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Abstract

We provide a new projective condition for a stationary real random field indexed
by the lattice Z% to be well approximated by an orthomartingale in the sense of Cairoli
(1969). Our main result can be viewed as a multidimensional version of the martingale-
coboundary decomposition method which the idea goes back to Gordin (1969). It is a
powerfull tool for proving limit theorems or large deviations inequalities for stationary

random fields when the corresponding result is valid for orthomartingales.

1 Introduction and notations

In probability theory, a powerfull approach for proving limit theorems for stationary se-
quences of random variables is to find a way to approximate such sequences by martingales.
This idea goes back to Gordin [§] (see Theorem A below). More precisely, let (X)kez be
a sequence of real random variables defined on the probability space (€2, F, u). We assume
that (X} )rez is stationary in the sense that its finite-dimensional laws are invariant by trans-
lations and we denote by v the law of (Xj)rez. Let f : RZ — R be defined by f(w) = wp
and T : RZ — RZ by (Tw)y = w41 for any w in RZ and any k in Z. Then the sequence
(f o T*)ez defined on the probability space (RZ, B(RZ),v) is stationary with law v. So,
without loss of generality, we can assume that X, = f o T* for any k in Z. In 1969, Gordin
[8] introduced a powerfull method for proving the central limit theorem (CLT) and the weak
invariance principle (WIP) for stationary sequences of dependent random variables satisfy-
ing a projective condition (see ([II) below). In the sequel, for any p > 1 and any o-algebra
M C F, we denote by LP(2, M, i) the space of p-integrable real random variables defined
on (2, M, ;1) and we consider the norm ||.||, defined by [|Z||? = [, |Z(w)[?du(w) for any Z in
LP(§2, F, u). We denote also by LP(2, F, u) © LP(2, M, u) the space of all Z in LP(Q, F, )
such that E(Z | M) =0 a.s.



Theorem A (Gordin, 1969) Let (Q, F, u) be a probability space and let T : Q — Q be a
measurable function such that = Tu. Let alsop > 1 and M C F be a o-algebra such that
M C TIM. If f belongs to LP(2, M, 1) © LP(2, Micz T "M, ) such that

DB 1T M), <o M
k>0
then there exist m in LP(Q, M, pu) © LP(Q, TM, ) and g in LP(Q,TM, 1) such that
f=m+g—goTl. (2)

The term g — g o T in () is called a coboundary and equation (2)) is called the martingale-
coboundary decomposition of f. Moreover, the stationary sequence (moT");cz is a martingale-
difference sequence with respect to the filtration (7'M );cz (see Definition [l below) and for
any positive integer n,

Sn(f) = Sn(m) +g—goT" (3)
where S, (h) = Z;:ol hoT* for any function h : Q — R. Combining (B]) with the Billingsley-
Ibragimov CLT for martingales (see [2] or [II]), one obtain the CLT for the stationary
sequence (f o T*).ez when the projective condition (1) holds. Similarly, combining (B
with the WIP for martingales (see [3]), we derive the WIP for the stationary sequence
(foT*)ez. Thus, Gordin’s method provides a sufficient condition for proving limit theorems
for stationary sequences when such a limit theorem holds for martingale-difference sequences.
Our aim in this work is to provide an extension of Theorem A for random fields indexed by
the lattice Z? where d is a positive integer (see Theorem [J).

2 Main results

Definition 1 We say that a sequence (Xy)gez of real random variables defined on a prob-
ability space (2, F,u) is a martingale-difference (MD) sequence if there exists a filtration
(Gr)rez such that Gy C Gry1 C F and X}, belongs to LY, Gi, ) © LY(Q, Gr_1, 1) for any k
n 7.

The concept of MD sequences can be extended to the random field setting. One can refer
for example to Basu and Dorea [I] or Nahapetian [16] where MD random fields are defined
in two differents ways and limit theorems are obtained. In this paper, we are interested by
orthomartingale-difference random fields in the sense of Cairoli [4]. A good introduction to
this concept is done in the book by Khoshnevisan [12]. Let d be a positive integer. We
denote by (d) the set {1,...,d}. For any s = (s1, ..., 84) and any t = (1, ..., t4) in Z%, we write
s Xt (resp. s <t,s>=tand s> t)if and only if s, <ty (resp. sp < ty, Sp = tx and s > )
for any k in (d) and we denote also s At = (s1 Aty,...,5q4 Atg).

Definition 2 Let (Q, F, u) be a probability space. A family (G;)ieza of o-algebras is a com-
muting filtration if G; C G; C F for any i and j in Z¢ such that i < j and

E(E (Z | gs) | gt) = E(Z | gs/\t) a.s.

for any s and t in Z* and any bounded random variable Z .
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Definition [2 is known as the “F4 condition”.

Definition 3 Let (2, F, i) be a probability space. A random field (Xy)neza is an orthomartingale-
difference (OMD) random field if there exists a commuting filtration (G;);cze such that Xy
belongs to L' (Q, Gi, ) © LY(Q, Gy, 1) for any 1 k and k in Z°.

Remark 1. Let k be fixed in Z% and Sy = 3,2, X; where (X;);ez¢ is an OMD random
field with respect to a commuting filtration (G;);cze. Then S) belongs to L'(€2, Gy, i) and
E (Sk | Gi) = S for any | < k. We say that (Sk)reza is an orthomartingale (OM) random field.

Arguing as above, without loss of generality, every stationary real random field (Xj)zczq
can be written as (f o T%),cze where f : Q — R is a measurable function and for any & in

74, Tk : Q0 — Q is a measure-preserving operator sat1sfy1n% T oTJ = T for any i and j
in Zd. For any s in (d), we denote Ty, =T° where e; = es ye éd’ is the unique element

of Z¢ such that ¢!’ =1 and ¢!’ = 0 for any i in (d)\{s} and Us is the operator defined by
Ush = hoT for any function h : 2 — R. We define also U as the product operator Il ;U
for any ) C J C (d) and we write simply U for Uig = Uy oUso0...oUy. Forany 0 C J C (d),
we denote also by |J| the number of elements in J and by J¢ the set (d)\J. The main result
of this paper is the following.

Theorem 1 Let (Q, F, ) be a probability space and let T' : Q@ — Q be a measure-preserving
operator for any | in Z¢ such that T* o TV = T for any i and j in Z%. Let p > 1 and
let M C F be a o-algebra such that (T~'M);cza is a commuting filtration. If f belongs to
LP(Q, M, p) © LP(Q, M1 TFM, 1) and

D ETHE(f I TEM)| ) < oo (4)

k>1

for any s in (d) then f admits the decomposition

f=m+ > Ju- UmJ+HI U,)g (5)

0CJC(d) s€J

where m, g and (my)ocsc belong to LP(Q, M, i) and (U'm);cza and (Ulemy),cga-1s for all
0 < JC(d) are OMD random fields.

Remark 2. If d = 1 then Theorem [I reduces to Theorem A. If d = 2 then (&) reduces to
f=m+ I =U)mi+ (I = U)my + (I = Uh)(I - Us)g,

where m, my, my and g belong to ILP(Q, M, 1) such that (U'm);cz is an OMD random field
and (USmy)rez and (UFmsy)rez are MD sequences. If d = 3 then () becomes

f =m + (I — Ul)ml + (I — Ug)mz + (I — Ug)mg

+ (I — Ul)(] — Ug)m{m} + (I — Ul)(l — Ug)m{Lg} + (I — UQ)(I — Ug)m{lg}
+ (= U)I = U2)(I —Us)g



where m, my, ma, ms, My 2y, My1,3y, My2,3; and g belong to LP(Q, M, p) such that (U'm);ezs,
(Upyzyma)iezz, (Ufy 5yma)iezz and (U 5yms)iez2 are OMD random fields and (UFmya sy ) kez,
(Ué“m{l,g})kez and (Ué“m{m})kez are MD sequences.

Remark 3. A decomposition similar to (B was obtained by Gordin [9] but with reversed
orthomartingales and under an assumption on the so-called Poisson equation.

Proposition 1 Let (X;);cze be an OMD random field. There exists a positive constant k
such that for any p > 1 and any n in Zi,

> X

0=<k=n

1/2
< rp™? < > ||Xk||f,> (6)
p

0=k=n
and the constant p? in (@) is optimal in the following sense: there exists a stationary OMD
random field (Zy)reza with || Zo|| . =1 and a positive constant k such that for any p > 1

inf< C'>0;

>

0=k=n

1/2
<C(Z ||zk||?,) Vnezi b zmtt ()

0=k=n

p

Remark 4. A Young function v is a real convex nondecreasingfunction defined on R*
which satisfies lim; . 9 (t) = oo and ¥(0) = 0. We denote by L, (€2, F, 1) the Orlicz space
associated to the Young function 1, that is the space of real random variables Z defined
on (Q,F,p) such that E (¢(|Z]/c)) < oo for some ¢ > 0. The Orlicz space Ly (9, F, i)
equipped with the so-called Luxemburg norm |.||,, defined for any real random variable Z
by | Z]|y = inf{c > 0; E[¢(]Z]/c)] < 1} is a Banach space. For any p > 1, if ¢, is the
function defined by ¢,(x) = 2P for any nonegative real x then ¢, is a Young function and
the Orlicz space Ly, (€2, F, u) reduces to LP(S2, F, u) equipped with the norm .||, defined
by [1ZII) = [, 1Z(w)[Pdpu(w) for any Z in LP(S2, F, u). For more about Young functions and
Orlicz spaces one can refer to Krasnosel’skii and Rutickii [I4]. Combining Lemma 4 in [7]
and Inequality (@]), we obtain Kahane-Khintchine inequalities: for any 0 < ¢ < 2/d, there
exists a positive constant r, such that for any n = 0 in Z%

1/2
< hy ( > HXkHiM> ®)
g

0=<k=n

> X

0=<k=n

where ((q) = 2q/(2 — dq) and v, is the Young function defined for any z € Rt by
Yo (x) = exp((x + hy)®) —exp(hS) with  h, = ((1 — oz)/oz)l/o‘ 1{o<a<1}

for any real @ > 0. Moreover, (8] still hold for ¢ = 2/d if the random variables (Xj)cza
are assumed to be uniformly bounded. Finally, using Markov inequality and the definition
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of the Luxembourg norm ||.||wq, we derive the following large deviations inequalities: for any

q

0 < q < 2/d, there exists a positive constant x, such that for any n = 0 in Z¢ and any x > 0,
hq x
>z | <(1+e)exp | — + hyq

o :
HQ\/ZOjkjn ”Xk”wﬁ(q)

0=<k=n
Again, the above exponential inequality still hold for ¢ = 2/d when the random variables
(Xk)geza are uniformly bounded.

Combining Proposition [I] and Theorem [I we obtain the following result.

Proposition 2 Let (X;);eze be a stationary real random field and (F;);cza be a commuting
filtration such that each X; is F;-measurable. If there exists p > 1 such that X, belongs to
LP(82, Fo, i) © LP(Q2, N1 Fkess i) and

D KTHIE (Xo | Fis)l, < oo 9)

k>1

for any s in (d) where Fy s = V,_q, i ezaFi then (@) still holds.

is<—k
Now, we are able to investigate the WIP for random fields. Let (X;);cza be a stationary real

random field defined on a probability space (€2, F,u). Let also A be a collection of Borel
subsets of [0, 1]? and consider the process {S,(A); A € A} defined by

Su(A) = > AnANR)X, (10)

i€({n)d

where R; =]i;—1,41] % ...xJig—1, 4] is the unit cube with upper corner at i = (i, .., i4) in (n)?
and ) is the Lebesgue measure on R%. The collection A is equipped with the pseudo-metric
p defined by p(A, B) = \/A(AAB) for any A and B in A. Let ¢ > 0 and let H(A, p,¢) be
the logarithm of the smallest number N (A, p,e) of open balls of radius ¢ with respect to
p which form a covering of A. The function H (A, p,.) is called the metric entropy of the
class A and allows us to control the size of the collection A. Let (C(A),|.]|.4) be the Banach
space of continuous real functions on A equipped with the uniform norm ||.|| 4 defined by
| flla = supaca|f(A)|. A standard Brownian motion indexed by A is a mean zero Gaussian
process W with sample paths in C(A) and Cov(W (A),W(B)) = A(AN B). From Dudley
[6] we know that such a process is well defined if fol VH(A, p,e)de < oco. Following [18], we
recall the definition of Vapnik-Chervonenkis classes (V' C-classes) of sets: let C be a collection
of subsets of a set X. An arbitrary set of n points F,, := {z1,...,x,} possesses 2" subsets.
Say that C picks out a certain subset from F), if this can be formed as a set of the form C'NF,
for a C'in C. The collection C is said to shatter F,, if each of its 2" subsets can be picked out
in this manner. The VC-indez V(C) of the class C is the smallest n for which no set of size
n is shattered by C. Clearly, the more refined C is, the larger is its index. Formally, we have

V(C) = inf {n; max A,(C, 1, ...,7,) < 2”}



where A, (C, 1, ..., x,) = #{C N{x1,...,x,}; C € C}. Two classical examples of V C-classes
are the collection Q4 = {[0,¢]; t € [0,1]?} and Q, = {[s,]; s,t € [0,1]¢, s < ¢} with index
d+ 1 and 2d + 1 respectively.

In the sequel, since the CLT does not hold for general OMD random fields (see [2I], ex-
ample 1, page 12), we restrict ourselves to the case of a commuting filtration generated by
iid random variables.

Theorem 2 Let (g;);eza be an iid real random field defined on a probability space (2, F, ).
Denote by (F;)icza the commuting filtration where F; is the o-algebra generated by ¢; for
J =i and i in Z* and consider the o-algebra Fy o defined in Proposition[d for any positive
integer k and any s in (d). Let (X;);cza be a stationary real random field and A be a VC-class
of regular Borel subsets of [0,1]¢ with index V. Assume that there exists p > 2(V — 1) such
that Xy belongs to LP(Q, Fo, 1) OLP(Q, Ng=1Fk.s, o) for any s in (d) and (@) holds. Then the
sequence of processes {n~Y2S,(A); A € A} converges in distribution in C(A) to /E (X2)W

where W is a standard Brownian motion indexed by A.

If we consider the particular case A = Q4 where Qy is the class of all quadrants [0, ¢] for ¢ in
[0,1]¢ then Theorem B ensures that the WIP holds for p-integrable OMD random fields with
p > 2d. In fact, our next result shows that the WIP still holds for p = 2 and can be viewed
as an extension of the Donsker’s invariance principle for iid random variables (see [5]).

Theorem 3 Theorem [3 still holds with A = Q4 and p = 2.

Remark 5. El Machkouri et al. [7] and Wang and Woodroofe [21] obtained also a WIP for
random fields (Xj)peze which can be expressed as a functional of iid real random variables
but under the more restrictive condition that X, belongs to LP(Q, F, u) with p > 2. In a
recent work, Wang and Volny [20] obtained the WIP for p = 2 under a multidimensional
version of the so-called Hannan’s condition for time series. Their condition is less restrictive
than (@) but condition (@) gives also an orthomartingale approximation for the considered
random field which is of independent interest.

Proposition 3 Let (¢;);cza be an iid real random field defined on a probability space (2, F, )
such that € belongs to ILP(Q, F, p) for somep > 2. Consider the linear random field (Xy)yeza
defined for any k in Z% by X; = > js0 Q€k—j where (a;)jeza is a family of real numbers
satisfying ijo a? < 00. Then the condition

SN a? (11)
k>1 €Ay 5

where Ny s = {i = (i1, ..,1q) € Z%; iy = k} is more restrictive than ([).

In particular, Proposition [3] ensures that the conclusions of Theorem [2] and Theorem [ still
hold for linear random fields with iid innovations under assumption (I]). In the other part,
Wang and Woodroofe ([21], Corollary 1) obtained a WIP for stationary linear random fields
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with iid innovations (g;);cze under a weaker condition than (1) but again with the addi-
tional assumption that ey belongs to LP(€2, F, u) with p > 2.

We now provide an application of Theorem [I] to the WIP in Hélder spaces. We consider for
0 < B < 1 the space Hjz([0,1]%) as the space of all continuous functions g for which there
exists a constant K such that for each s,t € [0, 1]¢,

l9(s) = 9(t) < K||s —t]|°,

where ||-|| denotes the Euclidian norm on R?. We endow this function space with the norm
gl == [g(0)] + sup, e io.11¢.5¢ [9() — g(5)|/ [t = s]|°. If (Xi)peza is a stationary real random
field, we define the partial sum process {n=%25,(t);t € [0,1]%},>1 by

Sa(t) = D M0, nt] N R)X; (12)

i€{n)d

for any positive integer n and any ¢ in [0, 1]¢ and we recall that X is the Lebesgue measure
on R% and R; =]i; — 1,41] X ...X]ig — 1,i4] is the unit cube with upper corner i = (iy, ..., i)
in (n)?. We consider (S, (t))wcp.1¢ as an element of Hz([0,1]%). Our next result provides a
sufficient condition for the weak convergence of (n~%25,,()),>1 in this function space.

Theorem 4 If the assumptions of Theorem [2 hold with p > 4 X (logy(4d/(4d — 3)))~! and
A = Qg then the WIP holds in H.,([0,1]%) for each v < 1/2 —d/p.

Remark 6. In [I7], a necessary and sufficient condition was obtained for iid random fields
to satisfy the WIP in Holder spaces. Our result provides a sufficient condition for stationary
real random fields which can be expressed as a functional of iid real random variables.

3 Proofs

In this section, the letter x will denote a universal positive constant which the value may
change from line to line. The following two lemmas will be useful in the sequel.

Lemma 1 Let (2, F,pn)) be a probability space. For mutually independent sub-o-algebras
A1, Ay and As of F and X a random variable in ILY(Q, F, i), we have

EEX [ AV A)[AVA)=E(X|A), (13)
where Ay V As is the o-algebra generated by Ay, and As.
For a proof of Lemma [Tl one can refer to Proposition 8.1 in [21].

Lemma 2 Let (Q, F,p) be a probability space and let T' : Q — Q be a measure-preserving
operator for any | in Z such that T* o T = T for any i and j in Z¢ (d > 2). Letp > 1 be
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fized and let M C F be a o-algebra such that (T~°M);cza is a commuting filtration. Assume
that F belongs to LP(Q2, M, ) and for any s in (d),

D ETHE(F [ TEM)|| < oo, (14)
k>1

Then for any s in (d), there exist My in LP(Q2, M, p)SLP(Q, TsM, ) and G in LP(Q2, To M, 1)
such that F' = Mg+ (I — Uy)Gs. Moreover, for any s and | in (d), we have

de’2 HE (M, | TFM) Hp < oo and de’Q HE (G5 | TFM) Hp < o0. (15)

k>1 k>1

Proof of Lemma[2 The first part of the proposition is well known (see [19], Theorem 2).
In fact, (I4) is a sufficient condition for F' to be equal to M, + (I — Uy)Gs with M; in
LP(Q, M, u) & LP(Q, TeM, u) and Gy € LP(Q, T, M, 1) for any s in (d). Moreover, M, and
G are given by

M,=> E(UfF| M) -E(UFF | T,M) and G, =Y E(UF|TM).

k>0 k>0

Let r be a positive integer and let s and [ be fixed in (d). We have

IEQML | TTM)I, <2) B (F [ TETT M), < 20 [[E(F [ TTM)|,+2 ) [E(F [ TEM)|,

k>0 k>r

and consequently

k
YorEIE M | TTM), <2 rTHIEE | TTM)IL, +2) ) R E(F [ TEM) |,

r>1 r>1 k>2 r=1
<2) rHEF [ TTM)|, +2) kT E(F [ TIM)], < oo
r>1 k>2

Similarly, we have also 3, r*7?[[E (G, | Ty M)||,, < oo. The proof of Lemmalis complete.

Proof of Theorem [l For simplicity, we consider only the case d = 2 and the case d = 3. We
start with d = 2. Since f is M-measurable and > ;7 k||E (f | T¥M) Hp < 00, there exist

two functions my and gy (see [19], Theorem 2) such that
f=ma+ (I —Us)gs, (16)

where my € LP(Q, M, u) SLP(Q, ToM, 1) and go € LP(Q, To M, 11). We lay emphasis on that
a careful reading of the proof of Theorem 2 in [19] ensure that g is To M-measurable when f
is M-measurable. So, by Lemma [2, we have »_ _, [|E (mq | TYM)]|, < co. Applying again
Theorem 2 in [19], we obtain

meo :m1+(I—U1)g1, (17)
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where m; € LP(Q, M, u) © LP(Q, T M, p) and g1 € LP(Q, T1 M, ). Consequently,
f=mi+ I =U)g+ [ —Us)gs. (18)
Put m :=my—E (my | TeM) so that E (m | T,b,M) = 0. Keeping in mind that E (m; | hM) =
0 and that (T7"M);cze is a commuting filtration, we derive E (E (m; | ToM) | TIM) =
E (my | TyTyM) = 0 and consequently E (m | Ty M) = 0. That is, (Um);czz is an OMD
random field. Using (I7)) and E (msy | To M) = 0, we derive
E(m1 | TQM) =-FK (91 | TQM) + UlE (91 | TlTQM) .

Since g; is Ty M-measurable and (T~'M );cza is a commuting filtration, we have E (¢, | T1ToM) =
E (g1 | Tob M) and consequently we obtain

Combining (I8) and ([I9), we get
f=m+ T —-U)[g1—E(g | LM)]+ (I —Us)g2 (20)

Now, it suffices to find a decomposition for g with respect to 77. In fact, by Lemma 2 we
have > | [[E (g2 | TTM)||,, < oo. So, we can write (see [19], Theorem 2),

go =m1 + (I —U1)gy, (21)

where m; € LP(Q, M, ) ©LP(Q, TyM, ) and g, € LP(Q, Ty M, ). That is, (Ukm))rez is a
MD sequence. Combining (20) and (21I), we derive

f=m+I=U)[g—E(g | T2M)] + (I = Us)my + (I = Uz)(I — U1)g,.
The proof of Theorem [l is complete for d = 2.

In order to convince the reader, we consider now the case d = 3. Applying again Theo-
rem 2 in [19], we decompose f in the following way:

f=ms+ (I —"Us)gs (22)

where ms € LP(Q, M, pu) © LP(Q, TsM, 1) and g3 € LP(Q, T3 M, i1). By Lemma 2 we have

> ko1 k||E (ms | TEM) ‘p < 00. Since mg is M-measurable, we obtain

ms3 = 1Mo + (I - Ug)gg (23)

where my € LP(Q, M, ) © LP(Q, ToM, 1) and go € LP(Q, ToM, i1). By Lemma 2 we have
also D -, |E (ms | TEM) Hp < 00. Since my is M-measurable, we have also

m2:m1+([—U1)g1 (24)
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where my € LP(Q, M, u) & LP(Q,TIM, u) and ¢g; € LP(Q, T3 M, ). Combining (22)) ,(23)
and (24)), we obtain

f=mi+ U =U)g+ I —Us)ga+ (I —Us)gs. (25)
Now, we define
m:=my —E(my | TeM) —E(my | TsM) + E (my | T, T3M). (26)
Since E (my | ThM) = 0 and (T7°M);czs is a commuting filtration, m satisfies
E(m|ThaM)=E (m | ToM) =E (m | T3M) = 0.
So, (U'm);czs is an OMD random field. Moreover, using (24]),
E(my | ToeM) =E (me — (I = Uy)gr | ToM) = —(I — Uh)E (g1 | ThTeM) .

Since again g; is T)M-measurable and (7'M );czs is a commuting filtration, we have
E (g1 | ThiToM) = E (g1 | To M) and consequently,

Similarly,
E(my | M) = —(I = U)E (g1 | T3M) — (I — Uy)E (g2 | T3M) (28)
and

Combining ([25)), ([26), (27), [28) and (29), we obtain

f=m+{I-U)g —E(g | ToM)—E (g1 | T3M) +E (g1 | ToT3M))]
+ (I = Us)[g2 —E (g2 | Ts3M)] 4+ (I — Us)gs.

By (22) and Lemmal, we have ), | k HE (95 | TFM) Hp < oo. Since g3 is T3 M-measurable,
we derive from Theorem 2 in [I9] that

g3 =1 + (I —Uy)g, (30)

where Ty € LP(Q, T3 M, ) © LP(Q, T1T3M, 1) and g, € LP(Q, T1T3M, p1). By Lemma [2, we
have >, -, HE (ml | TQk./\/l) Hp < oo and consequently

My =M + (I — Us)g, (31)
where my € LP(Q, T3 M, p) © LP(Q, TyT3M, 1) and g, € LP(2, T5T3M, ). Denoting
m = mg —E (mg | T1T3M) y (32)

10



and keeping in mind that (T7"M);cz4 is a commuting filtration, we have E (m | I M) =
E (m | TobM) = 0. That is (U{il,Q}m)iezz is an OMD random field. Moreover, using (31]), we
have

E (mg ‘ TngM) = E(ml - ([ - U2)§2 ‘ T1T3M> - —([ - U2)E <§2 ‘ T1T2T3M> .

Since g, is TyT3M-measurable and (T7'M);cza is a commuting filtration, we have also
E (g, | TiTyT3M) = E (g, | T1 M) and consequently

E(my | T'TaM) = —(I = U2)E (g, | ThM) . (33)
Combining (30), (310, (32) and (33), we obtain
gs =m+ (I = U1)g, + (I = U2)[g, — E (g, | TIM)].

As before, since g, is T1T3 M-measurable and } |E (g, | T¥M) Hp < oo (by Lemma [2),
we have

g1 =ms+ (I — Us)g,

where Ty € LP(Q, Y T3 M, p) & LP(Q, TV Ty Ts M, 1) and g, € LP(Q, Ty TyT3M, i1). In partic-
ular, (U¥my)rez is a MD sequence. Consequently,

=m+ [ =U)lg —E (g1 | M) —E (g1 | M) +E (g1 | IT3M)]
+ (I = Us)[g2 —E (g2 | TsM))]
+ (I =Us)m+ (I =Us)(I — Uz)[g5 — E (g, | TiM)]
+ (I = Us)(I = Ur)mg + (I = Us)(I = Up)(I — Us)gy.

Since g, is TpM-measurable and ), _, HE (92 | TEM) Hp < 00 (by Lemma [2]), we have
g =1 + (I = U1)gy (34)
where M € LP(Q, ToM, u) © LP(Q, ThToM, u) and g, € LP(Q, T1To M, 11). Denoting
m:=1m —E (m | TsM) (35)

and applying Lemma 2, we have E (m | TiyM) = E (m | TsM) = 0. So, (Uﬁ’g}ﬁ)ieZ? is an
OMD random field. Moreover, using (34)), we derive

E (m, | T3M) =E (g2 | TsM) — (I — Uy)E (g, | TiT3M) . (36)

Since g, is TyM-measurable and (T °M);czs is a commuting filtration, we know that

E (7, | T'T3M) =E (g, | T3M). Combining (34), (BH) and (36), we obtain
g2 —E (g2 | TsM) =m+ (I = U1)[g, — E (g, | TsM)].

11



Finally,

f=m+{I-U)g —E(g | ToM)—E(g1 | T3M) +E (g1 | TaT3M))]
+ (I — U2)ﬁ + (I = Us)(I —U)[g, —E (g, | T-M)]
+{ = Usym+ (I = Us)(I = U2)[g, — E (g, | THM)]
+ (I = Us)(I = Un)my + (I = Us)(I = Ur)({ — Us)gs.

The proof of Theorem [ is complete for d = 3. The proof of Theorem [ for d > 4 can be
done in the same way. It is left to the reader.

Proof of Proposition [II Let (X;)jcze be an OMD random field with respect to a com-
muting filtration (F;);cze. Again, for simplicity, we consider only the case d = 2. Let
n = (n1,ny) = 0 be fixed in Z? and consider (Y;);ez defined for any i in Z by Y; = 3772 X,
One can notice that (Y;);cz is a MD sequence with respect to the filtration (V;ezF j))icz.-
Consequently, by Burkholder’s inequality (see [10], Theorem 2.10), we have

ni no ni 1/2
ZZX” SN/ (Z |m||f;> .
=0 7=0 =0

Moreover, since for any ¢ in Z, (X, ;)jez is a MD sequence with respect to the filtration
(ViezF(ij))jez, we have also

n2

o 1/2
2
IYill, = 1> Xig|| <#vp <Z||Xm‘||p> :
5=0 j=0
P
Consequently, we obtain
ny no ny  no 1/2
2
Xij|| < kp ( HXz‘,ij> - (37)
=0 j=0 i=0 j=0

p

In order to prove the optimality of the constant p in (37), arguing as in Wang and Woodroofe
[21] (Example 1, page 12), we consider a sequence (1;);cz of iid real random variables satis-
fying p(ny = 1) = p(ny = —1) = 1/2. Let also (1;)icz be an independent copy of (;)icz and
consider the filtrations (Gg)kez and (Hy)rez defined for any & in Z by G, = o(ns; s < k) and
Hy, = o(n,; s < k). For any (i, j) in Z2, we denote Z; ; = nm;». Then (Z; ;) jyezz is an OMD
random field with respect to the commuting filtration (F; ;)¢ jyezz defined by F;; = G; vV H;
for any (i,7) in Z2. Let C be a positive constant such that for any n = (ny,ns) = 0,

ni N2 ni  no 1/2
ZZZM <C (ZZIIZ”H) < Oy,
=0 j=0 i=0 j=0

p

12



Applying the CLT for iid real random variables, we derive C' > ||N ||12) where N is a standard

normal random variable. Since there exists x > 0 such that ||N Hf) > kp, we derive ([7)). The
proof of Proposition [[]is complete.

Proof of Theorem [2. The convergence of the finite-dimensional laws of the partial sums
process is a direct consequence of the CLT by Wang and Woodroofe ([21], Theorem 5). So,
it suffices to establish the tightness property of the partial sums process. Assume that A is
a VC-class with index V and there exists p > 2(V — 1) such that X, belongs to L?(Q, F, u)
and (@) holds. Then there exists a positive constant K such that for any 0 < ¢ < 1, we have
(see Van der Vaart and Wellner [I8], Theorem 2.6.4)

2(V-1)
N(A p,2) < KV (4e)" (1)

3

where N (A, p,¢) is the smallest number of open balls of radius € with respect to p which
form a covering of A. Since p > 2(V — 1), we have

1
/ (N(A, p,2))} d= < 0. (38)
0
Moreover, using Proposition 2 we derive
[0 28 (A) = n=2S.(B)||, < 5p™?p(A, B) | Xol, (39)

for any positive integer n and any A and B in A. Combining (38)) and ([B9) and applying
Theorem 11.6 in Ledoux and Talagrand [15], we obtain that for each positive € there exists
a positive real §, depending on € and on the value of the entropy integral (B8) but not on n,
such that

E( sup |n¥2S,(A)—n Y25, (B)| | <e. (40)
A,BeA
p(A,B)<é

In particular, for any z > 0, we have

limlimsup o | sup ‘n_d/QSn(A) - n_d/QSn(B)} >x | =0.
=0 pooo A,BeA
p(A,B)<é

Consequently, the partial sum process {n=%2S,(A); A € A},>; is tight in the space C(A)
and the WIP holds. The proof of Theorem [2] is complete.

Proof of Theorem [ Let (Q,F, u,{T*},cze) be a dynamical system (i.e. (Q,F,p) is a
probability space and T% :  — Q is a measure-preserving transformation for any k in Z¢
satisfying 7% o TV = T+ for any 4 and any j in Z9) and let (g;);cz« be a field of iid real ran-
dom variables defined on (2, F, ). Let M C F be the o-algebra generated by the random

13



variables ¢; for i« < 0 and let f : 2 -+ R be M-measurable. We consider the stationary real
random field (f o T%);cza and the partial sum process {Sn(f, t); te|o, 1]d}n>1 defined for

any integer n > 1 and any t in [0, 1]¢ by

= M0t N R)foT (41)

i€(n)?

where ) is the Lebesgue measure on R? and R; =Ji; —1, 4] X... x]ig—1, 4] is the unit cube with
upper corner i = (iy,...,i4) in (n)?. Again, the convergence of the finite-dimensional laws of
the process {n=%25,(f,t); t € [0, 1]‘1}1@1 is a direct consequence of the CLT established by
Wang and Woodroofe (|2I], Theorem 3.2). In order to obtain the tightness property of the
partial sum process, it suffices to establish for any € > 0,

limlimsupp | sup n~¥2[S,(f,s) — Sa(f, 1) >e | =0
020 n—oo s,t€[0,1]¢
|s—t|<d

where |z| = maxye) |zy| for any © = (z1,...,24) in [0,1]%. For simplicity, we are going to
consider only the case d = 2. By Theorem [I we have

where m, my, my and g are square-integrable functions defined on €2 such that (U'm);cz2 is
an OMD random field and (Uymy)rez and (Ufmsy)rez are MD sequences. In the sequel, for
any real x, we denote by [z] the integer part of z. Let n > 1 and t = (t1,¢,) in [0, 1]?. For
any 1 <i < [nt1]+ 1 and any 1 < j < [nto] + 1, we denote A ;(¢£) = A ([0,nt] N R 5)). We
have

[ntﬂ-{-l [ntg}-{-l [nt2]+1 [ntﬂ-{-l
Su((I=U)my,t) = > > Aiy(OUS(I-Uy)m Z Ul Z Xij (1) (Uimy — Ut my)
=1 j=1

Using Abel’s transformation and noting that A\;1 ;(t) = A; ;(¢) for any 1 <1 < [nt;] — 1 and
any 1 < j < [nts] + 1, we obtain that S,((I — U;)my,t) equals

nt2]+1 [ntl}
Z U3 S Apnta)1,5(2) (Ulml - U1[nm+2m1> = (Uima = U mg) (A () = Aiy (1)
i=1
[ntg]—l—l

= Z Ug {)‘[ntl]-l—Lj(t) <U1m1 — Ul[nt1}+2m1> — (Ulml — Ul[ntl}—‘_lml) (A[ntl}-‘rl,j(t) — A[ntﬂ,](t))}
=1

[nta]+1 [nta]+1

:U [ntl +1 Z )\nt1]+1j Ugﬂh U1 I— Ulnt1 Z )‘[nh +1] )‘[ntl}d@)) Ugml'

Jj=1

14



Moreover, since A; ;(t) = A;1(t) for any 1 <14 < [nty] + 1 and any 1 < j < [nts], we derive
[nt2]

Su((I = Up)ma, t) = Uy (I = U™ ) Nty 10 (1) ZUle

+ Ui (1 — U1W1]+1)A[nt1}+1,[nt2}+1(t) U m,

nt2

-U,(I - U[m1 ) ()\[ntl}+1 1(t) — Alnti], 1( Z U2m1

— UL(I = U™ (At 1,nta) 11 (£) — )\[ntl},[nmm( ) U m,

So, we obtain

k
_ J
teS[I(Jl,E)]2 |Sn((I —Up)my,t)| < 4 (Jmax ULlUS |my| + 4 | Jax U, Zl Usmy| . (43)
Let > 0 be fixed. Since m; € L?(Q, F, i), we have
L7k < o2 2 22
w (K%%HU Uy|my| > n:c) < wn*p (my > n’z?) — 0. (44)
In the other part,
k
! j _ l j 2
g (mU 2 Ui > n) e ( 7 mZ U ml) -
(45)

Lemma 3 Let (Z,),>1 be a sequence of uniformly integrable real random variables. For any

s in (d),

n—oo 1<i17"7i5<n

lim sup ( max Ul'...U|Z,| > ns) = 0.
Proof of Lemmal3. Let n be a positive integer. For any s in (d), we denote

pn(S) =1 ( max Uj'...U|Z,| > ns) .

1<iy,...,is<n
Let R be a positive real number. We have

2R n’

2R
pa(s) < — +n'p (\Z | 1z,>Rry > 5) S5 +2ig§E (12e] 12, 5ry) -

Consequently, limsup,,_,. pn(s) < 2sups; E (| Zk| Lqz,5r}) — 0. The proof of
—r 00

Lemma [3 is complete.
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2
Lemma 4 The sequence {(\/1— MAaX] <k<nt2 ZJ U ] ) n = 1} s uniformly integrable.

Proof of Lemmalj Since (Uymi)rez is a MD sequence, using Doob’s inequality, we derive

k n-+2 '
| nax Uima|| < 2| Udma| < svnlimal,.
j=1 2 j=1 2

. 2
So, {(ﬁ MaxX| <k<n42 Zle U§m1> ;n o= 1} is bounded in LY(Q, F,u). Let M be a fixed
positive constant. We have m; = m) +m, where

m/1 =M ]1|m1\<M —E (m1 ﬂ\leM | TQM)

my =m ]1|m1\>M —E (m1 ﬂ|m1|>M ‘ TQM) .

Moreover, if A belongs to F then

k

2
1 o
U. <2 — U d
/A ( Vn 15135122 2m1) " /A (ﬁ 14kt j=1 2m1) g
* 2/A ( vn 1<%13§+2Z Uz m1> ap-

Since (USm))rez and (UFm] )rez are MD sequences, using Schwarz’s inequality, we obtain

<
/A ( NG 1<%13§+QZ Uzml) dp < 2

+ 2

k 2

1(A)

1
— max Ujm1
/N 1<k<n+2 4

4

max E U2m1
/n 1<k<nt2

Keeping in mind that m) is bounded by M and using again Doob’s inequality, there exists
a positive constant kg such that

L 2

1 . ——

/A (ﬁ 1<I?2nx+2 Ug'rm) e < o <M2 P(A)+E (mf ﬂ‘m1|>M)> ’
j=1

Let € > 0 be fixed and let M > 0 such that xoE (m% Il|m1|>M) < 5. One can choose the
measurable set A in F such that koM?\/p(A) < 5 and consequently

su max Ulm <e.
nZI:I)/A< nl<lc<n+2Z 2 1) dp <

16



The proof of Lemma [l is complete.

Combining ([43)), (@4), (45), Lemma [3l and Lemma [4 we obtain

lim sup p ( sup |[Sn((I —Up)my,t)| > xn) = 0. (46)
n—00 te[0,1]2
In a similar way, we derive also
lim sup p < sup |[Sn((I —Us)my,t)| > xn) = 0. (47)
n—00 t€[0,1]2

Now, noting that A; ;(t) = A;1(t) for any 1 < i < [nt;] 4+ 1 and any 1 < j < [nts], we have
Sp((I = Uy)(I — Uz)my, t) equals

[nt1]+1 [nt2]+1

Z Z)\” ) US(I — U) (I — Uy)m

[nt1]+1 [ntg}
= > Uil -h) () (U = Uy + Nt (DU T = Un)m
i=1 j=1
[nt1]+1 [nt1]+1
— [ntz Z )\Z 1 . z+1)m1 + Uz[nt2]+1([ . Ug) Z )\i,[ntg]+1(t)<U12m1 . U12+1m1)-

i=1
Since A; ;(t) = A1;(¢) for any 1 <i < [nt1] and any 1 < j < [nts] + 1, we derive
Su((I = U)(I = Up)my, t) = A (OU(I = USHU(T = U ymy
+ Mptape11 (U (I = US U (T = Uy my
A (U = U) OV = O )m
+ )‘[ntl]+1,[ntg]+1(t)Ug[nt2]+1(I — D)UY — U m
Thus
up, [Su((L = U = o)my, 1) S | max Ut Us|m|
and for any positive x,
i < sup [Sn((I = Up)(I — Us)my, t)| > xn) < kn’p (mi > n2®) ——— 0. (48)

t€[0,1]2 n—oo

Now, it suffices to prove the tightness of the process {15, (m,t);t € [0,1]?},>1. That is, for
any positive x,

limlimsupp | sup |Sn(m,s) — S,(m,t)| >an | =0. (49)
=0 noo 5,t€[0,1]2
|s—t|<d
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Let n be a positive integer and let s = (s1, s9) and ¢t = (¢, t2) be fixed in [0, 1]2. We denote
A, (s,t) = S,(m,s) — Sp(m,t) and for any ¢ and j in (n),

BiJ = )\i,j(s) — Az,](t) = )\ ([0, TLS] N R(z,])) — )\ ([O,?’Lt] N R(l,])) .

Noting that §;; = 0 for any 1 < i < [n(s; At1)] and any 1 < j < [n(s; A t1)], we have
A, (s,t) = Al (s,t) + A (s,t) where

n sl\/tl +1 [n 82/\t2 [n(s1/\t1)]+1 [n(SQ\/tQ ]+1
A(st)y= Y Z 5” D and  Al(s,t) = Z S B, U
1=[n(s1At1)]+1 =[n(s2At2)]+1

Moreover, A, (s,t) = Ap,(s,t) + Ay, (s, 1) + Ay, (s, ) + Ay, (s, 1) where

[n(s1Vt1)]  [n(s2At2)]
ANi(st)= ) Z Biy Um
i=[n(s1At1)]4+2
[n(s2/t2)]
Alzm(sv t) = Z Bin(sivin) 41, U ([n(s1vi)]+1.9)
j=1
[n(s2At2)]
A;n(s t Z 6[” (s1AE1)]+1,5 U( (s AtI+L, ])
7j=1
[n(s1Vt1)]+1
Ail,n(‘S? t) = Z Bi in(s2nts)]+1 U nzn )+ Dy,

i=[n(sl/\t1)}+1

Let awin {—1,+1} such that 8, ; = o if [n(s1A81)]+2 < @ < [n(s1 Vi) and 1 < j < [n(s2Ats)]
So,

[n(s1Vt1)]  [n(s2At2)]

A/Ln(s,t) =a Z Z UG,

i=[n(s1At1)]+2 j=1

and for any positive x,

pl sup (A n(s: )] >nx | < | max E E US| > ne
5,t€[0,1]? 1<p<n -
|7s—t\7<6 k=0 rel0,0] |i=[nkd]+2 j=

=

[n(kd+r)]—[nkd]—1 p

= i | max E g USDm| > na
1<p<n - -
k=0 re0,0] =1 j=1

18



Since [n(kd + r)] — [nkd] — 1 is an integer smaller than [nr], we obtain

i i UGDm| > nz

i=1 j=1

1
w| sup |A1n(s ) >ne | < |1+ <) p| max
s—t|<s 1<4<[nd]

2
1 : z?
= (145) 1‘2%([22[]] )>7

1<g<[nd] i=1 j=1
140
(S0 ms (s (pESvem)
* ’ 151157?5 n\/_z 1j=1

where we used the notation E4(Z) = E (Z 1jz>4) for any A > 0 and any Z in L'(Q, F, p).

. 2

Lemma 5 The family {max 1<p<n (% PRHED D U(W)m> n>1,6> O} is uniformly
1<q<[no] \"

integrable.

Proof of Lemmald The proof follows the same lines as the proof of Lemma [ using Cairoli’s
maximal inequality for orthomartingales (see [12], Theorem 2.3.1) instead of Doob’s inequal-
ity for martingales. The proof of Lemma [ is complete.

So, we obtain

limlimsup p | sup |A1n(s t)] >nx | =0. (50)
00 nosoo s,te[0,1]2
|[s—t|<o

In the other part, since S (s,ve)+1,5 = Bin(sive)+1,1 for any 1 < j < [n(sg Ata)], we have

[n(sg/\tg)]

A;,n(s7 t) = /B[n(slvtl)}-i-l,lUl[n(SI\/tl)]+1 Z Ugm

j=1
and consequently

’
sup |A,, (s, 1) < max UF
oa2 1<k<n+1
st€(0.1] 1<i<n
|s—t|<d

I
ZU§m|.
=1

So,

m) >nz? | . (51)

sup |A, (s, t)] >nz | < max UF [ max —
: s te[opl]2 [Ban(5:0) SH 1<k<n+1 <1<l<n \/_
[s—t|<d
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N2
. k. . . . 1 l yi
Since (Usm)gez is a MD sequence, arguing as in Lemmald], the sequence { <max1<l<n = ijl UQmD }
n=1

is uniformly integrable. Combining (5I) and Lemma [, we derive that for any 6 > 0,

limsuppu [ sup |A,, (s,t)] >nx | =0. (52)
n—00 s,t€[0,1]? 7
|s—t|<d
Similarly, we have also
limsupp | sup |AS, (s, )] >nz | =0 (53)
n—o00 ste01)?
|s—t|<d

for any 6 > 0. Moreover, for any [n(sy Aty)] +1 <@ < [n(s1 V t1)], we have 5 n(sonta))+1 =
Bln(si At1)]+1,[n(santz)]+1 and consequently

[n(s1Vt1)]

n(saoAt 1 i
A4,n<87 t) = ﬁ["(sl/\tl)}+1,[n(82/\t2)]+1 UQ[ ety Z vim
i=[n(sl/\t1)]+l

+ Bpa(siven 1 n(sane))+1 UM EVIFLREADE Dy,

and

/ 1
su A, (s, ) >nx | < max UF | max ——
s s,tE[OI,)l]Q‘ 4’N( ) SH 1<k<ntl 2

|s—t|<d
+ 2n2p (m2 > n2x2)

Arguing as in Lemma [3, the family {(maX1<l<[n5} \/% ’Zi‘:l Ufm

2
);n>L5>0}Eum—
formly integrable since (Ufm)yez is a MD sequence. By Lemma H] we obtain for any § > 0,

I 2 9
; nx

j=1

1
limsupp | max UY | max ——
oo 1<k<n+1 2\ 1<i<[nd) /10

n’z?
4

Consequently, for any 6 > 0,

Moreover, n?u (m? > oes to zero as n goes to infinity since m belongs to L?(Q, F, u).
M g g

limsupp [ sup |A,, (s,t)] >nz | =0. (54)
n—00 5,t€[0,1]? 7
|s—t|<d
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Combining (B0), (52),([B3) and (54]), we obtain

limlimsupp [ sup |A (s,t)] >nz | =0. (55)
020 n—oo 5,t€[0,1]?
|[s—t|<o

Similarly, one can check that

limlimsupp [ sup |A (s,t)] >nz | =0. (56)
020 noo 5,t€[0,1]2
|s—t|<o

Finally, keeping in mind A, (s,t) = A (s,t) + A, (s,t) and combining (55) and (5G), we
obtain ([@9)). The proof of Theorem B is complete.

Proof of Proposition[3 We shall use Rosenthal’s inequality ([10], Theorem 2.12). Let p > 2
be fixed. There exists a constant C' depending only on p such that if (Y});>1 is a sequence
of independent zero-mean random variables and n a positive integer then

n p/2 n n p n p/2 n

1 1

5<§ E[Yf]) +5§ BV <E|>Y; <C<§ E[Yf]) +C Y E[y;lP. (57)
Jj=1 Jj=1 Jj=1 Jj=1

j=1
Keeping in mind that Ay, = {i = (i1,..,4q) € Z%; iy > k} for any k > 1 and any s in (d),
we have E (Xo | Fis) = Doicp, . @i€—i- Since (€;)jeze is an iid real random field with &¢ in
LP(Q, F, ), we apply (57) and the series Y-, k*'||[E[Xq | Fis]l|, is convergent if and only
if

1/2 1/p

SR DY el A+ DD Jail < 0.

E>1 €Ak, €Ak

The result follows from the fact that Y, , |al? < (X, |ci|2)p/2 for any sequence (c¢;);ez of
real numbers. The proof of Proposition [3 is complete.

Proof of Theorem [f} We shall use Theorem 1 in [13] which states that if a sequence of
random processes {Y,(t);t € [0,1]%},>1 whose finite dimensional distributions are weakly
convergent and for some constants «, 5 and K such that

pe(0,1] and «af > e

log, (11%)

and
K Q’ﬁ
pAlYa(t) = Ya(s)l = e} < Zlls ] (58)
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for any s and ¢ in [0,1]%, any ¢ > 0 and any positive integer n then (Y,()),>1 converges
weakly to some process in H., ([0, 1]¢) where 0 < v < 8 — m/a. Since the finite-dimensional
laws of the process {n~%2S,(t);t € [0,19},>1 are weakly convergent (cf. Theorem ), it
suffices to convert the moment inequality given by Proposition 2 into an inequality involving
{18 (t) = Sp(s)| = n??e} in order to check that condition (B8] is satisfied with o = p,
B = 1/2 and Y, (t) = n=%28,(t). We shall do the proof for d = 2. Let s = (s1,s3) and
t = (t1,t2) be fixed in [0,1]? and n be a positive integer. Without loss of generality, we
assume that s; > ¢; and sy < ¢y (similar arguments can be used to threat the general case).
Let 8] = ky/n and t} = (I; + 1)/n where (ky,[;) is the unique element of (n)? such that
ki/mn<sy <(ki+1)/nand l;/n <t; < (1 +1)/n. In other words, keeping in mind that [.]
denotes the integer part function, we have s| = [ns;|/n and t| = ([nt1] + 1)/n and similarly,
we define s, = ([nsg] + 1)/n and t;, = [nty]/n. With these notations, we have

5n(t) = Su(s)] = [Sn(t, t2) — Suls1, s2))
< |Su(tis t2) = Sulty, 1) + [Su(ty, 1) — Saltr, £3))]
+ [Sn(t1, t5) — Sn(sh, $3)| + [Sa(s1, 85) — Su(sl, s2)]
+1S,(s], 52) — Sn(s1, $2)|-

Since
[nt1]

1S (t1,t2) — Sn(te,t5)] = (t2 — t5) ZXi,[ntg] + (17 — t1) Xinta]+1,[nta]

i=1
and ty — t, < 1/n, we have

E ISn(tla tz) — Sn(th t/2)|p < K,(tg — té)pnp/2E|X070|p < /{(tQ — t;)p/2E|X070|p. (59)

Similarly,
E|S,(t1,th) — Sultr, t9) " < K(t) — 1) *E|Xool, (60)
E [Su(s1, 85) — Su(s1, 52)[" < k(s — 52 E| Xo,l, (61)
E|[S,(s1, 52) = Sa(s1,89)[" < w(s1 — 51)"°E[ Xo ol (62)
Moreover, from Proposition 2], for any positive n and any 7 and j in (n)?, we have
1 . 1 . P . p/2
E _Sn (l) - _Sn (i) < K'E|XO,O|p - i (63)
n n n n n

Combining (59), (60), ©I), (62) and (63) and using the elementary convexity inequality
(a1 +as +as +ag + as)? < 5P (al +ab + af + a}] + ab)for any non-negative aj, as, as, aq and
as, we derive that

E|Sa(t) = Su(s)” < klls — ¢,

Finaly, using Markov’s inequality, we obtain (58]). The proof of Theorem []is complete.
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