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Abstract

We provide a new projective condition for a stationary real random field indexed

by the lattice Zd to be well approximated by an orthomartingale in the sense of Cairoli

(1969). Our main result can be viewed as a multidimensional version of the martingale-

coboundary decomposition method which the idea goes back to Gordin (1969). It is a

powerfull tool for proving limit theorems or large deviations inequalities for stationary

random fields when the corresponding result is valid for orthomartingales.

1 Introduction and notations

In probability theory, a powerfull approach for proving limit theorems for stationary se-
quences of random variables is to find a way to approximate such sequences by martingales.
This idea goes back to Gordin [12]. It is a powerfull method for proving the central limit
theorem (CLT) and the weak invariance principle (WIP) for stationary sequences of depen-
dent random variables satisfying a projective condition (see (1) in Theorem A below). More
precisely, let (Xk)k∈Z be a sequence of real random variables defined on the probability space
(Ω,F , µ). We assume that (Xk)k∈Z is stationary in the sense that its finite-dimensional laws
are invariant by translations and we denote by ν the law of (Xk)k∈Z. Let f : RZ → R
be defined by f(ω) = ω0 and T : RZ → RZ by (Tω)k = ωk+1 for any ω in RZ and any
k in Z. Then the sequence (f ◦ T k)k∈Z defined on the probability space (RZ,B(RZ), ν) is
stationary with law ν. So, without loss of generality, we can assume that Xk = f ◦ T k
for any k in Z. For any p > 1 and any σ-algebra M ⊂ F , we denote by Lp(Ω,M, µ)
the space of p-integrable real random variables defined on (Ω,M, µ) and we consider the
norm ‖.‖p defined by ‖Z‖pp =

∫

Ω
|Z(ω)|pdµ(ω) for any Z in Lp(Ω,F , µ). We denote also by

Lp(Ω,F , µ)⊖ Lp(Ω,M, µ) the space of all Z in Lp(Ω,F , µ) such that E (Z | M) = 0 a.s.
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Theorem A (Gordin, 1969) Let (Ω,F , µ) be a probability space and let T : Ω → Ω be a
measurable function such that µ = Tµ. Let also p > 1 and M ⊂ F be a σ-algebra such that
M ⊂ T−1M. If f belongs to Lp(Ω,M, µ)⊖ Lp(Ω,∩i∈ZT−iM, µ) such that

∑

k>0

∥

∥E
(

f | T kM
)∥

∥

p
<∞ (1)

then there exist m in Lp(Ω,M, µ)⊖ Lp(Ω, TM, µ) and g in Lp(Ω, TM, µ) such that

f = m+ g − g ◦ T. (2)

The term g − g ◦ T in (2) is called a coboundary and equation (2) is called the martingale-
coboundary decomposition of f . Moreover, the stationary sequence (m◦T i)i∈Z is a martingale-
difference sequence with respect to the filtration (T−iM)i∈Z (see Definition 1 below) and for
any positive integer n,

Sn(f) = Sn(m) + g − g ◦ T n (3)

where Sn(h) =
∑n−1

i=0 h ◦T i for any function h : Ω → R. Combining (3) with the Billingsley-
Ibragimov CLT for martingales (see [3] or [15]), one obtain the CLT for the stationary
sequence (f ◦ T k)k∈Z when the projective condition (1) holds. Similarly, combining (3)
with the WIP for martingales (see [4]), we derive the WIP for the stationary sequence
(f ◦T k)k∈Z. Thus, Gordin’s method provides a sufficient condition for proving limit theorems
for stationary sequences when such a limit theorem holds for martingale-difference sequences.
Our aim in this work is to provide an extension of Theorem A for random fields indexed by
the lattice Zd where d is a positive integer (see Theorem 1).

2 Main results

Definition 1 We say that a sequence (Xk)k∈Z of real random variables defined on a prob-
ability space (Ω,F , µ) is a martingale-difference (MD) sequence if there exists a filtration
(Gk)k∈Z such that Gk ⊂ Gk+1 ⊂ F and Xk belongs to L1(Ω,Gk, µ)⊖ L1(Ω,Gk−1, µ) for any k
in Z.

The concept of MD sequences can be extended to the random field setting. One can refer
for example to Basu and Dorea [1] or Nahapetian [20] where MD random fields are defined
in two differents ways and limit theorems are obtained. In this paper, we are interested by
orthomartingale-difference random fields in the sense of Cairoli [5]. A good introduction to
this concept is done in the book by Khoshnevisan [16]. Let d be a positive integer. We
denote by 〈d〉 the set {1, ..., d}. For any s = (s1, ..., sd) and any t = (t1, ..., td) in Zd, we write
s 4 t (resp. s ≺ t, s < t and s ≻ t) if and only if sk 6 tk (resp. sk < tk, sk > tk and sk > tk)
for any k in 〈d〉 and we denote also s ∧ t = (s1 ∧ t1, ..., sd ∧ td).
Definition 2 Let (Ω,F , µ) be a probability space. A family (Gi)i∈Zd of σ-algebras is a com-
muting filtration if Gi ⊂ Gj ⊂ F for any i and j in Zd such that i 4 j and

E (E (Z | Gs) | Gt) = E (Z | Gs∧t) a.s.

for any s and t in Zd and any bounded random variable Z.
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Definition 2 is known as the “F4 condition”.

Definition 3 Let (Ω,F , µ) be a probability space. A random field (Xk)k∈Zd is an orthomartingale-
difference (OMD) random field if there exists a commuting filtration (Gi)i∈Zd such that Xk

belongs to L1(Ω,Gk, µ)⊖ L1(Ω,Gl, µ) for any l � k and k in Zd.

Remark 1. Let k be fixed in Zd and Sk =
∑

0≺i4kXi where (Xi)i∈Zd is an OMD random
field with respect to a commuting filtration (Gi)i∈Zd . Then Sk belongs to L1(Ω,Gk, µ) and
E (Sk | Gl) = Sl for any l 4 k. We say that (Sk)k∈Zd is an orthomartingale (OM) random field.

Arguing as above, without loss of generality, every stationary real random field (Xk)k∈Zd

can be written as (f ◦ T k)k∈Zd where f : Ω → R is a measurable function and for any k in
Zd, T k : Ω → Ω is a measure-preserving operator satisfying T i ◦ T j = T i+j for any i and j
in Zd. For any s in 〈d〉, we denote Ts = T es where es = (e

(1)
s , . . . , e

(d)
s ) is the unique element

of Zd such that e
(s)
s = 1 and e

(i)
s = 0 for any i in 〈d〉\{s} and Us is the operator defined by

Ush = h ◦ Ts for any function h : Ω → R. We define also UJ as the product operator Πs∈JUs
for any ∅ ( J ⊂ 〈d〉 and we write simply U for U〈d〉 = U1 ◦U2 ◦ ... ◦Ud. For any ∅ ( J ⊂ 〈d〉,
we denote also by |J | the number of elements in J and by J c the set 〈d〉\J . Finally, the set
of nonegative integers will be denoted by N. The main result of this paper is the following.

Theorem 1 Let (Ω,F , µ) be a probability space and let T l : Ω → Ω be a measure-preserving
operator for any l in Zd such that T i ◦ T j = T i+j for any i and j in Zd. Let p > 1 and
let M ⊂ F be a σ-algebra such that (T−iM)i∈Zd is a commuting filtration. If f belongs to
Lp(Ω,M, µ)⊖ Lp(Ω,∩k∈NdT kM, µ) and

∑

k∈Nd

∥

∥E
(

f | T kM
)∥

∥

p
<∞ (4)

then f admits the decomposition

f = m+
∑

∅(J(〈d〉

∏

s∈J
(I − Us)mJ +

d
∏

s=1

(I − Us)g, (5)

where m, g and mJ belong to Lp(Ω,M, µ), Lp(Ω,
∏d

s=1 TsM, µ) and Lp(Ω,
∏

s∈J TsM, µ)
respectively and (U im)i∈Zd and (U i

JcmJ)i∈Zd−|J| are OMD random fields for ∅ ( J ( 〈d〉.

Remark 2. One can notice that condition (4) is exactly Gordin’s condition (1) when d = 1.
It is well known that condition (1) is not necessary for f to admit a martingale-coboundary
decomposition. In fact, in dimension d = 1, a necessary and sufficient condition for f to
admit the martingale-coboundary decomposition (2) is the convergence in Lp(Ω,M, µ) for
p > 1 of the series

∑

k>0 E
(

Ukf | M
)

(see [22], Theorem 2, condition (7)). So, let (δj)j>0

be a decreasing sequence of real numbers such that
∑

j>0 δ
2
j < ∞ and define a2j = δj and

a2j+1 = −δj for any j > 0. If (εi)i∈Z is a sequence of iid real random variables with zero-
mean and unit variance and f ◦ T k =

∑

i>0 ajεk−j for any k in Z (we say that (f ◦ T k)k>1

is a linear process) then
∑

k>1 E(U
kf |M) converges in L2(Ω,F , µ) while the decay of the
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sequence
(

∑

j>k a
2
j

)

k>1
can be arbitrarily slow such that the series

∑

k>1

∥

∥E(Ukf |M)
∥

∥

2
does

not converge. That is, f =
∑

i>0 aiε−i is a function which admits the martingale-coboundary
decomposition (2) even if Gordin’s condition (1) does not hold. Finally, it will be interesting
to investigate a necessary and sufficient condition for the orthomartingale-coboundary de-
composition (5) when d > 2. This question is still an open problem and will be considered
elsewhere.

Remark 3. If d = 2 then (5) reduces to

f = m+ (I − U1)m1 + (I − U2)m2 + (I − U1)(I − U2)g,

where m, m1, m2 and g belong to Lp(Ω,M, µ) such that (U im)i∈Z is an OMD random field
and (Uk

2m1)k∈Z and (Uk
1m2)k∈Z are MD sequences. If d = 3 then (5) becomes

f = m+ (I − U1)m1 + (I − U2)m2 + (I − U3)m3

+ (I − U1)(I − U2)m{1,2} + (I − U1)(I − U3)m{1,3} + (I − U2)(I − U3)m{2,3}

+ (I − U1)(I − U2)(I − U3)g

where m, m1, m2, m3, m{1,2}, m{1,3}, m{2,3} and g belong to Lp(Ω,M, µ) such that (U im)i∈Z3 ,
(U i

{2,3}m1)i∈Z2 , (U i
{1,3}m2)i∈Z2 and (U i

{1,2}m3)i∈Z2 are OMD random fields and (Uk
1m{2,3})k∈Z,

(Uk
2m{1,3})k∈Z and (Uk

3m{1,2})k∈Z are MD sequences.

Remark 4. A decomposition similar to (5) was obtained by Gordin [13] but with reversed
orthomartingales and under an assumption on the so-called Poisson equation.

Proposition 1 Let (Xi)i∈Zd be an OMD random field. There exists a positive constant κ
such that for any p > 2 and any n in Nd,

∥

∥

∥

∥

∥

∑

04k4n

Xk

∥

∥

∥

∥

∥

p

6 κpd/2

(

∑

04k4n

‖Xk‖2p

)1/2

(6)

and the constant pd/2 in (6) is optimal in the following sense: there exists a stationary OMD
random field (Zk)k∈Zd with ‖Z0‖∞ = 1 and a positive constant κ such that for any p > 2

inf







C > 0 ;

∥

∥

∥

∥

∥

∑

04k4n

Zk

∥

∥

∥

∥

∥

p

6 C

(

∑

04k4n

‖Zk‖2p

)1/2

∀n ∈ Nd







> κpd/2. (7)

Combining Proposition 1 and Theorem 1, we obtain the following result.

Proposition 2 Let (Xi)i∈Zd be a stationary real random field defined on a probability space
(Ω,F , µ) and (Fi)i∈Zd be a commuting filtration such that Xi is Fi-measurable for each i in
Zd. If there exists p > 2 such that X0 belongs to Lp(Ω,F0, µ)⊖ Lp(Ω,∩k∈NdF−k, µ) and

∑

k∈Nd

‖E (X0 | F−k)‖p <∞ (8)
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then for any n = (n1, ..., nd) in Nd,
∥

∥

∥

∥

∥

∑

04k4n

Xk

∥

∥

∥

∥

∥

p

6 Cd p
d/2 |n|d/2

∑

k∈Nd

‖E (X0 | F−k)‖p (9)

where |n| =∏d
i=1 ni and Cd is a positive constant depending only on d.

Remark 5. A Young function ψ is a real convex nondecreasingfunction defined on R+

which satisfies limt→∞ ψ(t) = ∞ and ψ(0) = 0. We denote by Lψ(Ω,F , µ) the Orlicz space
associated to the Young function ψ, that is the space of real random variables Z defined
on (Ω,F , µ) such that E (ψ(|Z|/c)) < ∞ for some c > 0. The Orlicz space Lψ(Ω,F , µ)
equipped with the so-called Luxemburg norm ‖.‖ψ defined for any real random variable Z
by ‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] 6 1 } is a Banach space. For any p > 1, if ϕp is the
function defined by ϕp(x) = xp for any nonegative real x then ϕp is a Young function and
the Orlicz space Lϕp

(Ω,F , µ) reduces to Lp(Ω,F , µ) equipped with the norm ‖.‖p. For more
about Young functions and Orlicz spaces one can refer to Krasnosel’skii and Rutickii [18].
Combining (9) and Lemma 4 in [11], we obtain Kahane-Khintchine inequalities: for any
0 < q < 2/d, there exists a positive constant C depending only on d and q such that for any
n in Nd,

∥

∥

∥

∥

∥

∑

04k4n

Xk

∥

∥

∥

∥

∥

ψq

6 C |n|d/2
∑

k∈Nd

‖E (X0 | F−k)‖ψβ(q)
(10)

where β(q) = 2q/(2− dq) and ψα is the Young function defined for any x ∈ R+ by

ψα(x) = exp((x+ hα)
α)− exp(hαα) with hα = ((1− α)/α)1/α 11{0<α<1}

for any real α > 0. Using Markov inequality and the definition of the Luxembourg norm, we
derive the following large deviations inequalities: for any 0 < q < 2/d, there exists a positive
constant C depending only on d and q such that for any n in Nd and any positive real x,

µ

(∣

∣

∣

∣

∣

∑

04k4n

Xk

∣

∣

∣

∣

∣

> x

)

6 (1 + eh
q
q) exp

(

−
(

x

C |n|d/2∑k∈Nd ‖E (X0 | F−k)‖ψβ(q)

+ hq

)q)

.

(11)
Finally, one can check that (10) and (11) still hold for q = 2/d if X0 is bounded.

Proposition 3 Let (Xi)i∈Zd be a stationary real random field defined on a probability space
(Ω,F , µ) and (Fi)i∈Zd be a commuting filtration such that Xi is Fi-measurable for each i in
Zd. If X0 belongs to L2(Ω,F0, µ)⊖L2(Ω,∩k∈NdF−k, µ) and

∑

k∈Nd ‖E (X0 | F−k)‖2 <∞ then
∑

k∈Zd |E (X0Xk) | <∞ and

lim
|n|→+∞

|n|−1E





(

∑

04k4n

Xk

)2


 =
∑

k∈Zd

E (X0Xk)

where |n| → +∞ means that min16i6d ni → +∞.
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Now, we are able to investigate the WIP for random fields. Let (Xi)i∈Zd be a stationary real
random field defined on a probability space (Ω,F , µ). Let also A be a collection of Borel
subsets of [0, 1]d and consider the process {Sn(A) ; A ∈ A} defined by

Sn(A) =
∑

i∈〈n〉d
λ(nA ∩Ri)Xi (12)

where Ri =]i1 − 1, i1]× ...×]id − 1, id] is the unit cube with upper corner at i = (i1, ..., id) in
〈n〉d and λ is the Lebesgue measure on Rd. The collection A is equipped with the pseudo-
metric ρ defined by ρ(A,B) =

√

λ(A∆B) for any A and B in A. Let ε > 0 and let H(A, ρ, ε)
be the logarithm of the smallest number N(A, ρ, ε) of open balls of radius ε with respect to
ρ which form a covering of A. The function H(A, ρ, .) is called the metric entropy of the
class A and allows us to control the size of the collection A. Let (C(A), ‖.‖A) be the Banach
space of continuous real functions on A equipped with the uniform norm ‖.‖A defined by
‖f‖A = supA∈A |f(A)|. A standard Brownian motion indexed by A is a mean zero Gaussian
process W with sample paths in C(A) such that Cov(W (A),W (B)) = λ(A∩B) and we know

from Dudley [8] that such a process is well defined if
∫ 1

0

√

H(A, ρ, ε) dε < ∞. We say that

the WIP holds if the sequence of processes {n−d/2Sn(A) ; A ∈ A} converges in distribution
in C(A) to a mixture of A-indexed Brownian motion. The first weak convergence results
for Qd-indexed partial sum processes were established for i.i.d. real random fields where Qd

is the collection {[0, t] ; t ∈ [0, 1]d} of lower-left quadrants in [0, 1]d. They were proved by
Wichura [25] under a finite variance condition and earlier by Kuelbs [19] under additional
moment restrictions. If d = 1, these results coincide with the original invariance principle of
Donsker [7]. Many others WIP have been established for dependent random fields indexed
by large classes of sets. One can refer for example to [6], [9], [10] or [11]. In the sequel,
we are going to apply Theorem 1 in order to establish a WIP (Theorem 2) for Qd-indexed
partial sum dependent random fields. Let n be a positive integer. For simplicity, we denote
Sn(t) = Sn([0, t]) for any [0, t] in Qd. More precisely, for any t in [0, 1]d,

Sn(t) =
∑

i∈〈n〉d
λ([0, nt] ∩Ri)Xi (13)

Recall that the standard d-parameter Brownian sheet on [0, 1]d denoted by B = (Bt)t∈[0,1]d is

a mean-zero Gaussian random field such that Cov(Bs,Bt) =
∏d

i=1 si∧ti for any s = (s1, ..., sd)
and t = (t1, ..., td) in [0, 1]d. Since the CLT does not hold for general OMD random fields
(see [24], example 1, page 12), we restrict ourselves to the case of a filtration generated by
iid random variables which is necessarily a commuting filtration (see Proposition 8.1 in [24]).

Theorem 2 Let (εj)j∈Zd be an iid real random field defined on a probability space (Ω,F , µ).
Denote by (Fi)i∈Zd the commuting filtration where Fi is the σ-algebra generated by εj for
j 4 i and i in Zd. Let (Xi)i∈Zd be a stationary real random field such that X0 belongs to
L2(Ω,F0, µ) ⊖ L2(Ω,∩k∈NdF−k, µ) and (8) holds for p = 2. Then the sequence of processes
{n−d/2Sn(t) ; t ∈ [0, 1]d} converges in distribution in C(Qd) to

√
ηB where B is a standard

d-Brownian sheet and η =
∑

k∈Zd E (X0Xk).
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Remark 6. El Machkouri et al. [11] and Wang and Woodroofe [24] obtained also a WIP for
random fields (Xk)k∈Zd which can be expressed as a functional of iid real random variables
but under the more restrictive condition that X0 belongs to Lp(Ω,F , µ) with p > 2. In a
recent work, Wang and Volný [23] obtained the WIP for p = 2 under a multidimensional
version of the so-called Hannan’s condition for time series. Their condition is less restrictive
than (8) but condition (8) gives also an orthomartingale approximation for the considered
random field which is of independent interest (see Theorem 1). In particular, (8) provides
not only a WIP but also large deviations inequalities (see Proposition 2 and Remark 5).

Proposition 4 Let (εi)i∈Zd be an iid real random field defined on a probability space (Ω,F , µ)
such that ε0 has zero mean and belongs to Lp(Ω,F , µ) for some p > 2. Consider the linear
random field (Xk)k∈Zd defined for any k in Zd by Xk =

∑

j∈Nd ajεk−j where (aj)j∈Nd is a

family of real numbers satisfying
∑

j∈Nd a2j <∞. Then the condition (8) holds if and only if

∑

k∈Nd

√

∑

j<k

a2j <∞. (14)

Remark 7. Proposition 4 ensures that the conclusion of Theorem 2 still hold for linear
random fields with iid innovations under assumption (14). Let (Xk)k∈Zd be a linear random
field defined as in Proposition 4. In [24], Wang and Woodroofe obtained a WIP for (Xk)k∈Zd

under a weaker condition than (14) but again with the additional assumption that ε0 belongs
to Lp(Ω,F , µ) with p > 2. In [2], Biermé and Durieu obtained also a WIP under the so-
called stability condition

∑

k∈Nd |ak| < ∞ which is less restrictive than (14). In fact, let
ak := k−α1 . . . k−αd for 1 < α < 3/2 and k = (k1, ..., kd) in Nd then the linear process (Xk)k∈Zd

satisfies the stability condition but (14) does not hold. Indeed, (14) is equivalent to the

convergence of the series
∑

j>0

√

∑

l>j l
−2α and this last one is not convergent since there

exists a positive constant Cα such that
∑

l>j l
−2α > Cα j

1−2α for each j > 0. Nevertheless,
(14) provides the orthomartingale-coboundary decomposition (5) while it is not the case
for the stability condition even when d = 1. In fact, let (bk)k>0 be a decreasing sequence
of real numbers such that bk goes to zero as k goes to infinity and

∑

k>0 b
2
k = +∞ and let

ak = bk−bk+1 for any k > 0. So, we have
∑

k>0 |ak| <∞ but if F0 is the σ-algebra generated

by all εj for j 4 0 then
∥

∥

∥

∑N
i=1 E(Xi|F0)

∥

∥

∥

2

2
=
∑

l>0(bl+1 − bl+N)
2 for any positive integer N .

Since, for any positive integer L, we have

sup
N

L
∑

l=0

(bl+1 − bl+N)
2
>

L
∑

l=0

b2l+1,

we obtain supN

∥

∥

∥

∑N
i=1 E(Xi|M)

∥

∥

∥

2

2
= +∞. Consequently, the martingale-coboundary de-

composition (2) does not hold.

We now provide an application of Theorem 1 to the WIP in Hölder spaces. We consider
for 0 < γ 6 1 the space Hγ([0, 1]

d) as the space of all continuous functions g for which

7



there exists a constant K such that |g(s) − g(t)| 6 K‖s − t‖γ for each s and t in [0, 1]d

where ‖·‖ denotes the Euclidian norm on Rd. We endow this function space with the norm
‖g‖ := |g(0)|+ sups,t∈[0,1]d,s 6=t |g(t)− g(s)|/‖t− s‖γ and we consider the partial sum process

(Sn(t))t∈[0,1]d defined by (13) as an element of Hγ([0, 1]
d).

Theorem 3 If the assumptions of Theorem 2 hold with p > 4×(log2(4d/(4d−3)))−1 then the
sequence of processes {n−d/2Sn(t) ; t ∈ [0, 1]d}n>1 converges in distribution in Hγ([0, 1]

d) to√
ηB for each γ < 1/2−d/p where B is a standard d-Brownian sheet and η =

∑

k∈Zd E (X0Xk).

Remark 8. In [21], a necessary and sufficient condition was obtained for iid random fields
to satisfy the WIP in Hölder spaces. Our result provides a sufficient condition for stationary
real random fields which can be expressed as a functional of iid real random variables.

3 Proofs

In this section, the letter κ will denote a universal positive constant which the value may
change from line to line. The proof of Theorem 1 will be done by induction on d. We shall
need the following lemma.

Lemma 1 Let (Ω,F , µ) be a probability space. Let d be a positive integer and T l : Ω → Ω
be a measure-preserving operator for any l in Zd+1 such that T i ◦ T j = T i+j for any i and
j in Zd+1. Let p > 1 and M ⊂ F be a σ-algebra such that (T−iM)i∈Zd+1 is a commuting
filtration. Assume that f belongs to Lp(Ω,M, µ)⊖ Lp(Ω,∩k∈Nd+1T kM, µ) and

∑

k∈Nd+1

∥

∥E
(

f | T kM
)∥

∥

p
<∞. (15)

Then there exist M ∈ Lp(Ω,M, µ)⊖ Lp(Ω, Td+1M, µ) and G ∈ Lp(Ω, Td+1M, µ) such that

f =M +G−G ◦ Td+1 (16)

and
∑

k∈Nd

∥

∥E
(

M | T (k,0)M
)∥

∥

p
+
∥

∥E
(

G | T (k,0)M
)∥

∥

p
<∞. (17)

Proof of Lemma 1. First, the decomposition (16) is a direct consequence of Theorem A (see
section 1). Moreover, a carefull reading of the proof of Theorem A (see Volný [22]) ensures
the following expressions of M and G:

M =
∑

j>0

E[U j
d+1f | M]− E[U j

d+1f | Td+1M] and G =
∑

j>0

E[U j
d+1f | Td+1M]. (18)

Let k = (k1, ..., kd) be fixed in Nd. Since

E
(

M | T (k,0)M
)

=
∑

j>0

E[U j
d+1f | T (k,0)M]−

∑

j>0

E[U j
d+1f | T (k,1)M],

8



we derive

∥

∥E
(

M | T (k,0)M
)∥

∥

p
6 2

∑

j>0

∥

∥E[U j
d+1f | T (k,0)M]

∥

∥

p
= 2

∑

j>0

∥

∥E[f | T (k,j)M]
∥

∥

p
.

Finally, using (15), we obtain

∑

k∈Nd

∥

∥E
(

M | T (k,0)M
)∥

∥

p
6 2

∑

k∈Nd

∑

j>0

∥

∥E[f | T (k,j)M]
∥

∥

p
<∞. (19)

Similarly, we have also
∑

k∈Nd

∥

∥E
(

G | T (k,0)M
)∥

∥

p
<∞. The proof of Lemma 1 is complete.

Proof of Theorem 1. We are going to prove Theorem 1 by induction on the dimension
d. First, for d = 1, the result reduces to Gordin’s martingale-difference coboundary decom-
position (see Theorem A above). Let d be a positive integer. We assume that our result
is true for d and we have to show that it is true for d + 1. We thus consider a measure-
preserving operator T l : Ω → Ω for any l in Zd+1 such that T i ◦ T j = T i+j for any i and j
in Zd+1. Let p > 1 and let M ⊂ F be a σ-algebra such that (T−iM)i∈Zd+1 is a commuting
filtration. Assume that f belongs to Lp(Ω,M, µ) and satisfies (15). By Lemma 1, there
exist M ∈ Lp(Ω,M, µ)⊖Lp(Ω, Td+1M, µ) and G ∈ Lp(Ω, Td+1M, µ) such that (16) and (17)
hold. So, by the induction hypothesis, we have

M = m′ +
∑

∅(J(〈d〉

∏

s∈J
(I − Us)m

′
J +

d
∏

s=1

(I − Us)g
′, (20)

G = m′′ +
∑

∅(J(〈d〉

∏

s∈J
(I − Us)m

′′
J +

d
∏

s=1

(I − Us)g
′′ (21)

where

• m′ and m′′ belong to Lp(Ω,M, µ)⊖ Lp(Ω, TiM, µ) for each i in 〈d〉.

• m′
J and m′′

J belong to Lp(Ω,
∏

s∈J TsM, µ)⊖Lp(Ω, Ti
∏

s∈J TsM, µ) for each i in 〈d〉\J .

• g′ and g′′ belong to Lp(Ω,
∏d

s=1 TsM, µ);

Since E[M | Td+1M] = 0 and using (20), we derive

E[m′ | Td+1M] = −
∑

∅(J(〈d〉
E

[

∏

s∈J
(I − Us)m

′
J | Td+1M

]

−E

[

d
∏

s=1

(I − Us)g
′ | Td+1M

]

. (22)
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Let ∅ ( J ( 〈d〉 be fixed and recall that |J | is the number of elements of J . So, if
J = {j1, . . . , j|J |} then

E

[

∏

s∈J
(I − Us)m

′
J | Td+1M

]

= E





|J |
∑

i=0

(−1)i
i
∏

s=1

Ujsm
′
J | Td+1M





=

|J |
∑

i=0

(−1)iE

[

i
∏

s=1

Ujsm
′
J | Td+1M

]

=

|J |
∑

i=0

(−1)i
i
∏

s=1

UsE

[

m′
J |

i
∏

s=1

TjsTd+1M
]

where we used the convention
∏0

s=1 Us = I and the property E[Ush | G] = UsE[h | TsG] for
any s in 〈d〉, any σ-algebra G ⊂ F and any integrable function h. Let 0 6 i 6 |J | be fixed.
Since (T−kM)k∈Zd+1 is a commuting filtration, we have

E

[

m′
J |

i
∏

s=1

TjsTd+1M
]

= E

[

E

[

m′
J |

i
∏

s=1

TjsM
]

| Td+1M
]

.

Using the measurability of m′
J with respect to

∏i
s=1 TjsM, we obtain

E

[

m′
J |

i
∏

s=1

TjsTd+1M
]

= E[m′
J | Td+1M].

Consequently,

E

[

∏

s∈J
(I − Us)m

′
J | Td+1M

]

=

|J |
∑

i=0

(−1)i
i
∏

s=1

UsE [m′
J | Td+1M] =

∏

s∈J
(I−Us)E [m′

J | Td+1M] .

Similarly, since g′ is
∏d

s=1 TsM-measurable, we have also

E

[

d
∏

s=1

(I − Us)g
′ | Td+1M

]

=
d
∏

s=1

(I − Us)E [g′ | Td+1M] .

Using (22), we derive

E[m′ | Td+1M] = −
∑

∅(J(〈d〉

∏

s∈J
(I − Us)E [m′

J | Td+1M]−
d
∏

s=1

(I − Us)E [g′ | Td+1M] . (23)

So, denoting m := m′ − E[m′ | Td+1M] and combining (20) and (23) we obtain

M = m+
∑

∅(J(〈d〉

∏

s∈J
(I−Us) (m′

J − E [m′
J | Td+1M])+

d
∏

s=1

(I−Us) (g′ − E [g′ | Td+1M]) . (24)
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Moreover, m is M-measurable and E[m | TsM] = 0 for each s in 〈d + 1〉. Combining (21)
and (24), one can write

f = m+
∑

∅(J(〈d〉

∏

s∈J
(I − Us) (m

′
J − E [m′

J | Td+1M]) +
d
∏

s=1

(I − Us) (g
′ − E [g′ | Td+1M])

+ (I − Ud+1)



m′′ +
∑

∅(J(〈d〉

∏

s∈J
(I − Us)m

′′
J +

d
∏

s=1

(I − Us)g
′′



 ,

which is of the form (5) for d + 1 instead of d. Indeed, let ∅ ( J ( 〈d + 1〉 be fixed. If
d+ 1 ∈ J , we denote

mJ =

{

m′′ if J = {d+ 1}
m′′
J\{d+1} if J \ {d+ 1} 6= ∅ (25)

and if d+ 1 /∈ J , we denote

mJ =

{

m′
J − E [m′

J | Td+1M] if J 6= 〈d〉
g′ − E [g′ | Td+1M] if J = 〈d〉. (26)

Finally, denoting g = g′′, we obtain

f = m+
∑

∅(J(〈d+1〉

∏

s∈J
(I − Us)mJ +

d+1
∏

s=1

(I − Us)g,

The proof of Theorem 1 is complete.

Proof of Proposition 1. For simplicity, we consider only the case d = 2. Let (Xi,j)(i,j)∈Z2 be
an OMD random field with respect to a commuting filtration (Fi,j)(i,j)∈Z2 . Let (n1, n2) be
fixed in N2 and consider (Yi)i∈Z defined for any i in Z by Yi =

∑n2

j=0Xi,j. One can notice
that (Yi)i∈Z is a MD sequence with respect to the filtration (∨j∈ZFi,j)i∈Z. Consequently, by
Burkholder’s inequality, we have

∥

∥

∥

∥

∥

n1
∑

i=0

n2
∑

j=0

Xi,j

∥

∥

∥

∥

∥

p

6 κ
√
p

(

n1
∑

i=0

‖Yi‖2p

)1/2

.

Moreover, since for any i in Z, (Xi,j)j∈Z is a MD sequence with respect to the filtration
(∨i∈ZFi,j)j∈Z, we have also

‖Yi‖p =
∥

∥

∥

∥

∥

n2
∑

j=0

Xi,j

∥

∥

∥

∥

∥

p

6 κ
√
p

(

n2
∑

j=0

‖Xi,j‖2p

)1/2

.
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Consequently, we obtain

∥

∥

∥

∥

∥

n1
∑

i=0

n2
∑

j=0

Xi,j

∥

∥

∥

∥

∥

p

6 κp

(

n1
∑

i=0

n2
∑

j=0

‖Xi,j‖2p

)1/2

. (27)

In order to prove the optimality of the constant p in (27), arguing as in Wang and Woodroofe
[24] (Example 1, page 12), we consider a sequence (ηi)i∈Z of iid real random variables satis-
fying µ(η0 = 1) = µ(η0 = −1) = 1/2. Let also (η′i)i∈Z be an independent copy of (ηi)i∈Z and
consider the filtrations (Gk)k∈Z and (Hk)k∈Z defined for any k in Z by Gk = σ(ηs; s 6 k) and
Hk = σ(η′s; s 6 k). For any (i, j) in Z2, we denote Zi,j = ηiη

′
j. Then (Zi,j)(i,j)∈Z2 is an OMD

random field with respect to the commuting filtration (Fi,j)(i,j)∈Z2 defined by Fi,j = Gi ∨Hj

for any (i, j) in Z2. Let C be a positive constant such that for any (n1, n2) in N2,

∥

∥

∥

∥

∥

n1
∑

i=0

ηi

∥

∥

∥

∥

∥

p

×
∥

∥

∥

∥

∥

n2
∑

j=0

η′j

∥

∥

∥

∥

∥

p

=

∥

∥

∥

∥

∥

n1
∑

i=0

n2
∑

j=0

Zi,j

∥

∥

∥

∥

∥

p

6 C

(

n1
∑

i=0

n2
∑

j=0

‖Zi,j‖2p

)1/2

6 C
√
n1n2.

Applying the CLT for iid real random variables, we derive C > ‖N‖2p where N is a standard

normal random variable. Since there exists κ > 0 such that ‖N‖2p > κp, we derive (7). The
proof of Proposition 1 is complete.

Proof of Proposition 2. We start with the following lemma.

Lemma 2 If f is a function satisfying the assumptions of Theorem 1 for some p > 2 then
there exists a constant Cd depending only on d such that

max
{

‖m‖p , ‖mJ‖p , ‖g‖p
}

6 Cd∆d(f, p), (28)

where m, g and mJ are defined by (5) and ∆d(f, p) :=
∑

k∈Nd

∥

∥E[f | T kM]
∥

∥

p
.

Proof of Lemma 2. We prove this lemma by induction on d. The case d = 1 is a direct
consequence of (18). Let d be a positive integer and let p > 2. We assume that Lemma 2
is true for d and we are going to prove that it is true for d + 1. Assume that ∆d+1(f, p) is
finite. Using Lemma 1 and arguing as in the proof of Theorem 1, we have

f = m+
∑

∅(J(〈d+1〉

∏

s∈J
(I − Us)mJ +

d+1
∏

s=1

(I − Us)g

where mJ is given by (25) and (26), g = g′′ and m := m′ − E[m′ | Td+1M] (see the last part
of the proof of Theorem 1). Keeping in mind (16) and arguing as in the proof of Lemma 1
(see (19)), we derive

max {∆d(M, p),∆d(G, p)} 6 2∆d+1(f, p). (29)
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The induction hypothesis yields ‖m′‖p 6 Cd∆d(M, p). Since ‖m‖p 6 2 ‖m′‖p, using (29), we
obtain

‖m‖p 6 4Cd∆d+1(f, p).

Similarly, we have
‖g‖ = ‖g′′‖p 6 Cd∆d(G, p) 6 2Cd∆d+1(f, p).

Let J be a nonempty subset of 〈d+ 1〉.

• If d+1 ∈ J then using (25) and the induction hypothesis, we have ‖mJ‖p 6 Cd∆d(G, p).
Hence by (29),

‖mJ‖p 6 2Cd∆d+1(f, p).

• Similarly, using (26), if d+ 1 /∈ J and J 6= 〈d〉 then

‖mJ‖p 6 2 ‖m′
J‖p 6 2Cd∆d(M, p) 6 4Cd∆d+1(f, p)

and
∥

∥m〈d〉
∥

∥

p
6 2 ‖g′‖p 6 4Cd∆d+1(f, p).

Finally, it suffices to define Cd+1 := 4Cd. The proof of Lemma 2 is complete.

Without loss of generality, one can write Xi = f ◦ T i for any i in Zd where f = X0 and
(T i)i∈Zd is a family of measure-preserving operators on Ω such that T k ◦ T l = T k+l for any
k and l in Zd. Let n be fixed in Nd. In the sequel, we denote Λn = {i ∈ Nd ; 0 4 i 4 n} and
Sn(h) =

∑

i∈Λn
h ◦ T i for any function h defined on Ω. Applying Theorem 1, we have

Sn(f) = Sn(m) +
∑

∅(J(〈d〉
Sn

(

∏

s∈J
(I − Us)mJ

)

+ Sn

(

d
∏

s=1

(I − Us)g

)

. (30)

Let ∅ ( J ( 〈d〉 and k = (k1, ..., kd) ∈ Nd be fixed and define k(J) = (ki)i∈〈d〉\J . We have

Sn

(

∏

s∈J
(I − Us)mJ

)

=
∏

s∈J
(I − Uns+1

s )
∑

04k(J)4n(J)

∏

i∈〈d〉\J
Uki
i mJ .

Since the operator
∏

s∈J(I−Uns+1
s ) may be written as a sum of 2|J | isometries, the inequality

∥

∥

∥

∥

∥

Sn

(

∏

s∈J
(I − Us)mJ

)∥

∥

∥

∥

∥

p

6 2|J |

∥

∥

∥

∥

∥

∥

∑

04k(J)4n(J)

∏

i∈〈d〉\J
Uki
i mJ

∥

∥

∥

∥

∥

∥

p

(31)

takes place and an application of Proposition 1 yields

∥

∥

∥

∥

∥

∥

∑

04k(J)4n(J)

∏

i∈〈d〉\J
Uki
i mJ

∥

∥

∥

∥

∥

∥

p

6 κpd/2

(

∏

s∈J
ns

)1/2

‖mJ‖p . (32)
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Combining (31) and (32), we get
∥

∥

∥

∥

∥

Sn

(

∏

s∈J
(I − Us)mJ

)∥

∥

∥

∥

∥

p

6 2|J |κpd/2|n|1/2 ‖mJ‖p . (33)

Moreover, since

Sn

(

d
∏

s=1

(I − Us)g

)

=
d
∏

s=1

(I − Un+1
s )g

and
∏d

s=1(I − Un+1
s ) is a sum of 2d isometries, if follows that

∥

∥

∥

∥

∥

Sn

(

d
∏

s=1

(I − Us)g

)∥

∥

∥

∥

∥

p

6 2dκpd/2|n|1/2 ‖g‖p . (34)

By Proposition 1, we have also

‖Sn (m)‖p 6 κpd/2|n|1/2 ‖m‖p . (35)

Combining (30), (33), (34) and (35), we obtain

‖Sn(f)‖p 6 κpd/2|n|1/2


‖m‖p +
∑

∅(J(〈d〉
2|J | ‖mJ‖p + 2d ‖g‖p



 . (36)

Finally, applying Lemma 2 yields

‖Sn(f)‖p 6 κpd/2|n|1/2Cd∆d(f, p)



1 +
∑

∅(J(〈d〉
2|J | + 2d



 .

The proof of Proposition 2 is complete.

Proof of Proposition 3. First, since (Xk)k∈Zd is stationary, we have

∑

k∈Zd

|E(X0Xk)| 6 2d
∑

k∈Nd

|E(X0Xk)| 6 ‖X0‖2
∑

k∈Nd

‖E(X0|F−k)‖2 <∞.

Let n = (n1, ..., nd) be fixed in Nd. Then,

|n|−1E





(

∑

k∈Λn

Xk

)2


 =
∑

k∈Zd

|n|−1|Λn ∩ (Λn − k)|E(X0Xk)

where Λn = {i ∈ Nd ; 0 4 i 4 n} and Λn − k = {i− k ; i ∈ Λn} for any k in Zd. Moreover,

|n|−1|Λn ∩ (Λn − k)||E(X0Xk)| 6 |E(X0Xk)|
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and lim|n|→+∞ |n|−1|Λn ∩ (Λn − k)| = 1 for any k in Zd. Finally, it suffices to apply the
Lebesgue convergence theorem. The proof of Proposition 3 is complete.

Proof of Theorem 2. Let (Ω,F , µ, {T k}k∈Zd) be a dynamical system (that is, (Ω,F , µ) is
a probability space and T k : Ω → Ω is a measure-preserving transformation for any k in Zd

satisfying T i ◦ T j = T i+j for any i and any j in Zd) and let (εi)i∈Zd be a field of iid real ran-
dom variables defined on (Ω,F , µ). Let M ⊂ F be the σ-algebra generated by the random
variables εi for i 4 0 and let f : Ω → R be M-measurable. We consider the stationary real
random field (f ◦ T i)i∈Zd and the partial sum process

{

Sn(f, t) ; t ∈ [0, 1]d
}

n>1
defined for

any integer n > 1 and any t in [0, 1]d by

Sn(f, t) =
∑

i∈〈n〉d
λ([0, nt] ∩Ri)f ◦ T i (37)

where λ is the Lebesgue measure on Rd and Ri =]i1−1, i1]×...×]id−1, id] is the unit cube with
upper corner i = (i1, ..., id) in 〈n〉d. As usual, we have to prove the convergence of the finite-
dimensional laws and the tightness of the sequence of processes

{

n−d/2Sn(f, t) ; t ∈ [0, 1]d
}

n>1
.

We start with the tightness property: it suffices to establish for any ε > 0,

lim
δ→0

lim sup
n→∞

µ






sup

s,t∈[0,1]d
|s−t|<δ

n−d/2|Sn(f, s)− Sn(f, t)| > ε






= 0

where |x| = maxk∈〈d〉 |xk| for any x = (x1, ..., xd) in [0, 1]d. For simplicity, we are going to
consider only the case d = 2. By Theorem 1, we have

f = m+ (I − U1)m1 + (I − U2)m2 + (I − U1)(I − U2)g, (38)

where m, m1, m2 and g are square-integrable functions defined on Ω such that (U im)i∈Z2 is
an OMD random field and (Uk

2m1)k∈Z and (Uk
1m2)k∈Z are MD sequences. In the sequel, for

any real x, we denote by [x] the integer part of x. Let n > 1 and t = (t1, t2) in [0, 1]2. For
any 1 6 i 6 [nt1] + 1 and any 1 6 j 6 [nt2] + 1, we denote λi,j(t) = λ

(

[0, nt] ∩R(i,j)

)

. We
have

Sn((I−U1)m1, t) =

[nt1]+1
∑

i=1

[nt2]+1
∑

j=1

λi,j(t)U
(i,j)(I−U1)m1 =

[nt2]+1
∑

j=1

U j
2

[nt1]+1
∑

i=1

λi,j(t)
(

U i
1m1 − U i+1

1 m1

)

.
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Using Abel’s transformation and noting that λi+1,j(t) = λi,j(t) for any 1 6 i 6 [nt1]− 1 and
any 1 6 j 6 [nt2] + 1, we obtain that Sn((I − U1)m1, t) equals

[nt2]+1
∑

j=1

U j
2







λ[nt1]+1,j(t)
(

U1m1 − U
[nt1]+2
1 m1

)

−
[nt1]
∑

i=1

(

U1m1 − U i+1
1 m1

)

(λi+1,j(t)− λi,j(t))







=

[nt2]+1
∑

j=1

U j
2

{

λ[nt1]+1,j(t)
(

U1m1 − U
[nt1]+2
1 m1

)

−
(

U1m1 − U
[nt1]+1
1 m1

)

(

λ[nt1]+1,j(t)− λ[nt1],j(t)
)

}

= U1(I − U
[nt1]+1
1 )

[nt2]+1
∑

j=1

λ[nt1]+1,j(t)U
j
2m1 − U1(I − U

[nt1]
1 )

[nt2]+1
∑

j=1

(

λ[nt1]+1,j(t)− λ[nt1],j(t)
)

U j
2m1.

Moreover, since λi,j(t) = λi,1(t) for any 1 6 i 6 [nt1] + 1 and any 1 6 j 6 [nt2], we derive

Sn((I − U1)m1, t) = U1(I − U
[nt1]+1
1 )λ[nt1]+1,1(t)

[nt2]
∑

j=1

U j
2m1

+ U1(I − U
[nt1]+1
1 )λ[nt1]+1,[nt2]+1(t)U

[nt2]+1
2 m1

− U1(I − U
[nt1]
1 )

(

λ[nt1]+1,1(t)− λ[nt1],1(t)
)

[nt2]
∑

j=1

U j
2m1

− U1(I − U
[nt1]
1 )

(

λ[nt1]+1,[nt2]+1(t)− λ[nt1],[nt2]+1(t)
)

U
[nt2]+1
2 m1.

So, we obtain

sup
t∈[0,1]2

|Sn((I − U1)m1, t)| 6 4 max
16l,k6n+2

U l
1U

k
2 |m1|+ 4 max

16l,k6n+2
U l
1

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m1

∣

∣

∣

∣

∣

. (39)

Let x > 0 be fixed. Since m1 ∈ L2(Ω,F , µ), we have

µ

(

max
16l,k6n+2

U l
1U

k
2 |m1| > nx

)

6 κn2µ
(

m2
1 > n2x2

)

−−−−−→
n→∞

0. (40)

In the other part,

µ

(

max
16l,k6n+2

U l
1

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m1

∣

∣

∣

∣

∣

> xn

)

= µ



 max
16l6n+2

U l
1

(

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m1

∣

∣

∣

∣

∣

)2

> nx2



 .

(41)

Lemma 3 Let (Zn)n>1 be a uniformly integrable sequence of real random variables. For any
s in 〈d〉,

lim sup
n→∞

µ

(

max
16i1,..,is6n

U i1
1 . . . U is

s |Zn| > ns
)

= 0.
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Proof of Lemma 3. Let n be a positive integer. For any s in 〈d〉, we denote

pn(s) := µ

(

max
16i1,...,is6n

U i1
1 . . . U is

s |Zn| > ns
)

.

Let R be a positive real number. We have

pn(s) 6
2R

ns
+ ns µ

(

|Zn| 11{|Zn|>R} >
ns

2

)

6
2R

ns
+ 2 sup

k>1
E
(

|Zk| 11{|Zk|>R}
)

.

Consequently, lim supn→∞ pn(s) 6 2 supk>1 E
(

|Zk| 11{|Zk|>R}
)

−−−−−→
R→∞

0. The proof of

Lemma 3 is complete.

Lemma 4 The sequence

{

(

1√
n
max16k6n+2

∣

∣

∣

∑k
j=1 U

j
2m1

∣

∣

∣

)2

; n > 1

}

is uniformly integrable.

Proof of Lemma 4. Since (Uk
2m1)k∈Z is a MD sequence, using Doob’s inequality, we derive

∥

∥

∥

∥

∥

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m1

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

6 2

∥

∥

∥

∥

∥

n+2
∑

j=1

U j
2m1

∥

∥

∥

∥

∥

2

6 κ
√
n ‖m1‖2 .

So,

{

(

1√
n
max16k6n+2

∣

∣

∣

∑k
j=1 U

j
2m1

∣

∣

∣

)2

; n > 1

}

is bounded in L1(Ω,F , µ). Let M be a fixed

positive constant. We have m1 = m′
1 +m′′

1 where

m′
1 = m1 11|m1|6M − E

(

m1 11|m1|6M | T2M
)

m′′
1 = m1 11|m1|>M − E

(

m1 11|m1|>M | T2M
)

.

Moreover, if A belongs to F then

∫

A

(

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m1

∣

∣

∣

∣

∣

)2

dµ 6 2

∫

A

(

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m

′
1

∣

∣

∣

∣

∣

)2

dµ

+ 2

∫

A

(

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m

′′
1

∣

∣

∣

∣

∣

)2

dµ.

Since (Uk
2m

′
1)k∈Z and (Uk

2m
′′
1)k∈Z are MD sequences, using Schwarz’s inequality, we obtain

∫

A

(

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m1

∣

∣

∣

∣

∣

)2

dµ 6 2

∥

∥

∥

∥

∥

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m

′
1

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

4

√

µ(A)

+ 2

∥

∥

∥

∥

∥

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m

′′
1

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

2

.
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Keeping in mind that m′
1 is bounded by M and using again Doob’s inequality, there exists

a positive constant κ0 such that

∫

A

(

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m1

∣

∣

∣

∣

∣

)2

dµ 6 κ0

(

M2
√

P(A) + E
(

m2
1 11|m1|>M

)

)

.

Let ε > 0 be fixed and let M > 0 such that κ0E
(

m2
1 11|m1|>M

)

6 ε
2
. One can choose the

measurable set A in F such that κ0M
2
√

µ(A) 6 ε
2

and consequently

sup
n>1

∫

A

(

1√
n

max
16k6n+2

∣

∣

∣

∣

∣

k
∑

j=1

U j
2m1

∣

∣

∣

∣

∣

)2

dµ 6 ε.

The proof of Lemma 4 is complete.

Combining (39), (40), (41), Lemma 3 and Lemma 4, we obtain

lim sup
n→∞

µ

(

sup
t∈[0,1]2

|Sn((I − U1)m1, t)| > xn

)

= 0. (42)

In a similar way, we derive also

lim sup
n→∞

µ

(

sup
t∈[0,1]2

|Sn((I − U2)m2, t)| > xn

)

= 0. (43)

Now, noting that λi,j(t) = λi,1(t) for any 1 6 i 6 [nt1] + 1 and any 1 6 j 6 [nt2], we have
Sn((I − U1)(I − U2)g, t) equals

[nt1]+1
∑

i=1

[nt2]+1
∑

j=1

λi,j(t)U
(i,j)(I − U1)(I − U2)g

=

[nt1]+1
∑

i=1

U i
1(I − U1)



λi,1(t)

[nt2]
∑

j=1

(U j
2 − U j+1

2 )g + λi,[nt2]+1(t)U
[nt2]+1
2 (I − U2)g





= U2(I − U
[nt2]
2 )

[nt1]+1
∑

i=1

λi,1(t)(U
i
1 − U i+1

1 )g + U
[nt2]+1
2 (I − U2)

[nt1]+1
∑

i=1

λi,[nt2]+1(t)(U
i
1 − U i+1

1 )g.

Since λi,j(t) = λ1,j(t) for any 1 6 i 6 [nt1] and any 1 6 j 6 [nt2] + 1, we derive

Sn((I − U1)(I − U2)g, t) = λ1,1(t)U2(I − U
[nt2]
2 )U1(I − U

[nt1]
1 )g

+ λ[nt1]+1,1(t)U2(I − U
[nt2]
2 )U

[nt1]+1
1 (I − U1) g

+ λ1,[nt2]+1(t)U
[nt2]+1
2 (I − U2)U1(I − U

[nt1]+1
1 )g

+ λ[nt1]+1,[nt2]+1(t)U
[nt2]+1
2 (I − U2)U

[nt1]+1
1 (I − U1)g.

18



Thus
sup
t∈[0,1]2

|Sn((I − U1)(I − U2)g, t)| 6 κ max
16k,l6n+2

Uk
1U

l
2|g|

and for any positive x,

µ

(

sup
t∈[0,1]2

|Sn((I − U1)(I − U2)g, t)| > xn

)

6 κn2µ
(

g2 > n2x2
)

−−−−−→
n→∞

0. (44)

Now, it suffices to prove the tightness of the process { 1
n
Sn(m, t); t ∈ [0, 1]2}n>1. That is, for

any positive x,

lim
δ→0

lim sup
n→∞

µ






sup

s,t∈[0,1]2
|s−t|<δ

|Sn(m, s)− Sn(m, t)| > xn






= 0. (45)

Let n be a positive integer and let s = (s1, s2) and t = (t1, t2) be fixed in [0, 1]2. We denote
∆n(s, t) = Sn(m, s)− Sn(m, t) and for any i and j in 〈n〉,

βi,j = λi,j(s)− λi,j(t) = λ
(

[0, ns] ∩R(i,j)

)

− λ
(

[0, nt] ∩R(i,j)

)

.

Noting that βi,j = 0 for any 1 6 i 6 [n(s1 ∧ t1)] and any 1 6 j 6 [n(s2 ∧ t2)], we have
∆n(s, t) = ∆′

n(s, t) + ∆′′
n(s, t) where

∆′
n(s, t) =

[n(s1∨t1)]+1
∑

i=[n(s1∧t1)]+1

[n(s2∧t2)]+1
∑

j=1

βi,j U
(i,j)m and ∆′′

n(s, t) =

[n(s1∧t1)]+1
∑

i=1

[n(s2∨t2)]+1
∑

j=[n(s2∧t2)]+1

βi,j U
(i,j)m.

Moreover, ∆′
n(s, t) = ∆′

1,n(s, t) + ∆′
2,n(s, t) + ∆′

3,n(s, t) + ∆′
4,n(s, t) where

∆′
1,n(s, t) =

[n(s1∨t1)]
∑

i=[n(s1∧t1)]+2

[n(s2∧t2)]
∑

j=1

βi,j U
(i,j)m

∆′
2,n(s, t) =

[n(s2∧t2)]
∑

j=1

β[n(s1∨t1)]+1,j U
([n(s1∨t1)]+1,j)m

∆′
3,n(s, t) =

[n(s2∧t2)]
∑

j=1

β[n(s1∧t1)]+1,j U
([n(s1∧t1)]+1,j)m

∆′
4,n(s, t) =

[n(s1∨t1)]+1
∑

i=[n(s1∧t1)]+1

βi,[n(s2∧t2)]+1 U
(i,[n(s2∧t2)]+1)m.

Let α in {−1,+1} such that βi,j = α if [n(s1∧t1)]+2 6 i 6 [n(s1∨t1)] and 1 6 j 6 [n(s2∧t2)]
So,

∆′
1,n(s, t) = α

[n(s1∨t1)]
∑

i=[n(s1∧t1)]+2

[n(s2∧t2)]
∑

j=1

U (i,j)m
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and for any positive x,

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
1,n(s, t)| > nx






6

[ 1
δ
]

∑

k=0

µ



max
16p6n
r∈[0,δ]

∣

∣

∣

∣

∣

∣

[n(kδ+r)]
∑

i=[nkδ]+2

p
∑

j=1

U (i,j)m

∣

∣

∣

∣

∣

∣

> nx





=

[ 1
δ
]

∑

k=0

µ



max
16p6n
r∈[0,δ]

∣

∣

∣

∣

∣

∣

[n(kδ+r)]−[nkδ]−1
∑

i=1

p
∑

j=1

U (i,j)m

∣

∣

∣

∣

∣

∣

> nx



 .

Since [n(kδ + r)]− [nkδ]− 1 is an integer smaller than [nr], we obtain

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
1,n(s, t)| > nx






6

(

1 +
1

δ

)

µ



 max
16p6n

16q6[nδ]

∣

∣

∣

∣

∣

q
∑

i=1

p
∑

j=1

U (i,j)m

∣

∣

∣

∣

∣

> nx





=

(

1 +
1

δ

)

µ



 max
16p6n

16q6[nδ]

(

1

n
√
δ

q
∑

i=1

p
∑

j=1

U (i,j)m

)2

>
x2

δ





6

(

1 + δ

x2

)

Ex2

δ



 max
16p6n

16q6[nδ]

(

1

n
√
δ

q
∑

i=1

p
∑

j=1

U (i,j)m

)2




where we used the notation EA(Z) = E
(

Z 11|Z|>A
)

for any A > 0 and any Z in L1(Ω,F , µ).

Lemma 5 The family

{

max 16p6n
16q6[nδ]

(

1
n
√
δ

∑q
i=1

∑p
j=1 U

(i,j)m
)2

; n > 1, δ > 0

}

is uniformly

integrable.

Proof of Lemma 5. The proof follows the same lines as the proof of Lemma 4 using Cairoli’s
maximal inequality for orthomartingales (see [16], Theorem 2.3.1) instead of Doob’s inequal-
ity for martingales. It is left to the reader.

So, we obtain

lim
δ→0

lim sup
n→∞

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
1,n(s, t)| > nx






= 0. (46)

In the other part, since β[n(s1∨t1)]+1,j = β[n(s1∨t1)]+1,1 for any 1 6 j 6 [n(s2 ∧ t2)], we have

∆′
2,n(s, t) = β[n(s1∨t1)]+1,1U

[n(s1∨t1)]+1
1

[n(s2∧t2)]
∑

j=1

U j
2m

and consequently

sup
s,t∈[0,1]2
|s−t|<δ

|∆′
2,n(s, t)| 6 max

16k6n+1
16l6n

Uk
1

∣

∣

∣

∣

∣

l
∑

j=1

U j
2m

∣

∣

∣

∣

∣

.
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So,

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
2,n(s, t)| > nx






6 µ



 max
16k6n+1

Uk
1

(

max
16l6n

1√
n

∣

∣

∣

∣

∣

l
∑

j=1

U j
2m

∣

∣

∣

∣

∣

)2

> nx2



 . (47)

Since (Uk
2m)k∈Z is a MD sequence, arguing as in Lemma 4, the sequence

{

(

max16l6n
1√
n

∣

∣

∣

∑l
j=1 U

j
2m
∣

∣

∣

)2
}

n>1

is uniformly integrable. Combining (47) and Lemma 3, we derive that for any δ > 0,

lim sup
n→∞

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
2,n(s, t)| > nx






= 0. (48)

Similarly, we have also

lim sup
n→∞

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
3,n(s, t)| > nx






= 0 (49)

for any δ > 0. Moreover, for any [n(s1 ∧ t1)] + 1 6 i 6 [n(s1 ∨ t1)], we have βi,[n(s2∧t2)]+1 =
β[n(s1∧t1)]+1,[n(s2∧t2)]+1 and consequently

∆′
4,n(s, t) = β[n(s1∧t1)]+1,[n(s2∧t2)]+1 U

[n(s2∧t2)]+1
2

[n(s1∨t1)]
∑

i=[n(s1∧t1)]+1

U i
1m

+ β[n(s1∨t1)]+1,[n(s2∧t2)]+1 U
([n(s1∨t1)]+1,[n(s2∧t2)]+1)m

and

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
4,n(s, t)| > nx






6 µ



 max
16k6n+1

Uk
2

(

max
16l6[nδ]

1√
nδ

∣

∣

∣

∣

∣

l
∑

j=1

U j
1m

∣

∣

∣

∣

∣

)2

>
nx2

2δ





+ 2n2µ

(

m2 >
n2x2

4

)

Arguing as in Lemma 3, the family

{

(

max16l6[nδ]
1√
nδ

∣

∣

∣

∑l
j=1 U

j
1m
∣

∣

∣

)2

; n > 1, δ > 0

}

is uni-

formly integrable since (Uk
1m)k∈Z is a MD sequence. By Lemma 4, we obtain for any δ > 0,

lim sup
n→∞

µ



 max
16k6n+1

Uk
2

(

max
16l6[nδ]

1√
nδ

∣

∣

∣

∣

∣

l
∑

j=1

U j
1m

∣

∣

∣

∣

∣

)2

>
nx2

2δ



 = 0.
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Moreover, n2µ
(

m2 > n2x2

4

)

goes to zero as n goes to infinity since m belongs to L2(Ω,F , µ).
Consequently, for any δ > 0,

lim sup
n→∞

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
4,n(s, t)| > nx






= 0. (50)

Combining (46), (48),(49) and (50), we obtain

lim
δ→0

lim sup
n→∞

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′
n(s, t)| > nx






= 0. (51)

Similarly, one can check that

lim
δ→0

lim sup
n→∞

µ






sup

s,t∈[0,1]2
|s−t|<δ

|∆′′
n(s, t)| > nx






= 0. (52)

Finally, keeping in mind ∆n(s, t) = ∆′
n(s, t) + ∆′′

n(s, t) and combining (51) and (52), we
obtain (45). Now, we are going to prove the convergence of the finite-dimensional laws. In
fact, combining (5), (42), (43) and (44), we have

lim sup
n→∞

µ

(

sup
t∈[0,1]2

|Sn(f −m, t)| > xn

)

= 0. (53)

Let (t, n) be fixed in [0, 1]2 × N2 and denote Λn(t) = [0, nt] ∩ N2. We have

Sn(m, t)−
∑

i∈Λn(t)

m ◦ T i =
∑

i∈Wn(t)

aim ◦ T i (54)

where ai = λ([0, nt]∩Ri)− 11i∈Λn(t) andWn(t) is the set of all i in 〈n〉d such that Ri∩[0, nt] 6= ∅
and Ri ∩ (R2 \ [0, nt]) 6= ∅. Noting that |ai| 6 1 and combining (54) and Proposition 1, we
obtain

∥

∥

∥

∥

∥

∥

Sn(m, t)−
∑

i∈Λn(t)

m ◦ T i
∥

∥

∥

∥

∥

∥

2

6 C ‖m‖2





∑

i∈Wn(t)

a2i





1/2

6 C ‖m‖2
√

|Wn(t)| (55)

where C is a positive constant and |Wn(t)| denotes the number of elements in Wn(t). Since
|Wn(t)| = O(n), we derive

n−1

∥

∥

∥

∥

∥

∥

Sn(m, t)−
∑

i∈Λn(t)

m ◦ T i
∥

∥

∥

∥

∥

∥

2

= O

(

1√
n

)

. (56)
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Finally, combining (53), (56) and Proposition 3 and arguing as in the proof of Theorem 4.1
by Wang and Woodroofe [24], we derive the convergence of the finite dimensional laws of
{n−1Sn(f, t) ; t ∈ [0, 1]2}. The proof of Theorem 2 is complete.

Proof of Proposition 4. Since X0 =
∑

j∈Nd ajε−j where (aj)j∈Nd is a family of real num-

bers satisfying
∑

j∈Nd a2j < ∞ and (εi)i∈Zd is an iid zero-mean real random field, we have

E(X0 | F−k) =
∑

j<k

ajε−j (57)

where k ∈ Nd and F−k is the σ-algebra generated by εi for any i 4 −k. We recall the
Rosenthal’s inequality ([14], Theorem 2.12): for any p > 2, there exists a positive constant
C depending only on p such that if (Yj)j>1 is a sequence of independent zero-mean random
variables and n is a positive integer then

1

C

(

n
∑

j=1

E[Y 2
j ]

)p/2

+
1

C

n
∑

j=1

E|Yj|p 6 E

∣

∣

∣

∣

∣

n
∑

j=1

Yj

∣

∣

∣

∣

∣

p

6 C

(

n
∑

j=1

E[Y 2
j ]

)p/2

+ C

n
∑

j=1

E|Yj|p. (58)

Combining (57) and (58), we obtain that (8) holds if and only if (14) holds. The proof of
Proposition 4 is complete.

Proof of Theorem 3. We shall use Theorem 1 in [17] which states that if a sequence of
random processes {Yn(t) ; t ∈ [0, 1]d}n>1 whose finite dimensional distributions are weakly
convergent and for some constants α, β and K such that

β ∈ (0, 1] and αβ >
2

log2
(

4d
4d−3

)

and

µ {|Yn(t)− Yn(s)| > ε} 6
K

εα
‖s− t‖αβ (59)

for any s and t in [0, 1]d, any ε > 0 and any positive integer n then (Yn(·))n>1 converges
weakly to some process in Hγ([0, 1]

d) where 0 < γ < β − d/α. Since the finite-dimensional
laws of the process {n−d/2Sn(t) ; t ∈ [0, 1]d}n>1 are weakly convergent (cf. Theorem 2), it
suffices to convert the moment inequality given by Proposition 2 into an inequality involving
µ
{

|Sn(t)− Sn(s)| > nd/2ε
}

in order to check that condition (59) is satisfied with α = p,

β = 1/2 and Yn(t) = n−d/2Sn(t). We shall do the proof for d = 2. Let s = (s1, s2) and
t = (t1, t2) be fixed in [0, 1]2 and n be a positive integer. Without loss of generality, we
assume that s1 > t1 and s2 < t2 (similar arguments can be used to treat the general case).
Let s′1 = k1/n and t′1 = (l1 + 1)/n where (k1, l1) is the unique element of 〈n〉2 such that
k1/n 6 s1 < (k1 + 1)/n and l1/n 6 t1 < (l1 + 1)/n. In other words, keeping in mind that [.]
denotes the integer part function, we have s′1 = [ns1]/n and t′1 = ([nt1] + 1)/n and similarly,
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we define s′2 = ([ns2] + 1)/n and t′2 = [nt2]/n. With these notations, we have

|Sn(t)− Sn(s)| = |Sn(t1, t2)− Sn(s1, s2)|
6 |Sn(t1, t2)− Sn(t1, t

′
2)|+ |Sn(t′1, t′2)− Sn(t1, t

′
2)|

+ |Sn(t′1, t′2)− Sn(s
′
1, s

′
2)|+ |Sn(s′1, s′2)− Sn(s

′
1, s2)|

+ |Sn(s′1, s2)− Sn(s1, s2)|.

Since

|Sn(t1, t2)− Sn(t1, t
′
2)| = (t2 − t′2)

∣

∣

∣

∣

∣

∣

[nt1]
∑

i=1

Xi,[nt2] + (t′1 − t1)X[nt1]+1,[nt2]

∣

∣

∣

∣

∣

∣

and t2 − t′2 6 1/n, by Proposition 2, there exists a positive constant C such that

E |Sn(t1, t2)− Sn(t1, t
′
2)|p 6 C pp(t2 − t′2)

pnp/2 6 C pp(t2 − t′2)
p/2. (60)

Similarly,

E |Sn(t′1, t′2)− Sn(t1, t
′
2)|p 6 C pp(t′1 − t1)

p/2 (61)

E |Sn(s′1, s′2)− Sn(s
′
1, s2)|p 6 C pp(s′2 − s2)

p/2 (62)

E |Sn(s′1, s2)− Sn(s1, s2)|p 6 C pp(s1 − s′1)
p/2. (63)

Moreover, from Proposition 2, for any positive integer n and any i and j in 〈n〉2, we have

E

∣

∣

∣

∣

1

n
Sn

(

i

n

)

− 1

n
Sn

(

j

n

)∣

∣

∣

∣

p

6 C pp
∥

∥

∥

∥

i

n
− j

n

∥

∥

∥

∥

p/2

. (64)

Combining (60), (61), (62), (63) and (64) and using the elementary convexity inequality
(a1 + a2 + a3 + a4 + a5)

p 6 5p−1(ap1 + ap2 + ap3 + ap4 + ap5)for any non-negative a1, a2, a3, a4 and
a5, we derive

E|Sn(t)− Sn(s)|p 6 κ‖s− t‖p/2.
Finally, using Markov’s inequality, we obtain (59). The proof of Theorem 3 is complete.
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