a sum of 2¢ isometries, if follows that

s=1

< 2% (0] gl

p

By Proposition [I| we have also

d/2,.11/2
150 (m)ll, < wp™=[nl /= [Iml],.

Combining , , and , we obtain

1Su (O, < sl { Nimll, + > 2 imgll, +2 g,

0CIC(d)
Finally, applying Lemma [2] yields
1S (I, < Kp™2 [0 2Caa(fop) [ 1+ D 21427
0CIC(d)

The proof of Proposition [2]is complete.

Proof of Proposition @ First, since (Xj)peza is stationary, we have

> EGXXH)| <20 ) EXoXk)| < 1 Xoll, Y IE(XolF-)ll; < oo.

kezd keNd keNd

Let n = (n4,...,nq) be fixed in N¢. Then,

|n|_1E (Z Xk) = Z |n|_1|An N (A — k)[E(XoXg)

keAn kezd

(33)

(34)

(36)

where A, = {i e N; 0<i<n}and A, —k={i —k; i€ A,} for any k in Z%. Moreover,

2] ™A N (An = F)|[E(X0X)| < [E(XoXk)]

14



and limp, 400 [n|7HA, N (A, — k)] = 1 for any k in Z¢. Finally, it suffices to apply the
Lebesgue convergence theorem. The proof of Proposition [3]is complete.

Proof of Theorem @ Let (Q,F, i, {T*},cz4) be a dynamical system (that is, (€, F,p) is
a probability space and T* : 2 — ) is a measure-preserving transformation for any k in Z¢
satisfying 7% o TY = T+ for any i and any j in Z%) and let (g;);cz« be a field of iid real ran-
dom variables defined on (2, F, ). Let M C F be the o-algebra generated by the random
variables ¢; for i < 0 and let f : 2 — R be M-measurable. We consider the stationary real
random field (f o T%);cz« and the partial sum process {S,(f,t); t € [0, 1]d}n21 defined for

any integer n > 1 and any ¢ in [0, 1]¢ by

Su(fit) = > A[0,nt] N Ry)fo T (37)

i€{n)d

where ) is the Lebesgue measure on R? and R; =|i; —1,41]X...x]ig—1, 4] is the unit cube with
upper corner i = (iy, ...,iq) in (n)¢. As usual, we have to prove the convergence of the finite-

dimensional laws and the tightness of the sequence of processes {n=%25,(f,t); t € [0, 1]d}n>1.

We start with the tightness property: it suffices to establish for any ¢ > 0,

limlimsupp [ sup n ¥2S,(f,s) — Sp(f,t)| >e| =0
020 nooo s,t€[0,1]4
[s—t|<d

where |z| = maxye) |z| for any z = (x1,...,24) in [0,1]%. For simplicity, we are going to
consider only the case d = 2. By Theorem [I, we have

f:m+(]—U1)m1+(I—U2)m2+(I—U1)(I—U2)g, (38)

where m, my, my and g are square-integrable functions defined on  such that (U'm);cze is
an OMD random field and (U¥m)rez and (Ufmg)gez are MD sequences. In the sequel, for
any real z, we denote by [z] the integer part of x. Let n > 1 and t = (1,t3) in [0,1]?. For
any 1 <i < [nt1] 4+ 1 and any 1 < j < [nto] + 1, we denote X ;(t) = A ([0, nt] N R 5). We
have

[nt1]+1 [nte]+1 [nta]+1  [nt1]+1

S, (I=Uy)my, t Ao (U (I-Uy)ym Z Uj Z Aij() (Uima — Ui'm

=1 7=1

15
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Using Abel’s transformation and noting that A\; 11 ;(t) = A; ;(¢) for any 1 <1 < [nt1] — 1 and
any 1 < j < [nta] + 1, we obtain that S, ((I — Uy)my,t) equals

[nt1]

nt2}+1
> U3 A1) <U1m1 - Ul[ntl]+2m1> =D (U = Uphma) (Mg (1) — A1)
— i—1

[nt2]+1

Z Ug {A[nh]-&-l,j(t) <U1m1 _ Ul[nt1]+2m1> - (U1m1 — Ul[ntl]-i-lml) (/\[ntl}—i—l,j(t) - )‘[ntﬂ,j(t))}
=1

[nt2]+1 [ntg}-i—l
= Uy(1 - U™ ) Y Aty (8) Udmy — Uy (I — Uy D> At (1) = A5 ()) U,
=1 j=1

Moreover, since \; ;(t) = A;1(t) for any 1 <@ < [nt1] + 1 and any 1 < j < [nty], we derive
[ntg]

Su((I = Uryma, t) = Un(I = U™ )\ (8 ZUgnu

+ Uy (I — Ul[ntl]_H)/\[ntﬂJrl,[ntz]Jrl(t) UWQ]Hml

[ntz

- Ui(I - Ul[ntﬂ) ()‘[ntl]—i-l,l(t — Anta)a ( Z U2m1

- Ul(I - Ul[ntﬂ) ()\[ntl]+l7[nt2]+l< ) - /\[nt1],[nt2]+1( )) Uz[nt2]+1m1

So, we obtain

k
_ J
S [Sn((Z = Unma, )] <4 max UL UE|my| + 4, max Ul ; Uim,|. (39)
Let x > 0 be fixed. Since m; € L*(Q, F, 1), we have
L (Klnligx+2 ULUY my| > nx) < kn’p (mi > n2®) —— 0. (40)
n n—oo
In the other part,
N 2
J — 2
" (m L ) =, U ( it Z Ui ) 7
j:
(41)

Lemma 3 Let (Z,)n>1 be a uniformly integrable sequence of real random variables. For any

s in (d),

n—oo 1<iy,.is<n

lim sup ( max Uj'...U|Z,| > ns> =0.

16



Proof of Lemma[3 Let n be a positive integer. For any s in (d), we denote

1<iy,..yis<n

pn(S) == ( max Uj'...U"|Z,| > ns> .
Let R be a positive real number. We have

°OR | n*\ 2R
pu(s) < — +n’p (\Zn| 14z, >Ry > —) < — + 25w E (| Z] 1z,5m)) -
n 2 n E>1

Consequently, limsup,,_,.. pn(s) < 25upk>1]E(|Zk] ﬂ{\Zk|>R}) — 0. The proof of
— 00

Lemma [3] is complete.
A 2
Lemma 4 The sequence {(\/Lﬁ MAaX] <k<nt2 ‘Z?:l Ugmlb n> 1} 18 uniformly integrable.

Proof of Lemma . Since (USm)rez is a MD sequence, using Doob’s inequality, we derive

n+2
max E U]ml 2 E Ugml < fi\/ﬁ||m1||2.
1<k<n+2 1
J= 2

2

) 2
So, {(\/Lﬁ MaXicp<n 2 2?21 Ujmy ) n = 1} is bounded in LY(€, F, u). Let M be a fixed

positive constant. We have m; = m} + m/ where

m’1 =m ﬂ‘leM —E (m1 ]l‘leM ’ TQM)

Moreover, if A belongs to F then

2
<2 5
/( anUm) e < /( mZUm) &

2
j
+ Q/A ( NZD 1<rl£l<a7§+2 ZUQ ) dp.

Since (Usm)rez and (UFm/)rez are MD sequences, using Schwarz’s inequality, we obtain

2

) <2 ] (A
/< 1 ZUW) 2| e, ZUW (A
4
2
2 J
+ n 1<III§1<8J75{+2 Z U
2

17



Keeping in mind that m/) is bounded by M and using again Doob’s inequality, there exists
a positive constant kg such that

max g Ule
A n1<k<n—|—2

Let € > 0 be fixed and let M > 0 such that koE (m? Lj,,>n) < §.

measurable set A in F such that ko M?\/p(A) < § and consequently

su max Uim < e.
n}IID/A( n1<k<n+2z 2 1) dp <

The proof of Lemma [ is complete.
Combining , , , Lemma (3| and Lemma |4, we obtain

) du < Ko <M2\/M+E (m? ]1|m1‘>M)> .

One can choose the

lim sup ( sup [Sn((I —Up)my,t)| > xn) = 0. (42)
n—00 te(0,1]2
In a similar way, we derive also
lim sup p ( sup [Sp((I — Uz)ma,t)| > xn) = 0. (43)
n—00 t€[0,1]2

Now, noting that \; ;j(¢) = A\;1(t) for any 1 <@ < [nt;] 4+ 1 and any 1 < j < [nty], we have
Sn((I = Ur)(I = Us)g,t) equals

nt1 +1 [nt2]+1

Z Z)\” UGS — U — Us)yg

[nt [ntz
Z Ui(I —Uy) — US™)g + N futan (DU (T = Ua)g
[nt1]+1 [nt1]+1
= Uo(I = U™ D7 MU = Uit)g + US T = Un) 3 N 0)(U7 = Ui)g.
i=1 i=1

Since A; ;(t) = A\1;(¢) for any 1 < i < [nty] and any 1 < j < [nto] + 1, we derive
Sn((] — U1)(I — Ug)g,t) = /\1’1(75)[]2([ o UQ[ntz])Ul(] N Ul[ntl])g
+ )‘[ntl]Jrl,l(t)UQ(] o U2[nt2})U1[nt1]+1 (I . U )
+ M futa (UL = U)UL (T = U™ g
+ Nttt (DU (T = U) U™ (T = Uh)g.

18



Thus
sup [Sn((I —U1)(I —Uz)g,t)| <k max UfULg|

and for any positive x,

1 ( sup |S,((I = Uy)(I — Us)g,t)| > xn) < kn’p (g > ne®) ——— 0. (44)

t6[0,1]2 n—oo

Now, it suffices to prove the tightness of the process {%Sn(m, t);t € [0,1]*},>1. That is, for
any positive x,

limlimsupp | sup |[Sn(m,s) — S,(m,t)| >zn | =0. (45)
020 n—oo s,t€[0,1)2
|s—t|<d

Let n be a positive integer and let s = (s1, ;) and ¢t = (¢, ;) be fixed in [0, 1]2. We denote
A, (s, t) = Sp(m,s) — S,(m,t) and for any i and j in (n),

Big = Nij(s) = Xiy(t) = X ([0,n8] N Reizy) — A ([0,n8] N Rys ) -

Noting that §;; = 0 for any 1 < i < [n(s; Atq)] and any 1 < j < [n(s2 A ta)], we have
Ay (s,t) = Al(s,t)+ Al(s,t) where

[n s1Vity ]+1 [n(SQ/\tQ n 81/\t1 ]+1 [n sz\/tg)]—‘rl
Anls, )= > Z ﬁ',j UGDm  and  Al(s,t) = Z ST By Ued
i=[n(s1At1)]+1 j=[n(saAt2)]+1

Moreover, A (s,t) = Al (s, 1) + A, (s,1) + A% . (s,1) + A}, (s, 1) where

[n(s1Vt1)]  [n(saAt2)]
All,n(sa t) = Z Z 62] ZJ
i=[n(sinty)]+2  j=1
[n(s2/t2)]
A (s,t) Z Bin(ssveny i, UEEVIILI
7=1
[n(s2At2)]
Azn(s,1) Z Bln(siat)]+1,5 U nt)l+ Ly,
7=1
[n(s1Vi1)]+1
Apn(s:1) = Z By in(santz)+1 U202 D,
i=[n(s1At1)]+1

Let ain {—1,+1} such that §; ; = a/if [n(s1At1)]+2 < i < [n(s1VEy)] and 1 < j < [n(s2/Ats)]
So,

[n(s1Vtr)]  [n(s2At2)]

ALs—a S Y USm

i=[n(81/\t1)]+2 7j=1

19



and for any positive x,

p| sup A (s, t)] >nx | <) p
5,t€[0,1]2 k=0
|s—t|<d

(5]
=) u
k=0

Since [n(kd + )] —

max
1<p<n

rel0,6]

max
1<p<n
rel0,6]

[n(ké+r)] p

Z ZU(i’j)m > nx

i=[nkd]+2 j=1

[n(ké+r)]|—[nkd]—1 p

Z Z USDm| > na
i=1 j=1

[nkd] — 1 is an integer smaller than [nr], we obtain

1
T I e VY (R ) ST
S|’§S[t(|]’<1152 1<ggne) | i=1 j=1
- ]_ 1 U ?.7) 12
=) e e ZZ >g
1<q<[nd] i=1 j=1
146
(4.9)
<<x2 )E m( ZZU )
1<g<[nd] i=1 j=1

where we used the notation E4(Z)

maX 1<p<n
1<q<[nd]

Lemma 5 The family {

integrable.

Proof of Lemma[3 The proof follows the same lines as the proof of Lemma [4] using Cairoli’s
maximal inequality for orthomartingales (see [16], Theorem 2.3.1) instead of Doob’s inequal-

ity for martingales. It is left to the reader.

So, we obtain

=K (Z 11|Z|>A) for any A > 0 and any Z in LY(Q, F, ).

(FH=h

2
U(z‘a’)m)

limlimsupp | sup |A],.(s,t)] >nz | =0.
=0 nooo 5,t€[0,1]? ’
[s—t|<d
In the other part, since B, vii))+1,j = Bm(sive)+11 for any 1 < j < [n(sy A ty)], we have
[n(sg/\tz)]

AlZ,n(‘S’ t) = /B[H(Slvtl)}-i-l,lUl[n(Sthl)]+1 Z Ugm

and consequently

sup A5 (s, 1) <
s,t€(0,1)2

|[s—t|<o

=1
l
max U} E Usm)| .
1<k<n+1 -
1<i<n Jj=1

20

>1,0 > 0} is uniformly



So,

1
k
sup |A), (s,t)] >nz | < max U{ [ max —
8 ste[0p1]2| 2n(8:0) SH 1<k<n+l T\ 1<i<n \/n
|s—t|<d

> >nz® | . (47)

l
E Usm
=1

Since (USm) ez is a MD sequence, arguing as in Lemmad] the sequence { <maX1<lgn \/Lﬁ

. 2
£l vin)}
n=>1

is uniformly integrable. Combining and Lemma (3| we derive that for any § > 0,

limsupp | sup |AS,(s,t)] >nx | =0. (48)
n—+00 ste0,1)2
[s—t|<d
Similarly, we have also
limsupp | sup |A5,(s,t)] >nx| =0 (49)
n—0o0 s,t€[0,1]2 ’
|s—t|<d

for any 0 > 0. Moreover, for any [n(s; Aty)] +1 <@ < [n(s1 V t1)], we have B; jnisonta))+1 =
ﬁ[n(sl/\tl)]+1,[n(52/\t2)]+1 and consequently

[n(S1\/t1)]
n(s 1 )
Ny (8,8) = Bingaintn 4t nantn1 Us N vim

i=[n(81/\t1)]+1

n S1Vt1)]+1,[’n(82/\t2)]+1)

+ Bin(sver)+1,[n(santa)+1 U™ m

and

1
sup |AL (s, )] >nx | < max UF| max ——
s s,te[OI,)l]Q‘ 4’n( ) SH 1<k<ntl 2

|s—t|<d
n2x?
on? zs
2

Arguing as in Lemma , the family {(maxlglg[mg] \/LnTs ‘Z;Zl Ufm‘) n>=10> 0} is uni-

formly integrable since (UFm)ez is a MD sequence. By Lemma we obtain for any § > 0,

2 2

nx
>— | =0.

) 20

l

ZUfm

Jj=1

1
limsupp | max UF | max ——
n—300 1<k<nt1 2\ 1<i<[nd] v/nd
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Moreover, n?u (m2 > i—”ﬁ) goes to zero as n goes to infinity since m belongs to L?(Q, F, u).

Consequently, for any 6 > 0,

limsupp | sup |A]L,(s,t)] >nx | =0. (50)
n—00 stel0,1]2
[s—t|<d

Combining (46 . and (| , we obtain

limlimsupp | sup |A)(s,t)] > nx | =0. (51)
3=0 oo s,t€[0,1]2
|s—t|<d

Similarly, one can check that

limlimsupu | sup |AV(s,t)| >naz | =0. (52)
320 oo s,t€[0,1]2
|s—t|<d

Finally, keeping in mind A, (s,t) = Al (s,t) + Al/(s,t) and combining and (52), we
obtain . Now, we are going to prove the convergence of the finite-dimensional laws. In

fact, comblnlng . and (| ., we have

lim sup p ( sup |Sn(f —m,t)| > xn) =0. (53)

n—00 te[0,1]2

Let (t,n) be fixed in [0, 1]> x N? and denote A, (t) = [0, nt] N N We have

Y moT' = Y amoT (54)

1€An(t) 1€Wn(t)

where a; = A([0, nt]NR;)— Lien,, () and W, (¢) is the set of all 7 in (n)¢ such that R;N[0, nt] # 0
and R; N (R?\ [0, nt]) # 0. Notmg that |a;| < 1 and combining and Proposition [1], we
obtain

1/2

moT'|| <Clml, | > af| < Clml,VIWa(H)]  (55)

7
1€AR () 1EWn(t)

2

where C'is a positive constant and |W,,(t)| denotes the number of elements in W, (¢). Since
|[W,.(t)| = O(n), we derive

nH[Su(m,t) = Y moT! :0(%). (56)



Finally, combining , and Proposition |3/ and arguing as in the proof of Theorem 4.1
by Wang and Woodroofe [24], we derive the convergence of the finite dimensional laws of
{n=1S,(f,t); t € [0,1]*}. The proof of Theorem [2|is complete.

Proof of Proposition . Since Xo = > _cna aj—; wWhere (a;)jene is a family of real num-

bers satisfying ). ya a?

7 < 0o and (g&;)eze is an iid zero-mean real random field, we have

E(Xo| For) =) aje (57)

i=k

where k € N? and F_; is the o-algebra generated by g; for any i < —k. We recall the

Rosenthal’s inequality ([14], Theorem 2.12): for any p > 2, there exists a positive constant

C' depending only on p such that if (Y;);>1 is a sequence of independent zero-mean random
variables and n is a positive integer then

n p/2 n P n p/2 n
1 1
5(}}%ﬁ> + =D EYF<E <C<§ﬁmﬁ> +CYEIYP. (59)
j=1 j=1 Jj=1 j=1

Combining and , we obtain that holds if and only if holds. The proof of
Proposition [4] is complete.

Proof of Theorem [§ We shall use Theorem 1 in [I7] which states that if a sequence of
random processes {Y,(t); t € [0,1]¢},>; whose finite dimensional distributions are weakly
convergent and for some constants «, 5 and K such that

g€ (0,1 and aff > ——F—F——
log; (17%)

and

pIYat) ~ Yals)] > ) < ells — 17 (50)

for any s and ¢ in [0,1]?, any ¢ > 0 and any positive integer n then (Y, (-)),>1 converges
weakly to some process in H., ([0, 1]¢) where 0 < v < 8 — d/a. Since the finite-dimensional
laws of the process {n=%2S,(t); t € [0,1]*},>1 are weakly convergent (cf. Theorem , it
suffices to convert the moment inequality given by Proposition [2|into an inequality involving
1S (t) = Su(s)| = n¥2e} in order to check that condition is satisfied with a = p,
B = 1/2 and Y, (t) = n~%2S,(t). We shall do the proof for d = 2. Let s = (s1,s,) and
t = (t1,t2) be fixed in [0,1]? and n be a positive integer. Without loss of generality, we
assume that s; > ¢; and sy < ty (similar arguments can be used to treat the general case).
Let s) = ki/n and t} = (I, + 1)/n where (ki,;) is the unique element of (n)? such that
ki/n < sy <(ki+1)/nand ly/n <t < (3 +1)/n. In other words, keeping in mind that [.]
denotes the integer part function, we have s) = [ns;|/n and t| = ([nt1] +1)/n and similarly,
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we define s, = ([nsg] + 1)/n and t, = [nty]/n. With these notations, we have

1Sn(t) — Su(s)| = [Su(ti, ta) — Sn(s1, s2)|
< |Sn(t, ta) — Sp(tr, t5)] + [Sn(ty, t5) — Sp(ty, t5)]
+ [Su(th, 1) = Su(sh, s5)| + [Su(s), 85) — Su(s), s2)]
+1S,(s7, 82) — Sn(s1, $2)|-

Since
[nt1]

1S (t1,t2) — Sp(t1,15)| = (ta — 1) ZXi7[nt2] + (8] = t1) Xt ] 41, nt]

=1

and ty — t;, < 1/n, by Proposition [2| there exists a positive constant C' such that

E (S, (t1,ta) — Sn(tr, th)|F < C pP(ty — th)PnP/? < C pP(ty — th)P/2 (60)
Similarly,
E|[Sn(t1,th) — Su(tr, ) < CpP(ty — )P (61)
E[Sn(s1,85) = Su(s1,s2)[" < CpP(sh — 50)"/* (62)
E | Sa(s1, 52) = Su(s1, 52)[" < Cp(s1 — )72, (63)
Moreover, from Proposition , for any positive integer n and any i and j in (n)?, we have
1 . 1 . ) . . p/Q
E|-S, (3> ~ 28, (l) <op|L-2 (64)
n n n n n o n

Combining , , , and and using the elementary convexity inequality
(a1 + as + a3 + as + az)? < 5P (a] + ab + af + d} + af)for any non-negative ay, as, az, as and
as, we derive

E|S,(t) — Su(s)I” < klls —t]["/*.
Finally, using Markov’s inequality, we obtain (59)). The proof of Theorem [3is complete.
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