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NULL CONTROLLABILITY OF ONE-DIMENSIONAL PARABOLIC

EQUATIONS BY THE FLATNESS APPROACH

PHILIPPE MARTIN, LIONEL ROSIER, AND PIERRE ROUCHON

Abstract. We consider linear one-dimensional parabolic equations with space dependent coef-
ficients that are only measurable and that may be degenerate or singular. Considering general-
ized Robin-Neumann boundary conditions at both extremities, we prove the null controllability
with one boundary control by following the flatness approach, which provides explicitly the con-
trol and the associated trajectory as series. Both the control and the trajectory have a Gevrey
regularity in time related to the Lp class of the coefficient in front of ut. The approach applies
in particular to the (possibly degenerate or singular) heat equation (a(x)ux)x − ut = 0 with
a(x) > 0 for a.e. x ∈ (0, 1) and a + 1/a ∈ L1(0, 1), or to the heat equation with inverse square
potential uxx + (µ/|x|2)u− ut = 0 with µ ≥ 1/4.

1. Introduction

The null controllability of parabolic equations has been extensively investigated since several
decades. After the pioneering work in [15, 23, 30], mainly concerned with the one-dimensional
case, there has been significant progress in the general N-dimensional case [18, 22, 29] by using
Carleman estimates. The more recent developments of the theory were concerned with discon-
tinuous coefficients [2, 4, 16, 28], degenerate coefficients [1, 3, 7, 8, 9, 10, 11, 17], or singular
coefficients [12, 14, 38].

In [2], the authors derived the null controllability of a linear one-dimensional parabolic equa-
tion with (essentially bounded) measurable coefficients. The method of proof combined the
Lebeau-Robbiano approach [29] with some complex analytic arguments.

Here, we are concerned with the null controllability of the system

(a(x)ux)x + b(x)ux + c(x)u− ρ(x)ut = 0, x ∈ (0, 1), t ∈ (0, T ), (1.1)

α0u(0, t) + β0(aux)(0, t) = 0, t ∈ (0, T ), (1.2)

α1u(1, t) + β1(aux)(1, t) = h(t), t ∈ (0, T ), (1.3)

u(x, 0) = u0(x), x ∈ (0, 1), (1.4)

where (α0, β0), (α1, β1) ∈ R
2\{(0, 0)} are given, u0 ∈ L2(0, 1) is the initial state and h ∈ L2(0, T )

is the control input.

Key words and phrases. degenerate parabolic equation; singular coefficient; null controllability, Gevrey func-
tions; flatness.
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The given functions a, b, c, ρ will be assumed to fulfill the following conditions

a(x) > 0 and ρ(x) > 0 for a.e. x ∈ (0, 1), (1.5)

(
1

a
,
b

a
, c, ρ) ∈ [L1(0, 1)]4, (1.6)

∃K ≥ 0,
c(x)

ρ(x)
≤ K for a.e. x ∈ (0, 1), (1.7)

∃p ∈ (1,∞], a
1− 1

p ρ ∈ Lp(0, 1). (1.8)

The assumptions (1.5)-(1.8) are clearly less restrictive than the assumptions from [2]:

a, b, c, ρ ∈ L∞(0, 1) and a(x) > ε, ρ(x) > ε > 0 for a.e. x ∈ (0, 1) (1.9)

for some ε > 0.
Let us introduce some notations. Let B be a Banach space with norm ‖ · ‖B . For any t1 < t2

and s ≥ 0, we denote by Gs([t1, t2], B) the class of (Gevrey) functions u ∈ C∞([t1, t2], B) for
which there exist positive constants M,R such that

‖u(p)(t)‖B ≤ M
p!s

Rp
∀t ∈ [t1, t2], ∀p ≥ 0. (1.10)

When (B, ‖ · ‖B) = (R, | · |), Gs([t1, t2], B) is merely denoted Gs([t1, t2]). Let

L1
ρ := {u : (0, 1) → R; ||u||L1

ρ
:=

∫ 1

0
|u(x)|ρ(x)dx < ∞}.

Note that L2(0, 1) ⊂ L1
ρ if ρ ∈ L2(0, 1). The main result in this paper is the following

Theorem 1.1. Let the functions a, b, c, ρ : (0, 1) → R satisfy (1.5)-(1.8) for some numbers
K ≥ 0, p ∈ (1,∞]. Let (α0, β0), (α1, β1) ∈ R

2 \ {(0, 0)} and T > 0. Pick any u0 ∈ L1
ρ

and any s ∈ (1, 2 − 1/p). Then there exists a function h ∈ Gs([0, T ]), that may be given
explicitly as a series, such that the solution u of (1.1)-(1.4) satisfies u(., T ) = 0. Moreover
u ∈ Gs([ε, T ],W 1,1(0, 1)) and aux ∈ Gs([ε, T ], C0([0, 1])) for all ε ∈ (0, T ).

Clearly, Theorem 1.1 can be applied to parabolic equations with discontinuous coefficients
that may be degenerate or singular at a point (or more generally at a sequence of points). The
proof of it is not based on the classical duality approach, in the sense that it does not rely on the
proof of some observability inequality for the adjoint equation. It follows the flatness approach
developed in [25, 26, 27, 31, 32, 33, 35]. This direct approach gives explicitly both the control
and the trajectory as series, which leads to efficient numerical schemes by taking partial sums
in the series [33, 34]. Let us describe its main steps. In the first step, following [2], we show that
after a series of changes of dependent/independent variables, system (1.1)-(1.4) can be put into
the canonical form

uxx − ρ(x)ut = 0, x ∈ (0, 1), t ∈ (0, T ), (1.11)

α0u(0, t) + β0ux(0, t) = 0, t ∈ (0, T ), (1.12)

α1u(1, t) + β1ux(1, t) = h(t), t ∈ (0, T ), (1.13)

u(x, 0) = u0(x), x ∈ (0, 1), (1.14)
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where ρ(x) > 0 a.e. in (0, 1) and ρ ∈ Lp(0, 1) with p ∈ (1,∞]. In the second step, following
[31, 33], we seek u in the form

u(x, t) =
∑

n≥0

e−λnten(x), x ∈ (0, 1), t ∈ [0, τ ], (1.15)

u(x, t) =
∑

i≥0

y(i)(t)gi(x), x ∈ (0, 1), t ∈ [τ, T ], (1.16)

where τ ∈ (0, T ) is any intermediate time; en : (0, 1) → R (resp. λn ∈ R) denotes the nth

eigenfunction (resp. eigenvalue) associated with (1.11)-(1.13) and satisfying [25, 26]

−e′′n = λn ρ en, x ∈ (0, 1) (1.17)

α0en(0) + β0e
′
n(0) = 0, (1.18)

α1en(1) + β1e
′
n(1) = 0, (1.19)

while gi : (0, 1) → R is defined inductively as the solution to the Cauchy problem

g′′0 = 0, x ∈ (0, 1) (1.20)

α0g0(0) + β0g
′
0(0) = 0, (1.21)

β0g0(0)− α0g
′
0(0) = 1 (1.22)

for i = 0, and to the Cauchy problem

g′′i = ρ gi−1, x ∈ (0, 1) (1.23)

gi(0) = 0, (1.24)

g′i(0) = 0 (1.25)

for i ≥ 1. Expanding u on generating functions as in (1.16) rather than on powers of x as
in [27, 31] was introduced in [26] and studied in [25].

The fact that the generating function gi is defined as the solution of a Cauchy problem, rather
than the solution of a boundary-value problem, is crucial in the analysis developed here. First,
it allows to prove that every initial state in the space L1

ρ (and not only states in some restricted
class of Gevrey functions) can be driven to 0 in time T . Secondly, from (1.23)-(1.25), we see by
an easy induction on i that for ρ ∈ L∞(0, 1), the function gi is uniformly bounded by C/(2i)!,
and hence the series in (1.16) is indeed convergent when y ∈ Gs([τ, T ]) with 1 < s < 2.

The corresponding control function h is given explicitly as

h(t) =

{

0 if 0 ≤ t ≤ τ,
∑

i≥0 y
(i)(t)(α1gi(1) + β1g

′
i(1)) if τ < t ≤ T.

It is easy to see that the function u(x, t) defined in (1.16) satisfies (formally) (1.11), and also
the condition u(x, T ) = 0 if y(i)(T ) = 0 for all i ∈ N, so that the null controllability can be
established for some initial states. The main issue is then to extend it to every initial state
u0 ∈ L1

ρ. Following [31, 32, 33], we first use the strong smoothing effect of the heat equation
to smooth out the state function in the time interval (0, τ). Next, to ensure that the two
expressions of u given in (1.15)-(1.16) coincide at t = τ , we have to relate the eigenfunctions en
to the generating functions gi.
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It will be shown that any eigenfunction en can be expanded in terms of the generating functions
gi as

en(x) = ζn
∑

i≥0

(−λn)
igi(x) (1.26)

with ζn ∈ R. Note that, for ρ ≡ 1 and (α0, β0, α1, β1) = (0, 1, 0, 1), λn = (nπ)2 for all n ≥ 0,

e0(x) = 1 and en(x) =
√
2 cos(nπx) for n ≥ 0 while gi(x) = x2i/(2i)!, so that (1.26) for n ≥ 1 is

nothing but the classical Taylor expansion of cos(nπx) around x = 0:

cos(nπx) =
∑

i≥0

(−1)i
(nπx)2i

(2i)!
· (1.27)

Thus (1.26) can be seen as a natural extension of (1.27), in which the generating functions gi,
a priori not smoother than W 2,p(0, 1), replace the functions x2i/(2i)!.

The condition (1.8) is used to prove the estimate

|gi(x)| ≤
C

R2i(i!)2−
1

p

needed to ensure the convergence of the series in (1.16) when y ∈ Gs([τ, T ]) with 1 < s < 2−1/p.
Theorem 1.1 applies in particular to any system

(a(x)ux)x − ut = 0, x ∈ (0, 1), t ∈ (0, T ), (1.28)

α0u(0, t) + β0(aux)(0, t) = 0, t ∈ (0, T ), (1.29)

α1u(1, t) + β1(aux)(1, t) = h(t), t ∈ (0, T ), (1.30)

u(x, 0) = u0(x), x ∈ (0, 1), (1.31)

where a(x) > 0 for a.e. x ∈ (0, 1) and a+1/a ∈ L1(0, 1). (Pick p = 2 in (1.8).) This includes the
case where a is measurable, positive and essentially bounded together with its inverse (but not
necessarily piecewise continuous), and the case where a(x) = xr with −1 < r < 1. (Actually any
r ≤ −1 is also admissible, by picking p > 1 sufficiently close to 1 in (1.8).) Note that our result
applies as well to a(x) = (1 − x)r with 0 < r < 1, yielding a positive null controllability result
when the control is applied at the point (x = 1) where the diffusion coefficient degenerates (see
[10, Section 2.7]). Note also that the coefficient a(x) is allowed to be degenerate/singular at a
sequence of points: consider e.g. a(x) := | sin(x−1)|r with −1 < r < 1. Then a+ 1/a ∈ L1(0, 1).

The null controllability of (1.28)-(1.31) for a(x) = xr with 0 < r < 2 was established (in
appropriate spaces) in [10]. The situation when 1/a 6∈ L1(0, 1) (e.g. a(x) = xr with 1 ≤ r < 2)
is beyond these notes, and it will be considered elsewhere.

A null controllability result with an internal control can be deduced from (1.1). Its proof is
given in appendix, for the sake of completeness.
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Corollary 1.2. Assume given an open set ω = (l1, l2) with 0 < l1 < l2 < 1, and let us consider
the following control system

(a(x)ux)x + b(x)ux + c(x)u− ρ(x)ut = χωf(x, t), x ∈ (0, 1), t ∈ (0, T ), (1.32)

α0u(0, t) + β0(aux)(0, t) = 0, t ∈ (0, T ), (1.33)

α1u(1, t) + β1(aux)(1, t) = 0, t ∈ (0, T ), (1.34)

u(x, 0) = u0(x), x ∈ (0, 1), (1.35)

where u0 ∈ L1
ρ is any given initial data, and a, b, c, ρ, p, K, s, (α0, β0) and (α1, β1) are as in

Theorem 1.1. Then one can find a control input f ∈ L2(0, T, L2
a(ω)) such that the solution u of

(1.32)-(1.35) satisfies u(x, T ) = 0 for all x ∈ (0, 1).

Another important family of heat equations with variable coefficients is those with inverse
square potential localized at the boundary, namely

uxx +
µ

x2
u− ut = 0, x ∈ (0, 1), t ∈ (0, T ), (1.36)

u(0, t) = 0, t ∈ (0, T ), (1.37)

α1u(1, t) + β1ux(1, t) = h(t), t ∈ (0, T ), (1.38)

u(x, 0) = u0(x), x ∈ (0, 1), (1.39)

where µ ∈ R is a given number. Note that Theorem 1.1 cannot be applied to (1.36)-(1.39), for
c(x) = µx−2 is not integrable on (0, 1). It was proved in [12] that (1.36)-(1.39) is null controllable
in L2(0, 1) when µ ≤ 1/4 by combining Carleman inequalities to Hardy inequalities. We shall
show in this paper that this result can be retrieved by the flatness approach as well.

Theorem 1.3. Let µ ∈ (0, 1/4], (α1, β1) ∈ R
2 \ {(0, 0)}, T > 0, and τ ∈ (0, T ). Pick any

u0 ∈ L2(0, 1) and any s ∈ (1, 2). Then there exists a function h ∈ Gs([0, T ]) with h(t) = 0
for 0 ≤ t ≤ τ and such that the solution u of (1.36)-(1.39) satisfies u(T, .) = 0. Moreover,
u ∈ Gs([ε, T ],W 1,1(0, 1)) for all ε ∈ (0, T ). Finally, if 0 ≤ µ < 1/4 and r > (1 +

√
1− 4µ)/2,

then xrux ∈ Gs([ε, T ], C0([0, 1])) for all ε ∈ (0, T ).

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.1. We first
show that a convenient change of variables transforms (1.1)-(1.4) into (1.11)-(1.14) (Proposition
2.1). Next, we show that the flatness approach can be applied to (1.11)-(1.14) to yield a null
controllability result (Theorem 2.9). Performing the inverse change of variables, we complete
the proof of Theorem 1.1. Section 3 contains the proof of Theorem 1.3, which is obtained as a
consequence of Theorem 2.9 after a convenient change of variables, and some examples.

2. Proof of Theorem 1.1

2.1. Reduction to the canonical form (1.11)-(1.14). Let a, b, c, ρ, and p be as in (1.5)-(1.8).
Set

B(x) :=

∫ x

0

b(s)

a(s)
ds, (2.1)

ã(x) := a(x)eB(x) (2.2)

c̃(x) := (Kρ(x)− c(x))eB(x). (2.3)
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Then B ∈ W 1,1(0, 1), c̃ ∈ L1(0, 1), and

ã(x) > 0 and c̃(x) ≥ 0 for a.e. x ∈ (0, 1).

We introduce the solution v to the elliptic boundary value problem

−(ãvx)x + c̃v = 0, x ∈ (0, 1), (2.4)

v(0) = v(1) = 1, (2.5)

and set

u1(x, t) := e−Ktu(x, t), (2.6)

u2(x, t) :=
u1(x, t)

v(x)
· (2.7)

Finally, let

L :=

∫ 1

0
(a(s)v2(s)eB(s))−1ds, y(x) :=

1

L

∫ x

0
(a(s)v2(s)eB(s))−1ds (2.8)

and
û(y, t) := u2(x, t), ρ̂(y) := L2a(x)v4(x)e2B(x)ρ(x) (2.9)

for 0 < t < T , y = y(x) with x ∈ [0, 1]. Then the following result holds.

Proposition 2.1. (i) v ∈ W 1,1(0, 1) and 0 < v(x) ≤ 1 ∀x ∈ [0, 1];
(ii) y : [0, 1] → [0, 1] is an increasing bijection with y, y−1 ∈ W 1,1(0, 1);
(iii) ρ̂(y) > 0 for a.e. y ∈ (0, 1), and ρ̂ ∈ Lp(0, 1);
(iv) û solves the system

ûyy − ρ̂ût = 0, y ∈ (0, 1), t ∈ (0, T ), (2.10)

α̂0û(0, t) + β̂0ûy(0, t) = 0, t ∈ (0, T ), (2.11)

α̂1û(1, t) + β̂1ûy(1, t) = ĥ(t) := e−Kth(t), t ∈ (0, T ), (2.12)

û(y(x), 0) =
u0(x)

v(x)
, x ∈ (0, 1), (2.13)

for some (α̂0, β̂0), (α̂1, β̂1) ∈ R
2 \ {(0, 0)}.

Proof. (i) Let l =
∫ 1
0 ds/ã(s) and z(x) = l−1

∫ x

0 ds/ã(s). Then z : [0, 1] → [0, 1] is a strictly

increasing continuous map (for z(x2) − z(x1) = l−1
∫ x2

x1
ds/ã(s) > 0 for x1 < x2). It is a

bijection which is absolutely continuous (i.e. z ∈ W 1,1(0, 1)), for 1/ã ∈ L1(0, 1). Moreover,
z′(x) = 1/(lã(x)) for a.e. x ∈ (0, 1). It follows from (1.5) and (1.8) that a(x) < ∞ and
ã(x) < ∞ for a.e. x ∈ (0, 1), so that z′(x) > 0 for a.e. x ∈ (0, 1). Then we infer from a theorem
due to M. A. Zareckii (see [6, Ex. 5.8.54 p. 389] or [37]) that z−1 is absolutely continuous as
well (i.e. z−1 ∈ W 1,1(0, 1)). (Note that for z : [0, 1] → [0, 1] a strictly increasing bijection in
W 1,1(0, 1), its inverse z−1 may not belong to W 1,1(0, 1), see [19, Ex. 4.6 p. 287] or [37].) In
particular, z satisfies the condition N (Lusin’s condition)

A ⊂ [0, 1], |A| = 0 ⇒ |z(A)| = 0 (2.14)

(|A| standing for the Lebesgue measure of A), and the same holds true for z−1.
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Introduce the function w : [0, 1] → R defined by

w(z) := v(x(z)) ∀z ∈ [0, 1].

Then dw/dz = lã(x)dv/dx so that, letting ′ = d/dz and γ(z) := (l2ãc̃)(x(z)), (2.4)-(2.5) becomes

−w′′ + γw = 0, z ∈ (0, 1) (2.15)

w(0) = w(1) = 1. (2.16)

Note that γ(z) ≥ 0 for a.e. z ∈ (0, 1) and that γ ∈ L1(0, 1), for
∫ 1

0
γ(z)dz = l

∫ 1

0
c̃(x(z))

dx

dz
dz = l

∫ 1

0
c̃(x)dx < ∞.

In the last equality, we used the change of variable formula (which is licit, because z−1 ∈
W 1,1(0, 1) and it satisfies Lusin’s condition, see [20]). Letting w = u + 1, we define u as the
unique solution in H1

0 (0, 1) of the variational problem
∫ 1

0
[u′ϕ′ + γuϕ]dx = −

∫ 1

0
γϕdx ∀ϕ ∈ H1

0 (0, 1).

Then w ∈ W 2,1(0, 1) ⊂ C1([0, 1]). Let us check that

0 < w(x) ≤ 1 ∀x ∈ [0, 1]. (2.17)

If maxx∈[0,1]w(x) > 1, we can pick x0 ∈ (0, 1) such that

w(x0) = max
x∈[0,1]

w(x) > 1. (2.18)

Then w′(x0) = 0. Let δ > 0 denote the greatest positive number such that x0 + δ ≤ 1 and

w(x) > 1 ∀x ∈ (x0, x0 + δ).

It follows that for x ∈ [x0, x0 + δ]

w′(x) =

∫ x

x0

w′′(s)ds =

∫ x

x0

γ(s)w(s)ds ≥ 0

and hence

w(x) − w(x0) =

∫ x

x0

w′(s)ds ≥ 0.

In particular, w(x0 + δ) ≥ w(x0) > 1, a fact which contradicts the definition of δ. Thus
maxx∈[0,1]w(x) ≤ 1. A similar argument shows that minx∈[0,1]w(x) ≥ 0. If minx∈[0,1]w(x) = 0,
we pick x0 ∈ (0, 1) such that

w(x0) = min
x∈[0,1]

w(x) = 0.

Then w solves the Cauchy problem

w′′(x) = γ(x)w(x) for a.e. x ∈ (0, 1),

w(x0) = w′(x0) = 0

and hence w ≡ 0, which contradicts (2.16). (2.17) is proved.
(ii) y : [0, 1] → [0, 1] is an increasing continuous map (for dy/dx = (Lav2eB)−1 > 0 a.e. in
(0, 1)). Moreover, y ∈ W 1,1(0, 1) (using (1.6) and (i)), and also y−1 ∈ W 1,1(0, 1). (See (i) for
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the proof of a similar result for z.)
(iii) To check that ρ̂ ∈ Lp(0, 1) when 1 < p < ∞, we use (1.8), (2.8)-(2.9) and (i) to get

∫ 1

0
|ρ̂(y)|pdy =

∫ 1

0
[L2a(x)v4(x)e2B(x)ρ(x)]p

dy

dx
dx

= L2p−1

∫ 1

0
ap−1ρpv4p−2e(2p−1)Bdx

< ∞.

The fact that ρ̂ ∈ L∞(0, 1) when (1.8) holds with p = ∞ is obvious. On the other hand, ρ̂(y) > 0
for a.e. y ∈ (0, 1), for

∫ 1

0
χ{ρ̂(y)≤0}(y)dy =

∫ 1

0
χ{(aρ)(x)≤0}(x)

dy

dx
dx = 0.

(iv) We first derive the PDE satisfied by u2.

e−B(av2eBu2,x)x = e−B
(

av2eB(
u1,x
v

− u1
v2

vx)
)

x

= e−B
(

aeB(vu1,x − vxu1)
)

x

= e−B
(

v(aeBu1,x)x − u1(ae
Bvx)x

)

= vρu1,t

= ρv2u2,t (2.19)

(The first equality follows from (2.7), the third from basic algebra, the fourth from (1.1), (2.1)-
(2.4) and (2.6), and the last from (2.7) again.) Since ∂y = (dx/dy)∂x = Lav2eB∂x, (2.19)
combined with (2.9) gives (2.10). (2.13) is obvious. It remains to establish (2.11)-(2.12). We
focus on (2.11), (2.12) being obtained the same way. From the definition of u2 we obtain

aux = eKta(vxu2 + vu2,x) a.e. in (0, 1). (2.20)

Combined with (1.2), this gives

α0u2(0, t) + β0((avx)(0)u2(0, t) + (au2,x)(0, t)) = 0.

On the other hand
ûy = (dx/dy)u2,x = La(x)v2(x)eB(x)u2,x

and hence ûy(0, t) = L(au2,x)(0, t). Then (2.11) follows with

α̂0 = α0 + β0(avx)(0), β̂0 = L−1β0.

�

2.2. Null controllability of the control problem (1.11)-(1.14). Assume given p ∈ (1,∞],
ρ ∈ Lp(0, 1) with ρ(x) > 0 for a.e. x ∈ (0, 1), and (α0, β0), (α1, β1) ∈ R

2 \ {(0, 0)}. Let ′ = d/dx,
and let

L2
ρ :=

{

f : (0, 1) → R; ||f ||2L2
ρ
:=

∫ 1

0
|f(x)|2ρ(x)dx < ∞

}

.

Proposition 2.2. Let p, ρ, α0, β0, α1, and β1 be as above. Then there are a sequence (en)n≥0 in
L2
ρ and a sequence (λn)n≥0 in R such that
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(i) (en)n≥0 is an orthonormal basis in L2
ρ;

(ii) For all n ≥ 0, en ∈ W 2,p(0, 1) and en solves

−e′′n = λnρen in (0, 1), (2.21)

α0en(0) + β0e
′
n(0) = 0, (2.22)

α1en(1) + β1e
′
n(1) = 0. (2.23)

(iii) The sequence (λn)n≥0 is strictly increasing, and for some constant C > 0

λn ≥ Cn for n ≫ 1. (2.24)

Proof. Let us consider the elliptic boundary value problem

−u′′ + λ∗ρu = ρf in (0, 1), (2.25)

α0u(0) + β0u
′(0) = 0, (2.26)

α1u(1) + β1u
′(1) = 0 (2.27)

where λ∗ ≫ 1 will be chosen later on. Introduce the symmetric bilinear form

a(u, v) :=

∫ 1

0
(u′v′ + λ∗ρuv)dx+ ab(u, v)

where

ab(u, v) :=















α1

β1
u(1)v(1) − α0

β0
u(0)v(0) if β1 6= 0 and β0 6= 0,

α1

β1
u(1)v(1) if β1 6= 0 and β0 = 0,

−α0

β0
u(0)v(0) if β1 = 0 and β0 6= 0,

0 if β1 = 0 and β0 = 0.

Let
H := {u ∈ H1(0, 1); u(0) = 0 if β0 = 0, u(1) = 0 if β1 = 0}

be endowed with the H1(0, 1)-norm. Clearly, the form a is continuous on H ×H, for H1(0, 1) ⊂
C0([0, 1]) continuously. We claim that the form a is coercive if λ∗ is large enough. We need the

Lemma 2.3. For any ε > 0, there exists some number Cε > 0 such that

||u||2L∞ ≤ ε||u′||2L2 +Cε||u||2L2
ρ

∀u ∈ H1(0, 1). (2.28)

Proof of Lemma 2.3. If (2.28) is false, then one can find a number ε > 0 and a sequence (un)n≥1

in H1(0, 1) such that

1 = ||un||2L∞ > ε||u′n||2L2 + n||un||2L2
ρ

∀ ≥ 1. (2.29)

Thus ||un||2H1 ≤ 1 + ε−1, and for some subsequence (unk
) and some u ∈ H1(0, 1) we have

unk
→ u weakly in H1(0, 1). (2.30)

Since H1(0, 1) ⊂ C0([0, 1]) ⊂ L2
ρ continuously, the first embedding being also compact, we infer

that unk
→ u in both C0([0, 1]) and L2

ρ. Thus ||u||L∞ = 1 by (2.29). But (2.29) yields also

un → 0 in L2
ρ and hence u = 0, contradicting ||u||L∞ = 1. Lemma 2.3 is proved. �

From (2.28), we infer the existence of some constants C1, C2 > 0 such that

C1||u||2H1 ≤ ||u′||2L2 + ||u||2L2
ρ
≤ C2||u||2H1 ∀u ∈ H1(0, 1). (2.31)
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Next, we have for some C∗ > 0

|ab(u, u)| ≤ C∗||u||2L∞ ≤ C∗(ε||u′||2L2 + Cε||u||2L2
ρ
) ≤ 1

2
(||u′||2L2 + λ∗||u||2L2

ρ
) (2.32)

if we pick 0 < ε < (2C∗)−1 and λ∗ > 2C∗Cε. Then for all u ∈ H1(0, 1) we have

a(u, u) ≥ 1

2
(||u′||2L2 + λ∗||u||2L2

ρ
) ≥ C||u||2H1 ,

with C := min(1, λ∗)C1/2, as desired.

Let f ∈ L2
ρ be given. The linear form L(v) =

∫ 1
0 ρfvdx being continuous on H, it follows

from Lax-Milgram theorem that there exists a unique function u ∈ H such that

a(u, v) = L(v) ∀v ∈ H. (2.33)

Taking any v ∈ C∞
0 (0, 1) in (2.33), we infer that (2.25) holds in the distributional sense. Further-

more u ∈ W 2,1(0, 1). Next, multiplying each term in (2.25) by v ∈ C∞([0, 1]) ∩H, integrating
over (0, 1) and comparing with (2.33), we obtain (2.26)-(2.27).

The operator T : f ∈ L2
ρ → u = T (f) ∈ L2

ρ is continuous, compact, and self-adjoint. It is also
positive definite, for

C||u||2H1 ≤ a(u, u) = (f, u)L2
ρ

and u = 0 ⇐⇒ f = 0.

By the spectral theorem, there are an orthonormal basis (en)n≥0 in L2
ρ and a sequence (µn)n≥0

in (0,+∞) with µn ց 0 such that T (en) = µnen for all n ≥ 0. Thus (2.21)-(2.23) hold with
λn = µ−1

n − λ∗. The eigenfunction en ∈ W 2,p(0, 1) by (2.21) and the fact that ρ ∈ Lp(0, 1) and
en ∈ L∞(0, 1).
(iii) The sequence (λn)n≥0 is known to be nondecreasing. It is (strictly) increasing if each
eigenvalue λn is simple, a fact which is easily established: if e and ẽ are two eigenfunctions
associated with the same eigenvalue λn, then the Wronskian W (x) := e(x)ẽ′(x) − e′(x)ẽ(x)
satisfies W ′(x) = 0 a.e. and W (0) = 0, and hence W ≡ 0 in (0, 1). It follows that e and ẽ are
proportional.

Let us prove (2.24). Consider for any λ ≥ 1 the system

−e′′ = λρe, (2.34)

α0e(0) + β0e
′(0) = 0, (2.35)

α1e(1) + β1e
′(1) = 0. (2.36)

Following [5], we introduce the Prüfer substitution

e′ = r cos θ, (2.37)

e = r sin θ, (2.38)

so that

r2 = e′2 + e2, (2.39)

tan θ =
e

e′
· (2.40)
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Then (r, θ) satisfies

dr

dx
= r(1− λρ) cos θ sin θ, (2.41)

dθ

dx
= cos2 θ + λρ sin2 θ. (2.42)

Conversely, if (r, θ) satisfies (2.41)-(2.42), then one readily sees that (2.34) and (2.37) hold.
The condition (2.35) is expressed in terms of θ as

θ|x=0 = θ0 :=

{

− arctan( β0

α0
) if α0 6= 0,

π
2 if α0 = 0.

(2.43)

Denote by θ(x, λ) the solution of (2.42) and (2.43). (Note that r is not present in (2.42).)
Introduce

θ1 :=

{

− arctan( β1

α1
) if α1 6= 0,

π
2 if α1 = 0.

(2.44)

Then (e, λ) is a pair of eigenfunction/eigenvalue if and only if

θ(1, λ) = θ1 mod π. (2.45)

Since the map (x, θ, λ) → cos2 θ + λρ(x) sin2 θ is integrable in x and of class C1 in (θ, λ), it
follows that the map (x, λ) → θ(x, λ) is well defined and continuous for x ∈ [0, 1] and λ ≥ 1.
On the other hand, since the map λ → cos2 θ + λρ(x) sin2 θ is strictly increasing for a.e. x
(provided that θ 6∈ πZ), it follows from a classical comparison theorem (see e.g. [5]) that the
map λ → θ(1, λ) is strictly increasing.

Let

θ̄(x) := lim
λ→∞

θ(x, λ), x ∈ [0, 1].

We claim that

θ̄(1) = ∞. (2.46)

If (2.46) fails, then we have for all x ∈ [0, 1] and all λ ≥ 1

θ0 ≤ θ(x, λ) ≤ θ(1, λ) ≤ θ̄(1) < ∞,

where we used the fact that the r.h.s. of (2.42) is positive a.e. Integrating in (2.42) over (a, b),
where 0 ≤ a < b ≤ 1, gives then

θ(b, λ)− θ(a, λ) =

∫ b

a

cos2 θ(x, λ)dx+ λ

∫ b

a

ρ(x) sin2 θ(x, λ)dx. (2.47)

An application of the Dominated Convergence Theorem yields
∫ b

a

cos2 θ(x, λ)dx →
∫ b

a

cos2 θ̄(x)dx, (2.48)

∫ b

a

ρ(x) sin2 θ(x, λ)dx →
∫ b

a

ρ(x) sin2 θ̄(x)dx (2.49)

as λ → ∞.
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Letting λ → ∞ in (2.47) and using (2.48)-(2.49), we infer
∫ b

a

ρ(x) sin2 θ̄(x)dx = 0.

The numbers a and b being arbitrary, this shows that θ̄(x) ∈ πZ for a.e. x ∈ (0, 1). The function
θ̄ being nondecreasing and bounded, it is piecewise constant. Choosing a < b such that θ̄ is
constant on [a, b] and letting λ → ∞ in (2.47), we obtain 0 ≥ b− a, which is a contradiction.

Thus (2.46) is established, and we see that for any n ≫ 1 we can find a unique λ̃n ≥ 1 such
that

θ(1, λ̃n) = θ1 + nπ.

Then λn and λ̃n must agree, up to a translation in the indices, i.e. λn = λ̃n−n̄ for some n̄ ∈ Z.
Thus we can write

θ(1, λn) = θ1 + (n− n̄)π.

Integrating in (2.42), we obtain

θ1 + (n− n̄)π − θ0 =

∫ 1

0
(cos2 θ + λnρ sin

2 θ)dx ≤ 1 + λn

∫ 1

0
ρ(x)dx.

Since θ0, θ1 ∈ (−π/2, π/2] and
∫ 1
0 ρ(x)dx > 0, (2.24) follows. �

Remark 2.4. If, in addition, α0β0 ≤ 0 and α1β1 ≥ 0, then using a modified Prüfer system as
in [5, 21] we can actually prove that

λn ≥ Cn2 for n ≫ 1.

We now turn our attention to the generating functions gi (i ≥ 0) defined along (1.20)-(1.25).

Proposition 2.5.

(i) g0(x) = (α2
0 + β2

0)
−1(β0 − α0x)

(ii) There are some constants C,R > 0 such that

||gi||W 2,p(0,1) ≤
C

Ri(i!)2−
1

p

∀i ≥ 0· (2.50)

Proof. (i) is obvious. For (ii), we first notice that gi may be written as

gi(x) =

∫ x

0

(

∫ s

0
ρ(σ)gi−1(σ)dσ

)

ds. (2.51)

Let q ∈ [1,∞) be the conjugate exponent of p, i.e. p−1 + q−1 = 1. We need the following

Lemma 2.6. Let f ∈ L∞(0, 1) and g(x) =
∫ x

0

( ∫ s

0 ρ(σ)f(σ)dσ
)

ds. If

|f(x)| ≤ Cxr for a.e. x ∈ (0, 1) (2.52)

for some constants C, r ≥ 0, then

|g(x)| ≤ C
||ρ||Lp

q
1

q

x
r+ 1

q
+1

(r + 1
q
)
1

q (r + 1
q
+ 1)

∀x ∈ [0, 1]. (2.53)



NULL CONTROLLABILITY OF ONE-DIMENSIONAL PARABOLIC EQUATIONS 13

Proof of Lemma 2.6. From the Hölder inequality and (2.52), we have for all s ∈ (0, 1)

|
∫ s

0
ρ(σ)f(σ)dσ| ≤ ||ρ||Lp(0,s)||f ||Lq(0,s)

≤ C‖ρ||Lp(0,1)

(

srq+1

rq + 1

)
1

q

so that

|g(x)| ≤ C||ρ||Lp(0,1)
x
r+ 1

q
+1

(rq + 1)
1

q (r + 1
q
+ 1)

∀x ∈ [0, 1].

�

Iterated applications of Lemma 2.6 yield

|gi(x)| ≤ ||g0||L∞

(

||ρ||Lp

q
1

q

)i
x
i( 1

q
+1)

∏i
j=1

(

1
q
+ (j − 1)(1 + 1

q
)
) 1

q ∏i
j=1 j(1 +

1
q
)

≤ ||g0||L∞

(

||ρ||Lp

q
1

q

)i
1

(

1
q
(1 + 1

q
)i−1(i− 1)!

)
1

q
i!(1 + 1

q
)i

≤ C

Rii!1+
1

q

if we pick R < ||ρ||−1
Lp q

1

q (1 + 1
q
)1+

1

q and C ≫ 1. Since 1/q = 1− 1/p, we infer that

||gi||L∞ ≤ C

Rii!2−
1

p

which, combined with (1.23), yields (2.50). �

Remark 2.7.

(1) The power of i! in the computations above is essentially sharp, since

sii! ≤
i
∏

j=1

(r + js) ≤ si(i+ 1)!

for 0 ≤ r ≤ s.
(2) When p = 1, the estimate ||gi||L∞(0,1) ≤ C/(Ri i!) is not sufficient to ensure the conver-

gence of the series in (1.16) when f ∈ Gs([0, T ]) with 1 < s < 2.

The fact that we can expand the eigenfunctions in terms of the generating functions is detailed
in the following

Proposition 2.8. There is some sequence (ζn)n≥0 of real numbers such that for all n ≥ 0

en = ζn
∑

i≥0

(−λn)
igi in W 2,p(0, 1). (2.54)
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Furthermore, for some constant C > 0, we have

|ζn| ≤ C(1 + |λn|
3

2 ) ∀n ≥ 0. (2.55)

Proof. From (2.50), we infer that the series in (2.54) is absolutely convergent, hence convergent,
in W 2,p(0, 1). Let ẽ := ζn

∑

i≥0(−λn)
igi, where ζn ∈ R. Then

ẽ′′ = ζn
∑

i≥1

(−λn)
iρgi−1 = −λnρẽ in Lp(0, 1),

where we used (1.20) and (1.23). (1.21) and (1.24)-(1.25) yield

α0ẽ(0) + β0ẽ
′(0) = 0.

On the other hand, using (1.22) and (1.24)-(1.25), we obtain

β0ẽ(0)− α0ẽ
′(0) = ζn

(

β0g0(0)− α0g
′
0(0)

)

= ζn.

Hence, if we pick

ζn := β0en(0) − α0e
′
n(0), (2.56)

we have that E := en − ẽ satisfies

α0E(0) + β0E
′(0) = β0E(0)− α0E

′(0) = 0

and hence E(0) = E′(0) = 0 which, when combined with −E′′ = λnρE, yields E ≡ 0, i.e.
en = ẽ. Thus (2.54) holds with ζn as in (2.56). To estimate ζn, we remind that en satisfies
T (en) = µnen, and hence

µna(en, en) =

∫ 1

0
ρ e2ndx = 1.

Since a(en, en) ≥ C||en||2H1 , we infer that ||en||2H1 ≤ Cµ−1
n , and hence

|en(0)| + |en(1)| ≤ C||en||H1 ≤ C(1 + |λn|
1

2 ).

On the other hand, (2.21) yields

||e′′n||Lp ≤ C|λn| ||ρ||Lp ||en||H1 ≤ C(1 + |λn|
3

2 ).

Thus

|ζn| ≤ C||en||W 2,p ≤ C(1 + |λn|
3

2 ).

�

Since p > 1, for any s ∈ (1, 2− 1
p
) and any 0 < τ < T , one may pick a function ϕ ∈ Gs([0, 2T ])

such that

ϕ(t) =

{

1 if t ≤ τ,
0 if t ≥ T.

We are in a position to prove the null controllability of (1.11)-(1.14). Let u0 ∈ L2
ρ. Since (en)n≥0

is an orthonormal basis in L2
ρ, we can write

u0 =
∑

n≥0

cn en in L2
ρ (2.57)
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with
∑

n≥0 |cn|2 < ∞. Let

y(t) := ϕ(t)
∑

n≥0

cnζne
−λnt for t ∈ [τ, T ] (2.58)

and

u(x, t) =

{ ∑

n≥0 cne
−λnten(x) if 0 ≤ t ≤ τ,

∑

i≥0 y
(i)(t)gi(x) if τ < t ≤ T.

(2.59)

The main result in this section is the following

Theorem 2.9. Let p ∈ (1,∞], ρ ∈ Lp(0, 1) with ρ(x) > 0 for a.e. x ∈ (0, 1), T > 0, τ ∈ (0, T ),
and (α0, β0), (α1, β1) ∈ R

2 \{(0, 0)}. Let u0 ∈ L2
ρ be decomposed as in (2.57), let s ∈ (1, 2−1/p),

and let y be as in (2.58). Then y ∈ Gs([τ, T ]), and the control

h(t) =

{

0 if 0 ≤ t ≤ τ,
∑

i≥0 y
(i)(t)(α1gi(1) + β1g

′
i(1)) if τ < t ≤ T.

(2.60)

is such that the solution u of (1.11)-(1.14) satisfies u(., T ) = 0. Moreover u is given by (2.59),
h ∈ Gs([0, T ]), and u ∈ C([0, T ], L2

ρ) ∩Gs([ε, T ],W 2,p(0, 1)) for all 0 < ε ≤ T .

Proof. Let C+ := {z = t+ ir; t > 0, r ∈ R}. We notice that the map z → ∑

n≥0 cnζne
−λnz is

analytic in C+. Indeed, by (2.24) and (2.55), the series is clearly uniformly convergent on any
compact set in C+. It follows that the map t →

∑

n≥0 cnζne
−λnt is (real) analytic in (0,∞),

hence in G1([τ, T ]) ⊂ Gs([τ, T ]). Thus y ∈ Gs([τ, T ]) by a classical result (see e.g. [36, Theorem
19.7]).

Let ū denote the function defined in the r.h.s. of (2.59). We first prove that ū ∈ G1([ε, τ ],
W 2,p(0, 1)) for all ε ∈ (0, τ). We have for k ∈ N and ε ≤ t ≤ τ ,

||∂k
t (cne

−λnten)||W 2,p = |cn| |λn|ke−λnt||en||W 2,p

≤ C|cn|(1 + |λn|k+
3

2 )e−|λn|ε

≤ C
|cn|
n+ 1

(1 + |λn|k+3)e−|λn|ε

≤ C
|cn|
n+ 1

(1 + ε−k−3(k + 3)!),

where we used (2.24) and xk/k! ≤ ex for x > 0 and k ∈ N. Thus, applying Cauchy-Schwarz
inequality, we obtain for k ∈ N, ε ≤ t ≤ τ and some C, δ > 0

||∂k
t u||W 2,p ≤

∑

n≥0

||∂k
t (cne

−λnten)||W 2,p ≤ C

δk
k!
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which gives that ū ∈ G1([ε, τ ],W 2,p(0, 1)). It is clear that ū ∈ C([0, τ ], L2
ρ). Let us check that

ū(x, τ−) = ū(x, τ+). We have that for all x ∈ [0, 1]

ū(x, τ−) =
∑

n≥0

cne
−λnτen(x)

=
∑

n≥0

cne
−λnτζn

∑

i≥0

(−λn)
igi(x) (2.61)

=
∑

i≥0

(

∑

n≥0

cnζne
−λnτ (−λn)

i
)

gi(x) (2.62)

=
∑

i≥0

y(i)(τ)gi(x) (2.63)

= ū(x, τ+).

For (2.61) we used (2.54). For (2.62), we used Fubini’s theorem for series, which is licit for

∑

i,n≥0

|cnζne−λnτλi
ngi(x)| ≤ C

∑

i,n≥0

|cn|
n+ 1

(1 + |λn|i+3)
e−|λn|τ

Rii!2−
1

p

≤ C
∑

i,n≥0

|cn|
n+ 1

(1 + τ−i−3(i+ 3)!)
1

Rii!
2− 1

p

≤ C(
∑

n≥0

|cn|
n+ 1

)(
∑

i≥0

1 + τ−i−3(i+ 3)!

Rii!2−
1

p

)

< ∞.

Finally for (2.63), we just used the fact that ϕ(τ) = 1 and ϕ(i)(τ) = 0 for i ≥ 1. It remains to
prove that ū ∈ Gs([τ, T ],W 2,p(0, 1)). Since y ∈ Gs([τ, T ]), there are some constants C, ρ > 0

such that |y(i)(t)| ≤ C(i!)s/ρi. It follows that for t ∈ [τ, T ]
∑

i≥0

||∂j
t [y

(i)(t)gi] ||W 2,p =
∑

i≥0

||y(i+j)(t)gi||W 2,p

≤ C
∑

i≥0

(i+ j)!s

ρi+j

1

Rii!2−
1

p

≤ C(
2s

ρ
)j





∑

i≥0

(
2s

ρR
)i

1

i!
2− 1

p
−s



 j!s (2.64)

where we used (i+ j)! ≤ 2i+ji!j!. Note that the series converges in (2.64), since s < 2− 1
p
. Thus

ū ∈ Gs([τ, T ],W 2,p(0, 1)). It is clear that (1.11) is satisfied by ū in the distributional sense in
(0, 1) × (0, τ) and in (0, 1) × (τ, T ). In particular

∂j
t ū(x, τ

+) = (ρ−1∂2
x)

j ū(x, τ+) = (ρ−1∂2
x)

j ū(x, τ−) = ∂j
t ū(x, τ

−),

for the two series in (2.59) coincide at t = τ , hence so do their space derivatives. This shows
that ū ∈ Gs([ε, T ],W 2,p(0, 1)) for all ε ∈ (0, τ), and that (1.11) holds for ū in (0, 1) × (0, T ).
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The function h defined in (2.60) satisfies (1.13) (with u replaced by ū), and hence h ∈
Gs([0, T ]) (for ū ∈ Gs([ε, T ], W 2,p(0, 1)) and W 2,p(0, 1) ⊂ C1([0, 1])). (1.12) and (1.14) are
clearly satisfied by ū, and hence the solution u of (1.11)-(1.14) is ū. Finally u(., T ) = 0, for
y(i)(T ) = 0 for all i ≥ 0. �

2.3. End of the proof of Theorem 1.1. Let a, b, c, ρ,K, p, α0 , β0, α1, β1, T , and τ be as in
the statement of Theorem 1.1. Pick any u0 ∈ L1

ρ and any s ∈ (1, 2 − 1/p). Let u denote the
solution of (1.1)-(1.4) for a given h ∈ Gs([0, T ]). Define v, y, ρ̂, and û(y, t) as in Section 2.1.
Then û solves (2.10)-(2.13) with initial state û0(y(x)) = u0(x)/v(x). It may occur that û0 6∈ L2

ρ̂.

However, û0 ∈ L1
ρ̂, for

∫ 1

0
|û0(y)|ρ̂(y)dy =

∫ 1

0
|û0(y(x))|ρ̂(y(x))|

dy

dx
|dx = L

∫ 1

0
|u0(x)|v(x)eB(x)ρ(x)dx < ∞.

From the proof of Lemma 2.3, we know that the bilinear form a(u, v) is a scalar product in H
whose induced Hilbertian norm is equivalent to the usual H1-norm, so that H can be viewed as
a Hilbert space for this scalar product. Then it is easy to see that

(i) (
√
µnen)n≥0 is an orthonormal basis in H;

(ii) If, for a ∈ R, Ha denotes the completion of Span(en; n ≥ 0) for the norm

||
∑

n≥0

cnen||a :=





∑

n≥0

µ−a
n |cn|2





1

2

,

then H
0 = L2

ρ̂ and H
1 = H;

(iii) Identifying L2
ρ̂ with its dual, we obtain the diagram

H
1 = H ⊂ L2

ρ̂ = (L2
ρ̂)

′ ⊂ H ′ = H
−1.

See e.g. [24, pp. 7-17] for details. Since for any w ∈ H ⊂ L∞(0, 1),
∫ 1

0
|û0(y)w(y)|ρ̂(y)dy ≤ ||w||L∞

∫ 1

0
|û0(y)|ρ̂(y)dy ≤ C||w||H

∫ 1

0
|u0(x)|ρ(x)dx,

we infer that û0 ∈ H ′. Setting cn :=
∫ 1
0 û0(y)en(y)ρ̂(y)dy for n ≥ 0, the series

∑∞
n=0 cne

−λnten
belongs to C([0, T ],H ′)∩C((0, τ ], L2

ρ) and it takes the value û0 at t = 0. The solution û defined

in (2.59) with y as in (2.58) solves (2.10)-(2.13) with the control input ĥ(t) defined in (2.60).
Then the pair

u(x, t) := eKtv(x)û(y(x), t), (2.65)

h(t) := eKtĥ(t) (2.66)

satisfies (1.1)-(1.4) and u(., T ) = 0. Pick any ε ∈ (0, T ). Since v, y ∈ W 1,1(0, 1), û ∈
Gs([ε, T ],W 2,p(0, 1)), and ĥ ∈ Gs([0, T ]), we have that

u ∈ Gs([ε, T ],W 1,1(0, 1)), h ∈ Gs([0, T ]).
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Finally, since by (2.8) and (2.20) we have

ãux = eKt
(

(ãvx)û(y(x), t) + (Lv)−1ûy(y(x), t)
)

and since (Lv)−1, ãvx ∈ W 1,1(0, 1) and û ∈ Gs([ε, T ],W 2,p(0, 1)), it follows that

ãux, aux ∈ Gs([ε, T ], C0([0, 1]))

and that (1.2)-(1.3) are satisfied. The proof of Theorem 1.1 is complete. �

Remark 2.10. Since the map x → y(x) is absolutely continuous and strictly increasing on
[0, 1], and the map y → ûy(y, t) is absolutely continuous on [0, 1] for all t ∈ (0, T ], we infer that
x → ûy(y(x), t) is absolutely continuous on [0, 1] for all t ∈ (0, T ]. (See [6, Ex. 5.8.59 p. 391].)
Thus aux(., t) ∈ W 1,1(0, 1) for all t ∈ (0, T ].

3. Proof of Theorem 1.3

We shall show that the first step in the proof of Theorem 1.1 (see Section 2.1) can be slightly
modified to reduce (1.36)-(1.39) to the canonical form (1.11)-(1.14). Next, the conclusion of
Theorem 1.3 will follow from Theorem 2.9. We distinguish two cases: (i) 0 ≤ µ < 1/4 (subcritical
case) and (ii) µ = 1/4 (critical case).
(i) Assume that 0 ≤ µ < 1/4. We relax (2.4)-(2.5) to the problem

vxx +
µ

x2
v = 0, x ∈ (0, 1), (3.1)

v(x) > 0, x ∈ (0, 1), (3.2)

v−2 ∈ L1(0, 1). (3.3)

The general solution of (3.1) is found to be

v(x) = C1x
r1 + C2x

r2

where C1, C2 ∈ R are arbitrary constants, and r1, r2 denote the roots of the equation r2−r+µ =
0, namely

r1 =
1−√

1− 4µ

2
∈ (0,

1

2
), r2 =

1 +
√
1− 4µ

2
∈ (

1

2
,∞).

Then v(x) := xr1 satisfies (3.1)-(3.3).
From (1.36), we have that ã = a ≡ 1, B ≡ 0. We set u1 := u,

u2(x, t) :=
u(x, t)

v(x)
, L :=

∫ 1

0
v−2(s)ds < ∞, y(x) := L−1

∫ x

0
v−2(s)ds,

and

û(y, t) := u2(x, t), ρ̂(y) := L2v4(x).
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Again, y : [0, 1] → [0, 1] is an increasing bijection with y, y−1 ∈ W 1,1(0, 1), and û satisfies

ûyy − ρ̂(y)ût = 0, y ∈ (0, 1), t ∈ (0, T ), (3.4)

û(0, t) = 0, t ∈ (0, T ), (3.5)

(α1 + β1r1)û(1, t) +
β1
L
ûy(1, t) = h(t), t ∈ (0, T ), (3.6)

û0(y, 0) = û0(y) :=
u0(x)

v(x)
, y ∈ (0, 1)· (3.7)

Note that û0 ∈ L2
ρ̂, for

∫ 1

0
|û0(y)|2ρ̂(y)dy = L

∫ 1

0
|u0(x)|2dx < ∞.

On the other hand ρ̂ ∈ L∞(0, 1). By Theorem 2.9, there is some h ∈ Gs([0, T ]) such that the
solution û of (3.4)-(3.7) satisfies û(., T ) = 0. Furthermore

û ∈ Gs([ε, T ],W 2,∞(0, 1)). (3.8)

The corresponding trajectory u satisfies (1.36)-(1.39) and u(., T ) ≡ 0. Finally, from the expres-
sions

u = vu2 = vû(y(x), t)

ux = vxû(y(x), t) + vûy(y(x), t)
dy

dx
,

(3.8), and the explicit form of v, we readily see that u ∈ Gs([ε, T ],W 1,1(0, 1)) and xrux ∈
Gs([ε, T ], C0([0, 1])) for r > 1− r1 = (1 +

√
1− 4µ)/2 and ε ∈ (0, 1).

(ii) Assume now that µ = 1/4. Assume first that β1 = 0. We notice that the general solution of
(3.1) takes the form

v(x) = C1

√
x lnx+ C2

√
x.

Picking v(x) := −√
x lnx, we see that (3.1)-(3.3) are satisfied. Performing the same change

of variables as in (i) (but with the new expression of v) and applying again Theorem 2.9, we
infer the existence of h ∈ Gs([0, T ]) such that the solution û of (3.4)-(3.7) satisfies û(., T ) =
0. The corresponding trajectory u satisfies (1.36)-(1.39) and u(., T ) = 0. Furthermore, u ∈
Gs([ε, T ],W 1,1(0, 1)) ∩ C∞([ε, 1] × [ε, T ]) (by using classical regularity results). For the general
Robin-Neumann condition at x = 1 it is sufficient to set h(t) := α1u(1, t) + β1ux(1, t) with the
trajectory u constructed above with the Dirichlet control at x = 1. The proof of Theorem 1.3 is
complete. �

As a possible application, we consider the boundary control by the flatness approach of radial
solutions of the heat equation in the ball B(0, 1) ⊂ R

N (2 ≤ N ≤ 3). Using the radial coordinate
r = |x|, we thus consider the system

urr +
N − 1

r
ur − ut = 0, r ∈ (0, 1), t ∈ (0, T ), (3.9)

ur(0, t) = 0, t ∈ (0, T ), (3.10)

α1u(1, t) + β1ur(1, t) = h(t), t ∈ (0, T ) (3.11)

u(r, 0) = u0(r), r ∈ (0, 1). (3.12)
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Note that Theorem 1.1 cannot be applied directly to (3.9)-(3.12), for (1.7) fails. (Note that, in
sharp contrast, the control on a ring-shaped domain {r0 < |x| < r1} with r1 > r0 > 0 is fully
covered by Theorem 1.1, the coefficients in (3.9) being then smooth and bounded.)

We use the following change of variables from [13] which allows to remove the term with the
first order derivative in r in (3.9):

u(r, t) = ũ(r, t) exp(−1

2

∫ r

0

N − 1

s
ds) =

ũ(r, t)

r
N−1

2

· (3.13)

Then (3.9) becomes

ũrr +
(N − 1)(3 −N)

4

ũ

r2
− ũt = 0. (3.14)

This equation has to be supplemented with the boundary/initial conditions

ũ(0, t) = 0, t ∈ (0, T ), (3.15)

(α1 −
N − 1

2
β1)ũ(1, t) + β1ũr(1, t) = h(t), t ∈ (0, T ), (3.16)

ũ(r, 0) = r
N−1

2 u0(r), r ∈ (0, R). (3.17)

For N = 3, (3.14) reduces to the simple heat equation ũrr − ũt = 0 to which Theorem 1.1
can be applied. In particular ũ ∈ Gs([ε, T ],W 2,∞(0, 1)). Actually, it is well known that ũ ∈
C∞([0, 1] × [ε, T ]), so that we can write a Taylor expansion

ũ(r, t) = rũr(0, t) +
r3

6
ũrrr(0, t) +O(r4),

where we used the fact that ũ(0, t) = ũrr(0, t) = 0. This yields

ur(0, t) =
r

3
ũrrr(0, t) +O(r2),

so that (3.10) is fulfilled.
For N = 2, (3.14)-(3.17) is of the form (1.36)-(1.39) with µ = 1/4. Therefore Theorem 1.3 can
be applied to (3.14)-(3.17). Our concern now is the derivation of (3.10) when going back to the
original variables. Recall that

u(r, t) =
ũ(r, t)√

r
, v(r) = −

√
r ln r, y(r) = L−1

∫ r

0
v−2(s)ds, û(y, t) =

ũ(r, t)

v(r)
= −u(r, t)

ln r
,

so that, with dy/dr = (Lr ln2 r)−1,

ur = −1

r
û− 1

Lr ln r
ûy.

This yields at fixed t ∈ (0, T )
∫ 1

0
(|u|2 + |ur|2)rdr ≤

∫ 1

0
r ln2 r|û(y(r))|2dr + C

∫ 1

0

û2

r
dr +

∫ 1

0

|ûy(y(r))|2
L2r ln2 r

dr =: I1 + I2 + I3.

Since û(., t) ∈ W 2,∞(0, 1), both I1 and I3 are finite. On the other hand, using û(0, t) = 0, we

obtain |û(y(r), t)| ≤ Cy(r) = C
| ln r| , and hence I2 < ∞. Thus

∫ 1
0 (|u|2 + |ur|2)rdr < ∞, while for



NULL CONTROLLABILITY OF ONE-DIMENSIONAL PARABOLIC EQUATIONS 21

p ∈ (2,∞)
∫ 1

0
|urr +

ur
r
|prdr =

∫ 1

0
|ut|prdr =

∫ 1

0
|ût(y(r), t)|pr| ln r|pdr < ∞.

Thus the function x → u(|x|, t) belongs toW 2,p(B(0, 1)) ⊂ C1(B(0, 1)), so that (3.10) is satisfied.

4. Appendix: proof of Corollary 1.2

We apply first a reduction to a canonical form similar to (1.11)-(1.14) by doing exactly the
same changes of variables as those described in Section 2.1. With u1, u2, y, û, and ρ̂ defined as
in (2.6)-(2.9), we infer from (1.32) that

e−B(av2eBu2,x)x = ρv2u2,t + ve−Ktχωf.

Multiplying each term in the above equation by L2av2e2B , and using the fact that ∂y =
Lav2eB∂x, we arrive to

ûyy = ρ̂(y)ût + χω̂f̂ ,

where ω̂ = (l̂1, l̂2) := (y(l1), y(l2)) and

f̂(y(x), t) := L2a(x)v3(x)e2B(x)e−Ktχω(x)f(x, t).

Let û0(y(x)) := u0(x)/v(x). Pick l̂′1, l̂
′
2 such that l̂1 < l̂′1 < l̂′2 < l̂2, and a function ϕ ∈ C∞([0, 1])

such that ϕ(y) = 1 for 0 ≤ y ≤ l̂′1 and ϕ(y) = 0 for l̂′2 ≤ y ≤ 1. Applying Theorem 1.1, we can
find two functions h1, h2 ∈ Gs([0, T ]) such that the solutions û1, û2 of the following systems

û1yy − ρ̂(y)û1t = 0, y ∈ (0, 1), t ∈ (0, T ), (4.1)

α̂0û
1(0, t) + β̂0û

1
y(0, t) = 0, t ∈ (0, T ), (4.2)

û1y(1, t) = h1(t), t ∈ (0, T ), (4.3)

û1(y, 0) = û0(y), y ∈ (0, 1), (4.4)

and

û2yy − ρ̂(y)û2t = 0, y ∈ (0, 1), t ∈ (0, T ), (4.5)

û2y(0, t) = h2(t), t ∈ (0, T ), (4.6)

α̂1û
2(1, t) + β̂1û

2
y(1, t) = 0, t ∈ (0, T ), (4.7)

û2(y, 0) = û0(y), y ∈ (0, 1), (4.8)

satisfy

û1(y, T ) = û2(y, T ) = 0 for all y ∈ [0, 1].

Then it is sufficient to set

û(y, t) := ϕ(y)û1(y, t) + (1− ϕ(y))û2(y, t), (4.9)

f̂(y, t) := ϕ′′(y)(û1(y, t)− û2(y, t)) + 2ϕ′(y)(û1y(y, t)− û2y(y, t)). (4.10)
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Note that f̂ is supported in [l̂′1, l̂
′
2]× [0, T ], with f̂ ∈ Gs([ε, T ],W 1,1(0, 1)) for all ε ∈ (0, T ), and

that û solves

ûyy − ρ̂(y)ût = χω̂f̂ , y ∈ (0, 1), t ∈ (0, T ), (4.11)

α̂0û(0, t) + β̂0ûy(0, t) = 0, t ∈ (0, T ), (4.12)

α̂1û(1, t) + β̂1ûy(1, t) = 0, t ∈ (0, T ), (4.13)

û(y, 0) = û0(y), y ∈ (0, 1), (4.14)

û(y, T ) = 0, y ∈ (0, 1). (4.15)

Let

f(x, t) :=
(

L2a(x)v3(x)e2B(x)e−Kt
)−1

f̂(y(x), t).

Then f is supported in [y−1(l̂′1), y
−1(l̂′2)]× [0, T ] ⊂ ω× [0, T ]. We claim that f ∈ L2(0, T, L2

a(ω)).
Indeed, we have that

∫ T

0

∫

ω

|f(x, t)|2a(x)dxdt ≤ C

∫ T

0

∫ 1

0
χω(x)(L

3a(x)v4(x)e3B(x)e−2Kt)|f(x, t)|2dxdt

= C

∫ T

0

∫ 1

0
χω̂(y(x))|f̂(y(x), t)|2|

dy

dx
|dxdt

= C

∫ T

0

∫

ω̂

|f̂(y, t)|2dydt,

and the last integral is finite, since f̂ is given by (4.10) and û1, û2 ∈ L2(0, T,H1(0, 1)). For û1,
this can be seen by scaling (4.1) by û1, integrating over (0, 1) × (0, t) for 0 < t ≤ T , and using
Gronwall’s lemma combined with Lemma 2.3. Thus f ∈ L2(0, T, L2

a(ω)). Let

u(x, t) := eKtv(x)û(y(x), t).

Then u solves (1.32)-(1.35) and u(., T ) = 0. �
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