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Introduction

The null controllability of parabolic equations has been extensively investigated since several decades. After the pioneering work in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF][START_REF] Jones | A fundamental solution for the heat equation which is supported in a strip[END_REF][START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF], mainly concerned with the one-dimensional case, there has been significant progress in the general N-dimensional case [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Imanuvilov | Controllability of parabolic equations[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] by using Carleman estimates. The more recent developments of the theory were concerned with discontinuous coefficients [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF][START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF][START_REF] Fernández-Cara | On the null controllability of the one-dimensional heat equation with BV coefficients[END_REF][START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF], degenerate coefficients [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF][START_REF] Beauchard | Null controllability of grushin-type operators in dimension two[END_REF][START_REF] Boscain | The laplace-beltrami operator in almost-riemannian geometry[END_REF][START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF][START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF][START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF][START_REF] Cannarsa | Carleman estimates and null controllability for boundarydegenerate parabolic operators[END_REF][START_REF] Flores | Carleman estimates for degenerate parabolic equations with first order terms and applications[END_REF], or singular coefficients [START_REF] Cazacu | Controllability of the heat equation with an inverse-square potential localized on the boundary[END_REF][START_REF] Ervedoza | Control and stabilization properties for a singular heat equation with an inverse-square potential[END_REF][START_REF] Vancostenoble | Null controllability for the heat equation with singular inverse-square potentials[END_REF].

In [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF], the authors derived the null controllability of a linear one-dimensional parabolic equation with (essentially bounded) measurable coefficients. The method of proof combined the Lebeau-Robbiano approach [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] with some complex analytic arguments.

Here, we are concerned with the null controllability of the system (a(x)u x ) x + b(x)u x + c(x)u -ρ(x)u t = 0, x ∈ (0, 1), t ∈ (0, T ), (1.1) α 0 u(0, t) + β 0 (au x )(0, t) = 0, t ∈ (0, T ), (1.2) α 1 u(1, t) + β 1 (au x )(1, t) = h(t), t ∈ (0, T ), (1.3) u(x, 0) = u 0 (x), x ∈ (0, 1), (1.4) where (α 0 , β 0 ), (α 1 , β 1 ) ∈ R 2 \{(0, 0)} are given, u 0 ∈ L 2 (0, 1) is the initial state and h ∈ L 2 (0, T ) is the control input.

The given functions a, b, c, ρ will be assumed to fulfill the following conditions a(x) > 0 and ρ(x) > 0 for a.e. x ∈ (0, 1), (

( 1 a , b a , c, ρ) ∈ [L 1 (0, 1)] 4 , 1.5) 
∃K ≥ 0, c(x) ρ(x) ≤ K for a.e. x ∈ (0, 1), (1.7) ∃p ∈ (1, ∞], a 1-1 p ρ ∈ L p (0, 1).

(1.8)

The assumptions (1.5)- (1.8) are clearly less restrictive than the assumptions from [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF]:

a, b, c, ρ ∈ L ∞ (0, 1) and a(x) > ε, ρ(x) > ε > 0 for a.e. x ∈ (0, 1) (1.9)

for some ε > 0.

Let us introduce some notations. Let B be a Banach space with norm • B . For any t 1 < t 2 and s ≥ 0, we denote by G s ([t 1 , t 2 ], B) the class of (Gevrey) functions u ∈ C ∞ ([t 1 , t 2 ], B) for which there exist positive constants M, R such that

u (p) (t) B ≤ M p! s R p ∀t ∈ [t 1 , t 2 ], ∀p ≥ 0. (1.10) When (B, • B ) = (R, | • |), G s ([t 1 , t 2 ], B) is merely denoted G s ([t 1 , t 2 ]). Let L 1 ρ := {u : (0, 1) → R; ||u|| L 1 ρ := 1 0 |u(x)|ρ(x)dx < ∞}.
Note that L 2 (0, 1) ⊂ L 1 ρ if ρ ∈ L 2 (0, 1). The main result in this paper is the following Theorem 1.1. Let the functions a, b, c, ρ : (0, 1) → R satisfy (1.5)-(1.8) for some numbers K ≥ 0, p ∈ (1, ∞]. Let (α 0 , β 0 ), (α 1 , β 1 ) ∈ R 2 \ {(0, 0)} and T > 0. Pick any u 0 ∈ L 1 ρ and any s ∈ (1, 2 -1/p). Then there exists a function h ∈ G s ([0, T ]), that may be given explicitly as a series, such that the solution u of (1.1)-(1.4) satisfies u(., T ) = 0. Moreover u ∈ G s ([ε, T ], W 1,1 (0, 1)) and au x ∈ G s ([ε, T ], C 0 ([0, 1])) for all ε ∈ (0, T ).

Clearly, Theorem 1.1 can be applied to parabolic equations with discontinuous coefficients that may be degenerate or singular at a point (or more generally at a sequence of points). The proof of it is not based on the classical duality approach, in the sense that it does not rely on the proof of some observability inequality for the adjoint equation. It follows the flatness approach developed in [START_REF] Laroche | Extension de la notion de platitude à des systèmes décrits par des équations aux dérivées partielles linéaires[END_REF][START_REF] Laroche | Motion planning for a 1-D diffusion equation using a Brunovsky-like decomposition[END_REF][START_REF] Laroche | Motion planning for the heat equation[END_REF][START_REF] Martin | Null controllability of the 1D heat equation using flatness[END_REF][START_REF] Martin | Null controllability of the 2D heat equation using flatness[END_REF][START_REF] Martin | Null controllability of the heat equation using flatness[END_REF][START_REF] Meurer | Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs[END_REF]. This direct approach gives explicitly both the control and the trajectory as series, which leads to efficient numerical schemes by taking partial sums in the series [START_REF] Martin | Null controllability of the heat equation using flatness[END_REF][START_REF] Martin | Null controllability using flatness: a case study of a 1-d heat equation with discontinuous coefficients[END_REF]. Let us describe its main steps. In the first step, following [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF], we show that after a series of changes of dependent/independent variables, system (1.1)- (1.4) can be put into the canonical form

u xx -ρ(x)u t = 0, x ∈ (0, 1), t ∈ (0, T ), (1.11) α 0 u(0, t) + β 0 u x (0, t) = 0, t ∈ (0, T ), (1.12) α 1 u(1, t) + β 1 u x (1, t) = h(t), t ∈ (0, T ),
(1.13) u(x, 0) = u 0 (x), x ∈ (0, 1), (1.14) where ρ(x) > 0 a.e. in (0, 1) and ρ ∈ L p (0, 1) with p ∈ (1, ∞]. In the second step, following [START_REF] Martin | Null controllability of the 1D heat equation using flatness[END_REF][START_REF] Martin | Null controllability of the heat equation using flatness[END_REF], we seek u in the form

u(x, t) = n≥0 e -λnt e n (x), x ∈ (0, 1), t ∈ [0, τ ], (1.15) u(x, t) = i≥0 y (i) (t)g i (x), x ∈ (0, 1), t ∈ [τ, T ], (1.16) 
where τ ∈ (0, T ) is any intermediate time; e n : (0, 1) → R (resp. λ n ∈ R) denotes the n th eigenfunction (resp. eigenvalue) associated with (1.11)-(1.13) and satisfying [START_REF] Laroche | Extension de la notion de platitude à des systèmes décrits par des équations aux dérivées partielles linéaires[END_REF][START_REF] Laroche | Motion planning for a 1-D diffusion equation using a Brunovsky-like decomposition[END_REF]]

-e ′′ n = λ n ρ e n , x ∈ (0, 1) (1.17) α 0 e n (0) + β 0 e ′ n (0) = 0, (1.18) α 1 e n (1) + β 1 e ′ n (1) = 0, (1.19) 
while g i : (0, 1) → R is defined inductively as the solution to the Cauchy problem

g ′′ 0 = 0, x ∈ (0, 1) (1.20) α 0 g 0 (0) + β 0 g ′ 0 (0) = 0, (1.21) β 0 g 0 (0) -α 0 g ′ 0 (0) = 1 (1.22)
for i = 0, and to the Cauchy problem

g ′′ i = ρ g i-1 , x ∈ (0, 1) (1.23) g i (0) = 0, (1.24) g ′ i (0) = 0 (1.25)
for i ≥ 1. Expanding u on generating functions as in (1.16) rather than on powers of x as in [START_REF] Laroche | Motion planning for the heat equation[END_REF][START_REF] Martin | Null controllability of the 1D heat equation using flatness[END_REF] was introduced in [START_REF] Laroche | Motion planning for a 1-D diffusion equation using a Brunovsky-like decomposition[END_REF] and studied in [START_REF] Laroche | Extension de la notion de platitude à des systèmes décrits par des équations aux dérivées partielles linéaires[END_REF].

The fact that the generating function g i is defined as the solution of a Cauchy problem, rather than the solution of a boundary-value problem, is crucial in the analysis developed here. First, it allows to prove that every initial state in the space L 1 ρ (and not only states in some restricted class of Gevrey functions) can be driven to 0 in time T . Secondly, from (1.23)-(1.25), we see by an easy induction on i that for ρ ∈ L ∞ (0, 1), the function g i is uniformly bounded by C/(2i)!, and hence the series in (1.16) 

is indeed convergent when y ∈ G s ([τ, T ]) with 1 < s < 2.
The corresponding control function h is given explicitly as

h(t) = 0 if 0 ≤ t ≤ τ, i≥0 y (i) (t)(α 1 g i (1) + β 1 g ′ i (1)) if τ < t ≤ T.
It is easy to see that the function u(x, t) defined in (1.16) satisfies (formally) (1.11), and also the condition u(x, T ) = 0 if y (i) (T ) = 0 for all i ∈ N, so that the null controllability can be established for some initial states. The main issue is then to extend it to every initial state u 0 ∈ L 1 ρ . Following [START_REF] Martin | Null controllability of the 1D heat equation using flatness[END_REF][START_REF] Martin | Null controllability of the 2D heat equation using flatness[END_REF][START_REF] Martin | Null controllability of the heat equation using flatness[END_REF], we first use the strong smoothing effect of the heat equation to smooth out the state function in the time interval (0, τ ). Next, to ensure that the two expressions of u given in (1.15)-(1.16) coincide at t = τ , we have to relate the eigenfunctions e n to the generating functions g i .

It will be shown that any eigenfunction e n can be expanded in terms of the generating functions g i as

e n (x) = ζ n i≥0 (-λ n ) i g i (x) (1.26)
with ζ n ∈ R. Note that, for ρ ≡ 1 and (α 0 , β 0 , α 1 , β 1 ) = (0, 1, 0, 1), λ n = (nπ) 2 for all n ≥ 0, e 0 (x) = 1 and e n (x) = √ 2 cos(nπx) for n ≥ 0 while g i (x) = x 2i /(2i)!, so that (1.26) for n ≥ 1 is nothing but the classical Taylor expansion of cos(nπx) around x = 0:

cos(nπx) = i≥0 (-1) i (nπx) 2i (2i)! • (1.27)
Thus (1.26) can be seen as a natural extension of (1.27), in which the generating functions g i , a priori not smoother than W 2,p (0, 1), replace the functions x 2i /(2i)!.

The condition (1.8) is used to prove the estimate

|g i (x)| ≤ C R 2i (i!) 2-1 p
needed to ensure the convergence of the series in (1.16) when y ∈ G s ([τ, T ]) with 1 < s < 2-1/p. Theorem 1.1 applies in particular to any system (a(x)u x ) x -u t = 0, x ∈ (0, 1), t ∈ (0, T ), (1.28) α 0 u(0, t) + β 0 (au x )(0, t) = 0, t ∈ (0, T ),

(1.29)

α 1 u(1, t) + β 1 (au x )(1, t) = h(t), t ∈ (0, T ),
(1.30) u(x, 0) = u 0 (x), x ∈ (0, 1), (1.31) where a(x) > 0 for a.e. x ∈ (0, 1) and a + 1/a ∈ L 1 (0, 1). (Pick p = 2 in (1.8).) This includes the case where a is measurable, positive and essentially bounded together with its inverse (but not necessarily piecewise continuous), and the case where a(x) = x r with -1 < r < 1. (Actually any r ≤ -1 is also admissible, by picking p > 1 sufficiently close to 1 in (1.8).) Note that our result applies as well to a(x) = (1 -x) r with 0 < r < 1, yielding a positive null controllability result when the control is applied at the point (x = 1) where the diffusion coefficient degenerates (see [START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF]Section 2.7]). Note also that the coefficient a(x) is allowed to be degenerate/singular at a sequence of points: consider e.g. a(x) := | sin(x -1 )| r with -1 < r < 1. Then a + 1/a ∈ L 1 (0, 1). The null controllability of (1.28)-(1.31) for a(x) = x r with 0 < r < 2 was established (in appropriate spaces) in [START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF]. The situation when 1/a ∈ L 1 (0, 1) (e.g. a(x) = x r with 1 ≤ r < 2) is beyond these notes, and it will be considered elsewhere.

A null controllability result with an internal control can be deduced from (1.1). Its proof is given in appendix, for the sake of completeness.

Corollary 1.2. Assume given an open set ω = (l 1 , l 2 ) with 0 < l 1 < l 2 < 1, and let us consider the following control system

(a(x)u x ) x + b(x)u x + c(x)u -ρ(x)u t = χ ω f (x, t), x ∈ (0, 1), t ∈ (0, T ),
(1.32) α 0 u(0, t) + β 0 (au x )(0, t) = 0, t ∈ (0, T ),

(1.33)

α 1 u(1, t) + β 1 (au x )(1, t) = 0, t ∈ (0, T ),
(1.34) u(x, 0) = u 0 (x), x ∈ (0, 1), (1.35) where u 0 ∈ L 1 ρ is any given initial data, and a, b, c, ρ, p, K, s, (α 0 , β 0 ) and (α 1 , β 1 ) are as in Theorem 1.1. Then one can find a control input f ∈ L 2 (0, T, L 2 a (ω)) such that the solution u of (1.32)-(1.35) satisfies u(x, T ) = 0 for all x ∈ (0, 1).

Another important family of heat equations with variable coefficients is those with inverse square potential localized at the boundary, namely

u xx + µ x 2 u -u t = 0, x ∈ (0, 1), t ∈ (0, T ), (1.36) 
u(0, t) = 0, t ∈ (0, T ), (1.37)

α 1 u(1, t) + β 1 u x (1, t) = h(t), t ∈ (0, T ), (1.38) u(x, 0) = u 0 (x), x ∈ (0, 1), (1.39)
where µ ∈ R is a given number. Note that Theorem 1.1 cannot be applied to (1.36)-(1.39), for c(x) = µx -2 is not integrable on (0, 1). It was proved in [START_REF] Cazacu | Controllability of the heat equation with an inverse-square potential localized on the boundary[END_REF] that (1.36)-(1.39) is null controllable in L 2 (0, 1) when µ ≤ 1/4 by combining Carleman inequalities to Hardy inequalities. We shall show in this paper that this result can be retrieved by the flatness approach as well.

Theorem 1.3. Let µ ∈ (0, 1/4], (α 1 , β 1 ) ∈ R 2 \ {(0, 0)}, T > 0, and τ ∈ (0, T ). Pick any u 0 ∈ L 2 (0, 1) and any s ∈ (1, 2). Then there exists a function h ∈ G s ([0, T ]) with h(t) = 0 for 0 ≤ t ≤ τ and such that the solution u of (1.36)-(1.39) satisfies u(T, .) = 0. Moreover, u ∈ G s ([ε, T ], W 1,1 (0, 1)) for all ε ∈ (0, T ). Finally, if 0 ≤ µ < 1/4 and r > (1

+ √ 1 -4µ)/2, then x r u x ∈ G s ([ε, T ], C 0 ([0, 1])) for all ε ∈ (0, T ).
The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.1. We first show that a convenient change of variables transforms (1.1)-(1.4) into (1.11)-(1.14) (Proposition 2.1). Next, we show that the flatness approach can be applied to (1.11)- (1.14) to yield a null controllability result (Theorem 2.9). Performing the inverse change of variables, we complete the proof of Theorem 1.1. Section 3 contains the proof of Theorem 1.3, which is obtained as a consequence of Theorem 2.9 after a convenient change of variables, and some examples. 

)-(1.8). Set B(x) := x 0 b(s) a(s) ds, (2.1) ã(x) := a(x)e B(x) (2.2) c(x) := (Kρ(x) -c(x))e B(x) . (2.3)
Then B ∈ W 1,1 (0, 1), c ∈ L 1 (0, 1), and ã(x) > 0 and c(x) ≥ 0 for a.e. x ∈ (0, 1).

We introduce the solution v to the elliptic boundary value problem

-(ãv x ) x + cv = 0, x ∈ (0, 1), (2.4) v(0) = v(1) = 1, (2.5) 
and set

u 1 (x, t) := e -Kt u(x, t), (2.6 
)

u 2 (x, t) := u 1 (x, t) v(x) • (2.7)
Finally, let

L := 1 0 (a(s)v 2 (s)e B(s) ) -1 ds, y(x) := 1 L x 0 (a(s)v 2 (s)e B(s) ) -1 ds (2.8) and û(y, t) := u 2 (x, t), ρ(y) := L 2 a(x)v 4 (x)e 2B(x) ρ(x) (2.9) for 0 < t < T , y = y(x) with x ∈ [0, 1]. Then the following result holds. Proposition 2.1. (i) v ∈ W 1,1 (0, 1) and 0 < v(x) ≤ 1 ∀x ∈ [0, 1]; (ii) y : [0, 1] → [0, 1
] is an increasing bijection with y, y -1 ∈ W 1,1 (0, 1); (iii) ρ(y) > 0 for a.e. y ∈ (0, 1), and ρ ∈ L p (0, 1); (iv) û solves the system

ûyy -ρû t = 0, y ∈ (0, 1), t ∈ (0, T ), (2.10) 
α0 û(0, t) + β0 ûy (0, t) = 0, t ∈ (0, T ), (2.11) α1 û(1, t) + β1 ûy (1, t) = ĥ(t) := e -Kt h(t), t ∈ (0, T ), (2.12)

û(y(x), 0) = u 0 (x) v(x) , x ∈ (0, 1), (2.13) 
for some (α 0 , β0 ), (α

1 , β1 ) ∈ R 2 \ {(0, 0)}. Proof. (i) Let l = 1 0 ds/ã(s) and z(x) = l -1 x 0 ds/ã(s). Then z : [0, 1] → [0, 1] is a strictly increasing continuous map (for z(x 2 ) -z(x 1 ) = l -1 x 2
x 1 ds/ã(s) > 0 for x 1 < x 2 ). It is a bijection which is absolutely continuous (i.e. z ∈ W 1,1 (0, 1)), for 1/ã ∈ L 1 (0, 1). Moreover, z ′ (x) = 1/(lã(x)) for a.e. x ∈ (0, 1). It follows from (1.5) and (1.8) that a(x) < ∞ and ã(x) < ∞ for a.e. x ∈ (0, 1), so that z ′ (x) > 0 for a.e. x ∈ (0, 1). Then we infer from a theorem due to M. A. Zareckii (see [START_REF] Bogachev | Measure theory[END_REF]Ex. 5.8.54 p. 389] or [START_REF] Spȃtaru | An absolutely continuous function whose inverse function is not absolutely continuous[END_REF]) that z -1 is absolutely continuous as well (i.e. z -1 ∈ W 1,1 (0, 1)). (Note that for z : [0, 1] → [0, 1] a strictly increasing bijection in W 1,1 (0, 1), its inverse z -1 may not belong to W 1,1 (0, 1), see [START_REF] Gordon ; Denjoy | The integrals of Lebesgue[END_REF]Ex. 4.6 p. 287] or [START_REF] Spȃtaru | An absolutely continuous function whose inverse function is not absolutely continuous[END_REF].) In particular, z satisfies the condition N (Lusin's condition)

A ⊂ [0, 1], |A| = 0 ⇒ |z(A)| = 0 (2.14)
(|A| standing for the Lebesgue measure of A), and the same holds true for z -1 .

Introduce the function w : [0, 1] → R defined by

w(z) := v(x(z)) ∀z ∈ [0, 1].
Then dw/dz = lã(x)dv/dx so that, letting ′ = d/dz and γ(z) := (l 2 ãc)(x(z)), (2.4)-(2.5) becomes

-w ′′ + γw = 0, z ∈ (0, 1) (2.15) w(0) = w(1) = 1.
(2.16)

Note that γ(z) ≥ 0 for a.e. z ∈ (0, 1) and that γ ∈ L 1 (0, 1), for

1 0 γ(z)dz = l 1 0 c(x(z)) dx dz dz = l 1 0 c(x)dx < ∞.
In the last equality, we used the change of variable formula (which is licit, because z -1 ∈ W 1,1 (0, 1) and it satisfies Lusin's condition, see [START_REF] Haj | Change of variables formula under minimal assumptions[END_REF]). Letting w = u + 1, we define u as the unique solution in H 1 0 (0, 1) of the variational problem

1 0 [u ′ ϕ ′ + γuϕ]dx = - 1 0 γϕdx ∀ϕ ∈ H 1 0 (0, 1). Then w ∈ W 2,1 (0, 1) ⊂ C 1 ([0, 1]). Let us check that 0 < w(x) ≤ 1 ∀x ∈ [0, 1]. (2.17) If max x∈[0,1] w(x) > 1, we can pick x 0 ∈ (0, 1) such that w(x 0 ) = max x∈[0,1] w(x) > 1. (2.18) 
Then w ′ (x 0 ) = 0. Let δ > 0 denote the greatest positive number such that x 0 + δ ≤ 1 and

w(x) > 1 ∀x ∈ (x 0 , x 0 + δ).
It follows that for x ∈ [x 0 , x 0 + δ] w ′ (x) = In particular, w(x 0 + δ) ≥ w(x 0 ) > 1, a fact which contradicts the definition of δ.

Thus max x∈[0,1] w(x) ≤ 1. A similar argument shows that min x∈[0,1] w(x) ≥ 0. If min x∈[0,1] w(x) = 0, we pick x 0 ∈ (0, 1) such that w(x 0 ) = min x∈[0,1] w(x) = 0.
Then w solves the Cauchy problem

w ′′ (x) = γ(x)w(x) for a.e. x ∈ (0, 1), w(x 0 ) = w ′ (x 0 ) = 0
and hence w ≡ 0, which contradicts (2.16). (2.17) is proved.

(ii) y : [0, 1] → [0, 1] is an increasing continuous map (for dy/dx = (Lav 2 e B ) -1 > 0 a.e. in (0, 1)). Moreover, y ∈ W 1,1 (0, 1) (using (1.6) and (i)), and also y -1 ∈ W 1,1 (0, 1). (See (i) for the proof of a similar result for z.) (iii) To check that ρ ∈ L p (0, 1) when 1 < p < ∞, we use (1.8), (2.8)-(2.9) and (i) to get

1 0 |ρ(y)| p dy = 1 0 [L 2 a(x)v 4 (x)e 2B(x) ρ(x)] p dy dx dx = L 2p-1 1 0 a p-1 ρ p v 4p-2 e (2p-1)B dx < ∞.
The fact that ρ ∈ L ∞ (0, 1) when (1.8) holds with p = ∞ is obvious. On the other hand, ρ(y) > 0 for a.e. y ∈ (0, 1), for

1 0 χ {ρ(y)≤0} (y)dy = 1 0 χ {(aρ)(x)≤0} (x) dy dx dx = 0.
(iv) We first derive the PDE satisfied by u 2 .

e -B (av

2 e B u 2,x ) x = e -B av 2 e B ( u 1,x v - u 1 v 2 v x ) x = e -B ae B (vu 1,x -v x u 1 ) x = e -B v(ae B u 1,x ) x -u 1 (ae B v x ) x = vρu 1,t = ρv 2 u 2,t (2.19) 
(The first equality follows from (2.7), the third from basic algebra, the fourth from (1.1), ( 

α 0 u 2 (0, t) + β 0 ((av x )(0)u 2 (0, t) + (au 2,x )(0, t)) = 0.
On the other hand ûy = (dx/dy)u 2,x = La(x)v 2 (x)e B(x) u 2,x and hence ûy (0, t) = L(au 2,x )(0, t). Then (2.11) follows with α0 = α 0 + β 0 (av x )(0), β0 = L -1 β 0 .

Null controllability of the control problem (1.11)-(1.14). Assume given p ∈ (1, ∞],

ρ ∈ L p (0, 1) with ρ(x) > 0 for a.e. x ∈ (0, 1), and (α 0 , β 0 ), (α 1 , β 1 ) ∈ R 2 \ {(0, 0)}. Let ′ = d/dx, and let

L 2 ρ := f : (0, 1) → R; ||f || 2 L 2 ρ := 1 0 |f (x)| 2 ρ(x)dx < ∞ .
Proposition 2.2. Let p, ρ, α 0 , β 0 , α 1 , and β 1 be as above. Then there are a sequence (e n ) n≥0 in L 2 ρ and a sequence (λ n ) n≥0 in R such that (i) (e n ) n≥0 is an orthonormal basis in L 2 ρ ; (ii) For all n ≥ 0, e n ∈ W 2,p (0, 1) and e n solves -e ′′ n = λ n ρe n in (0, 1), (2.21)

α 0 e n (0) + β 0 e ′ n (0) = 0, (2.22) α 1 e n (1) + β 1 e ′ n (1) = 0. (2.23) (iii)
The sequence (λ n ) n≥0 is strictly increasing, and for some constant C > 0

λ n ≥ Cn for n ≫ 1. (2.24)
Proof. Let us consider the elliptic boundary value problem

-u ′′ + λ * ρu = ρf in (0, 1), (2.25) α 0 u(0) + β 0 u ′ (0) = 0, (2.26) α 1 u(1) + β 1 u ′ (1) = 0 (2.27)
where λ * ≫ 1 will be chosen later on. Introduce the symmetric bilinear form

a(u, v) := 1 0 (u ′ v ′ + λ * ρuv)dx + a b (u, v)
where

a b (u, v) :=        α 1 β 1 u(1)v(1) -α 0 β 0 u(0)v(0) if β 1 = 0 and β 0 = 0, α 1 β 1 u(1)v(1) if β 1 = 0 and β 0 = 0, -α 0 β 0 u(0)v(0) if β 1 = 0 and β 0 = 0, 0 if β 1 = 0 and β 0 = 0. Let H := {u ∈ H 1 (0, 1); u(0) = 0 if β 0 = 0, u (1) 
= 0 if β 1 = 0} be endowed with the H 1 (0, 1)-norm. Clearly, the form a is continuous on H × H, for H 1 (0, 1) ⊂ C 0 ([0, 1]) continuously. We claim that the form a is coercive if λ * is large enough. We need the Lemma 2.3. For any ε > 0, there exists some number C ε > 0 such that

||u|| 2 L ∞ ≤ ε||u ′ || 2 L 2 + C ε ||u|| 2 L 2 ρ ∀u ∈ H 1 (0, 1). (2.28)
Proof of Lemma 2.3. If (2.28) is false, then one can find a number ε > 0 and a sequence (

u n ) n≥1 in H 1 (0, 1) such that 1 = ||u n || 2 L ∞ > ε||u ′ n || 2 L 2 + n||u n || 2 L 2 ρ ∀ ≥ 1. (2.29) Thus ||u n || 2 H 1 ≤ 1 + ε -1
, and for some subsequence (u n k ) and some u ∈ H 1 (0, 1) we have

u n k → u weakly in H 1 (0, 1). (2.30) Since H 1 (0, 1) ⊂ C 0 ([0, 1]) ⊂ L 2
ρ continuously, the first embedding being also compact, we infer that

u n k → u in both C 0 ([0, 1]) and L 2 ρ . Thus ||u|| L ∞ = 1 by (2.29). But (2.29) yields also u n → 0 in L 2
ρ and hence u = 0, contradicting ||u|| L ∞ = 1. Lemma 2.3 is proved. From (2.28), we infer the existence of some constants C 1 , C 2 > 0 such that

C 1 ||u|| 2 H 1 ≤ ||u ′ || 2 L 2 + ||u|| 2 L 2 ρ ≤ C 2 ||u|| 2 H 1 ∀u ∈ H 1 (0, 1). (2.31)
Next, we have for some

C * > 0 |a b (u, u)| ≤ C * ||u|| 2 L ∞ ≤ C * (ε||u ′ || 2 L 2 + C ε ||u|| 2 L 2 ρ ) ≤ 1 2 (||u ′ || 2 L 2 + λ * ||u|| 2 L 2 ρ ) (2.32)
if we pick 0 < ε < (2C * ) -1 and λ * > 2C * C ε . Then for all u ∈ H 1 (0, 1) we have 

a(u, u) ≥ 1 2 (||u ′ || 2 L 2 + λ * ||u|| 2 L 2 ρ ) ≥ C||u|| 2 H 1 , with C := min(1, λ * )C 1 /2,
a(u, v) = L(v) ∀v ∈ H.
(2.33)

Taking any v ∈ C ∞ 0 (0, 1) in (2.33), we infer that (2.25) holds in the distributional sense. Furthermore u ∈ W 2,1 (0, 1). Next, multiplying each term in (2.25) by v ∈ C ∞ ([0, 1]) ∩ H, integrating over (0, 1) and comparing with (2.33), we obtain (2.26)- (2.27).

The operator

T : f ∈ L 2 ρ → u = T (f ) ∈ L 2
ρ is continuous, compact, and self-adjoint. It is also positive definite, for

C||u|| 2 H 1 ≤ a(u, u) = (f, u) L 2 ρ and u = 0 ⇐⇒ f = 0.
By the spectral theorem, there are an orthonormal basis (e n ) n≥0 in L 2 ρ and a sequence (µ n ) n≥0 in (0, +∞) with µ n ց 0 such that T (e n ) = µ n e n for all n ≥ 0. Thus (2.21)-(2.23) hold with

λ n = µ -1 n -λ * .
The eigenfunction e n ∈ W 2,p (0, 1) by (2.21) and the fact that ρ ∈ L p (0, 1) and e n ∈ L ∞ (0, 1). (iii) The sequence (λ n ) n≥0 is known to be nondecreasing. It is (strictly) increasing if each eigenvalue λ n is simple, a fact which is easily established: if e and ẽ are two eigenfunctions associated with the same eigenvalue λ n , then the Wronskian W (x) := e(x)ẽ ′ (x) -e ′ (x)ẽ(x) satisfies W ′ (x) = 0 a.e. and W (0) = 0, and hence W ≡ 0 in (0, 1). It follows that e and ẽ are proportional.

Let us prove (2.24). Consider for any λ ≥ 1 the system -e ′′ = λρe, (2.34) α 0 e(0) + β 0 e ′ (0) = 0, (2.35) α 1 e(1) + β 1 e ′ (1) = 0.

(2.36)

Following [START_REF] Birkhoff | Ordinary Differential Equations[END_REF], we introduce the Prüfer substitution 

e ′ = r
θ |x=0 = θ 0 := -arctan( β 0 α 0 ) if α 0 = 0, π 2 if α 0 = 0. (2.43)
Denote by θ(x, λ) the solution of (2.42) and (2.43). (Note that r is not present in (2.42).) Introduce

θ 1 := -arctan( β 1 α 1 ) if α 1 = 0, π 2 if α 1 = 0. (2.44)
Then (e, λ) is a pair of eigenfunction/eigenvalue if and only if

θ(1, λ) = θ 1 mod π. (2.45)
Since the map (x, θ, λ) → cos 2 θ + λρ(x) sin 2 θ is integrable in x and of class C 1 in (θ, λ), it follows that the map (x, λ) → θ(x, λ) is well defined and continuous for x ∈ [0, 1] and λ ≥ 1.

On the other hand, since the map λ → cos 2 θ + λρ(x) sin 2 θ is strictly increasing for a.e. x (provided that θ ∈ πZ), it follows from a classical comparison theorem (see e.g. [START_REF] Birkhoff | Ordinary Differential Equations[END_REF]) that the map λ → θ(1, λ) is strictly increasing. Let θ(x) := lim

λ→∞ θ(x, λ), x ∈ [0, 1].
We claim that θ(1) = ∞.

(2.46) If (2.46) fails, then we have for all x ∈ [0, 1] and all λ ≥ 1

θ 0 ≤ θ(x, λ) ≤ θ(1, λ) ≤ θ(1) < ∞,
where we used the fact that the r.h.s. of (2.42) is positive a. The numbers a and b being arbitrary, this shows that θ(x) ∈ πZ for a.e. x ∈ (0, 1). The function θ being nondecreasing and bounded, it is piecewise constant. Choosing a < b such that θ is constant on [a, b] and letting λ → ∞ in (2.47), we obtain 0 ≥ b -a, which is a contradiction. Thus (2.46) is established, and we see that for any n ≫ 1 we can find a unique λn ≥ 1 such that θ(1, λn ) = θ 1 + nπ.

Then λ n and λn must agree, up to a translation in the indices, i.e. λ n = λn-n for some n ∈ Z.

Thus we can write

θ(1, λ n ) = θ 1 + (n -n)π.
Integrating in (2.42), we obtain

θ 1 + (n -n)π -θ 0 = 1 0 (cos 2 θ + λ n ρ sin 2 θ)dx ≤ 1 + λ n 1 0 ρ(x)dx.
Since θ 0 , θ 1 ∈ (-π/2, π/2] and 1 0 ρ(x)dx > 0, (2.24) follows. Remark 2.4. If, in addition, α 0 β 0 ≤ 0 and α 1 β 1 ≥ 0, then using a modified Prüfer system as in [START_REF] Birkhoff | Ordinary Differential Equations[END_REF][START_REF] Harris | Asymptotics of eigenvalues for regular sturm-liouville problems[END_REF] we can actually prove that

λ n ≥ Cn 2
for n ≫ 1.

We now turn our attention to the generating functions g i (i ≥ 0) defined along (1.20)-(1.25).

Proposition 2.5.

(i) g 0 (x) = (α 2 0 + β 2 0 ) -1 (β 0 -α 0 x)
(ii) There are some constants C, R > 0 such that

||g i || W 2,p (0,1) ≤ C R i (i!) 2-1 p ∀i ≥ 0• (2.50)
Proof. (i) is obvious. For (ii), we first notice that g i may be written as

g i (x) = x 0 s 0 ρ(σ)g i-1 (σ)dσ ds.
(2.51)

Let q ∈ [1, ∞) be the conjugate exponent of p, i.e. p -1 + q -1 = 1. We need the following Lemma 2.6. Let f ∈ L ∞ (0, 1) and g(x) =

x 0

s 0 ρ(σ)f (σ)dσ ds. If |f (x)| ≤ Cx r for a.e. x ∈ (0, 1) (2.52)
for some constants C, r ≥ 0, then

|g(x)| ≤ C ||ρ|| L p q 1 q x r+ 1 q +1 (r + 1 q ) 1 q (r + 1 q + 1) ∀x ∈ [0, 1]. ( 2 

.53)

Proof of Lemma 2.6. From the Hölder inequality and (2.52), we have for all s ∈ (0, 1)

| s 0 ρ(σ)f (σ)dσ| ≤ ||ρ|| L p (0,s) ||f || L q (0,s) ≤ C ρ|| L p (0,1) s rq+1 rq + 1 1 q so that |g(x)| ≤ C||ρ|| L p (0,1) x r+ 1 q +1
(rq + 1)

1 q (r + 1 q + 1) ∀x ∈ [0, 1].
Iterated applications of Lemma 2.6 yield

|g i (x)| ≤ ||g 0 || L ∞ ||ρ|| L p q 1 q i x i( 1 q +1) i j=1 1 q + (j -1)(1 + 1 q ) 1 q i j=1 j(1 + 1 q ) ≤ ||g 0 || L ∞ ||ρ|| L p q 1 q i 1 1 q (1 + 1 q ) i-1 (i -1)! 1 q i!(1 + 1 q ) i ≤ C R i i! 1+ 1 q if we pick R < ||ρ|| -1 L p q 1 q (1 + 1 q ) 1+ 1 q and C ≫ 1. Since 1/q = 1 -1/p, we infer that ||g i || L ∞ ≤ C R i i! 2-1 p
which, combined with (1.23), yields (2.50).

Remark 2.7.

(1) The power of i! in the computations above is essentially sharp, since

s i i! ≤ i j=1 (r + js) ≤ s i (i + 1)! for 0 ≤ r ≤ s. (2) When p = 1, the estimate ||g i || L ∞ (0,1) ≤ C/(R i i!) is not sufficient to ensure the conver- gence of the series in (1.16) when f ∈ G s ([0, T ]) with 1 < s < 2.
The fact that we can expand the eigenfunctions in terms of the generating functions is detailed in the following Proposition 2.8. There is some sequence (ζ n ) n≥0 of real numbers such that for all n ≥ 0

e n = ζ n i≥0 (-λ n ) i g i in W 2,p (0, 1).
(2.54)

Furthermore, for some constant C > 0, we have

|ζ n | ≤ C(1 + |λ n | 3 
2 ) ∀n ≥ 0.

(2.55)

Proof. From (2.50), we infer that the series in (2.54) is absolutely convergent, hence convergent, in W 2,p (0, 1). Let ẽ := 

ζ n i≥0 (-λ n ) i g i , where ζ n ∈ R. Then ẽ′′ = ζ n i≥1 (-λ n ) i ρg i-1 = -λ n ρẽ in L p (0,
β 0 ẽ(0) -α 0 ẽ′ (0) = ζ n β 0 g 0 (0) -α 0 g ′ 0 (0) = ζ n . Hence, if we pick ζ n := β 0 e n (0) -α 0 e ′ n (0), (2.56)
we have that E := e n -ẽ satisfies

α 0 E(0) + β 0 E ′ (0) = β 0 E(0) -α 0 E ′ (0) = 0
and hence E(0) = E ′ (0) = 0 which, when combined with -E ′′ = λ n ρE, yields E ≡ 0, i.e. e n = ẽ. Thus (2.54) holds with ζ n as in (2.56). To estimate ζ n , we remind that e n satisfies T (e n ) = µ n e n , and hence

µ n a(e n , e n ) = 1 0 ρ e 2 n dx = 1. Since a(e n , e n ) ≥ C||e n || 2 H 1 , we infer that ||e n || 2 H 1 ≤ Cµ -1
n , and hence

|e n (0)| + |e n (1)| ≤ C||e n || H 1 ≤ C(1 + |λ n | 1 
2 ). On the other hand, (2.21) yields

||e ′′ n || L p ≤ C|λ n | ||ρ|| L p ||e n || H 1 ≤ C(1 + |λ n | 3 2 ). Thus |ζ n | ≤ C||e n || W 2,p ≤ C(1 + |λ n | 3 
2 ).

Since p > 1, for any s ∈ (1, 2 -1 p ) and any 0 < τ < T , one may pick a function ϕ ∈ G s ([0, 2T ]) such that

ϕ(t) = 1 if t ≤ τ, 0 if t ≥ T.
We are in a position to prove the null controllability of (1.11)- (1.14). Let u 0 ∈ L 2 ρ . Since (e n ) n≥0 is an orthonormal basis in L 2 ρ , we can write

u 0 = n≥0 c n e n in L 2 ρ (2.57) with n≥0 |c n | 2 < ∞. Let y(t) := ϕ(t) n≥0 c n ζ n e -λnt for t ∈ [τ, T ] (2.58) and u(x, t) = n≥0 c n e -λnt e n (x) if 0 ≤ t ≤ τ, i≥0 y (i) (t)g i (x) if τ < t ≤ T.
(2.59)

The main result in this section is the following Theorem 2.9. Let p ∈ (1, ∞], ρ ∈ L p (0, 1) with ρ(x) > 0 for a.e. x ∈ (0, 1), T > 0, τ ∈ (0, T ), and (α 0 , β 0 ), (α 1 , β 1 ) ∈ R 2 \ {(0, 0)}. Let u 0 ∈ L 2 ρ be decomposed as in (2.57), let s ∈ (1, 2 -1/p), and let y be as in (2.58). Then y ∈ G s ([τ, T ]), and the control

h(t) = 0 if 0 ≤ t ≤ τ, i≥0 y (i) (t)(α 1 g i (1) + β 1 g ′ i (1)) if τ < t ≤ T. (2.60)
is such that the solution u of (1.11)-(1.14) satisfies u(., T ) = 0. Moreover u is given by

(2.59), h ∈ G s ([0, T ]), and u ∈ C([0, T ], L 2 ρ ) ∩ G s ([ε, T ], W 2,p (0, 1 
)) for all 0 < ε ≤ T .

Proof. Let C + := {z = t + ir; t > 0, r ∈ R}. We notice that the map z → n≥0 c n ζ n e -λnz is analytic in C + . Indeed, by (2.24) and (2.55), the series is clearly uniformly convergent on any compact set in C + . It follows that the map t

→ n≥0 c n ζ n e -λnt is (real) analytic in (0, ∞), hence in G 1 ([τ, T ]) ⊂ G s ([τ, T ]). Thus y ∈ G s ([τ, T ]
) by a classical result (see e.g. [START_REF] Rudin | Real and complex analysis[END_REF]Theorem 19.7]). Let ū denote the function defined in the r.h.s. of (2.59). We first prove that ū ∈ G 1 ([ε, τ ], W 2,p (0, 1)) for all ε ∈ (0, τ ). We have for k ∈ N and ε ≤ t ≤ τ ,

||∂ k t (c n e -λnt e n )|| W 2,p = |c n | |λ n | k e -λnt ||e n || W 2,p ≤ C|c n |(1 + |λ n | k+ 3 2 )e -|λn|ε ≤ C |c n | n + 1 (1 + |λ n | k+3 )e -|λn|ε ≤ C |c n | n + 1 (1 + ε -k-3 (k + 3)!),
where we used (2.24) and x k /k! ≤ e x for x > 0 and k ∈ N. Thus, applying Cauchy-Schwarz inequality, we obtain for k ∈ N, ε ≤ t ≤ τ and some C, δ > 0

||∂ k t u|| W 2,p ≤ n≥0 ||∂ k t (c n e -λnt e n )|| W 2,p ≤ C δ k k! which gives that ū ∈ G 1 ([ε, τ ], W 2,p (0, 1)). It is clear that ū ∈ C([0, τ ], L 2 ρ ). Let us check that ū(x, τ -) = ū(x, τ + ). We have that for all x ∈ [0, 1] ū(x, τ -) = n≥0 c n e -λnτ e n (x) = n≥0 c n e -λnτ ζ n i≥0 (-λ n ) i g i (x) (2.61) = i≥0 n≥0 c n ζ n e -λnτ (-λ n ) i g i (x) (2.62) = i≥0 y (i) (τ )g i (x) (2.63) = ū(x, τ + ).
For (2.61) we used (2.54). For (2.62), we used Fubini's theorem for series, which is licit for i,n≥0

|c n ζ n e -λnτ λ i n g i (x)| ≤ C i,n≥0 |c n | n + 1 (1 + |λ n | i+3 ) e -|λn|τ R i i! 2-1 p ≤ C i,n≥0 |c n | n + 1 (1 + τ -i-3 (i + 3)!) 1 
R i i! 2-1 p ≤ C( n≥0 |c n | n + 1 )( i≥0 1 + τ -i-3 (i + 3)! R i i! 2-1 p ) < ∞.
Finally for (2.63), we just used the fact that ϕ(τ ) = 1 and ϕ (i) (τ ) = 0 for i ≥ 1. It remains to prove that ū ∈ G s ([τ, T ], W 2,p (0, 1)). Since y ∈ G s ([τ, T ]), there are some constants C, ρ > 0 such that

|y (i) (t)| ≤ C(i!) s /ρ i . It follows that for t ∈ [τ, T ] i≥0 ||∂ j t [y (i) (t)g i ] || W 2,p = i≥0 ||y (i+j) (t)g i || W 2,p ≤ C i≥0 (i + j)! s ρ i+j 1 R i i! 2-1 p ≤ C( 2 s ρ ) j   i≥0 ( 2 s ρR ) i 1 i! 2-1 p -s   j! s (2.64)
where we used (i + j)! ≤ 2 i+j i!j!. Note that the series converges in (2.64), since s < 2 -1 p . Thus ū ∈ G s ([τ, T ], W 2,p (0, 1)). It is clear that (1.11) is satisfied by ū in the distributional sense in (0, 1) × (0, τ ) and in (0, 1) × (τ, T ). In particular

∂ j t ū(x, τ + ) = (ρ -1 ∂ 2 x ) j ū(x, τ + ) = (ρ -1 ∂ 2 x ) j ū(x, τ -) = ∂ j t ū(x, τ -)
, for the two series in (2.59) coincide at t = τ , hence so do their space derivatives. This shows that ū ∈ G s ([ε, T ], W 2,p (0, 1)) for all ε ∈ (0, τ ), and that (1.11) holds for ū in (0, 1) × (0, T ).

The function h defined in (2.60) satisfies (1.13) (with u replaced by ū), and hence h ∈ G s ([0, T ]) (for ū ∈ G s ([ε, T ], W 2,p (0, 1)) and W 2,p (0, 1) ⊂ C 1 ([0, 1])). (1.12) and (1.14) are clearly satisfied by ū, and hence the solution u of (1.11)-(1.14) is ū. Finally u(., T ) = 0, for y (i) (T ) = 0 for all i ≥ 0.

2.3.

End of the proof of Theorem 1.1. Let a, b, c, ρ, K, p, α 0 , β 0 , α 1 , β 1 , T , and τ be as in the statement of Theorem 1.1. Pick any u 0 ∈ L 1 ρ and any s ∈ (1, 2 -1/p). Let u denote the solution of (1.1)-(1.4) for a given h ∈ G s ([0, T ]). Define v, y, ρ, and û(y, t) as in Section 2.1. Then û solves (2.10)-(2.13) with initial state û0 (y(x)) = u 0 (x)/v(x). It may occur that û0 ∈ L 2 ρ.

However, û0 ∈ L 1 ρ, for From the proof of Lemma 2.3, we know that the bilinear form a(u, v) is a scalar product in H whose induced Hilbertian norm is equivalent to the usual H 1 -norm, so that H can be viewed as a Hilbert space for this scalar product. Then it is easy to see that (i) ( √ µ n e n ) n≥0 is an orthonormal basis in H;

(ii) If, for a ∈ R, H a denotes the completion of Span(e n ; n ≥ 0) for the norm

|| n≥0 c n e n || a :=   n≥0 µ -a n |c n | 2   1 2 
, then H 0 = L 2 ρ and H 1 = H; (iii) Identifying L 2 ρ with its dual, we obtain the diagram

H 1 = H ⊂ L 2 ρ = (L 2 ρ) ′ ⊂ H ′ = H -1 .
See e.g. [24, pp. 7-17] for details. Since for any w ∈ H ⊂ L ∞ (0, 1), ρ ) and it takes the value û0 at t = 0. The solution û defined in (2.59) with y as in (2.58) solves (2.10)-(2.13) with the control input ĥ(t) defined in (2.60). Then the pair u(x, t) := e Kt v(x)û(y(x), t),

(2.65) h(t) := e Kt ĥ(t) (2.66) satisfies (1.1)-(1.4) and u(., T ) = 0. Pick any ε ∈ (0, T ). Since v, y ∈ W 1,1 (0, 1), û ∈ G s ([ε, T ], W 2,p (0, 1)), and ĥ ∈ G s ([0, T ]), we have that

u ∈ G s ([ε, T ], W 1,1 (0, 1)), h ∈ G s ([0, T ]).
Finally, since by (2.8) and (2.20) we have ãu x = e Kt (ãv x )û(y(x), t) + (Lv) -1 ûy (y(x), t)

and since (Lv) -1 , ãv x ∈ W 1,1 (0, 1) and û ∈ G s ([ε, T ], W We shall show that the first step in the proof of Theorem 1.1 (see Section 2.1) can be slightly modified to reduce (1.36)-(1.39) to the canonical form (1.11)- (1.14). Next, the conclusion of Theorem 1.3 will follow from Theorem 2.9. We distinguish two cases: (i) 0 ≤ µ < 1/4 (subcritical case) and (ii) µ = 1/4 (critical case). (i) Assume that 0 ≤ µ < 1/4. We relax (2.4)-(2.5) to the problem

v xx + µ x 2 v = 0, x ∈ (0, 1), (3.1) 
v(x) > 0, x ∈ (0, 1), (3.2) 
v -2 ∈ L 1 (0, 1).

(3.

3)

The general solution of (3.1) is found to be

v(x) = C 1 x r 1 + C 2 x r 2
where C 1 , C 2 ∈ R are arbitrary constants, and r 1 , r 2 denote the roots of the equation r 2 -r +µ = 0, namely

r 1 = 1 - √ 1 -4µ 2 ∈ (0, 1 2 ), r 2 = 1 + √ 1 -4µ 2 ∈ ( 1 2 , ∞).
Then v(x) := x r 1 satisfies (3.1)- (3.3).

From (1.36), we have that ã = a ≡ 1, B ≡ 0. We set u 1 := u, Again, y : [0, 1] → [0, 1] is an increasing bijection with y, y -1 ∈ W 1,1 (0, 1), and û satisfies ûyy -ρ(y)û t = 0, y ∈ (0, 1), t ∈ (0, T ), (3.4) û(0, t) = 0, t ∈ (0, T ), (3.5)

u 2 (x, t) := u(x, t) v(x) , L := 1 0 v -2 (s)ds < ∞, y(x) := L -1 x 0 v -2 (s)ds,
(α 1 + β 1 r 1 )û(1, t) + β 1 L ûy (1, t) = h(t), t ∈ (0, T ), (3.6) û0 (y, 0) = û0 (y) := u 0 (x) v(x) , y ∈ (0, 1)• (3.7) Note that û0 ∈ L 2 ρ, for 1 0 |û 0 (y)| 2 ρ(y)dy = L 1 0 |u 0 (x)| 2 dx < ∞.
On the other hand ρ ∈ L ∞ (0, 1). By Theorem 2.9, there is some h ∈ G s ([0, T ]) such that the solution û of (3.4)-(3.7) satisfies û(., T ) = 0. Furthermore

û ∈ G s ([ε, T ], W 2,∞ (0, 1)). ( 3.8) 
The corresponding trajectory u satisfies (1.36)-(1.39) and u(., T ) ≡ 0. Finally, from the expressions

u = vu 2 = vû(y(x), t) u x = v x û(y(x), t) + vû y (y(x), t) dy dx , (3.8) 
, and the explicit form of v, we readily see that u

∈ G s ([ε, T ], W 1,1 (0, 1)) and x r u x ∈ G s ([ε, T ], C 0 ([0, 1])) for r > 1 -r 1 = (1 + √ 1 -4µ)/2 and ε ∈ (0, 1). 
(ii) Assume now that µ = 1/4. Assume first that β 1 = 0. We notice that the general solution of 

G s ([ε, T ], W 1,1 (0, 1)) ∩ C ∞ ([ε, 1] × [ε, T 
]) (by using classical regularity results). For the general Robin-Neumann condition at x = 1 it is sufficient to set h(t) := α 1 u(1, t) + β 1 u x (1, t) with the trajectory u constructed above with the Dirichlet control at x = 1. The proof of Theorem 1.3 is complete. As a possible application, we consider the boundary control by the flatness approach of radial solutions of the heat equation in the ball B(0, 1) ⊂ R N (2 ≤ N ≤ 3). Using the radial coordinate r = |x|, we thus consider the system

u rr + N -1 r u r -u t = 0, r ∈ (0, 1), t ∈ (0, T ), (3.9) u r (0, t) = 0, t ∈ (0, T ), (3.10) α 1 u(1, t) + β 1 u r (1, t) = h(t), t ∈ (0, T ) (3.11) u(r, 0) = u 0 (r), r ∈ (0, 1).
(3.12)

Note that Theorem 1.1 cannot be applied directly to (3.9)-(3.12), for (1.7) fails. (Note that, in sharp contrast, the control on a ring-shaped domain {r 0 < |x| < r 1 } with r 1 > r 0 > 0 is fully covered by Theorem 1.1, the coefficients in (3.9) being then smooth and bounded.)

We use the following change of variables from [START_REF] Colton | Integral operators and reflection principles for parabolic equations in one space variable[END_REF] which allows to remove the term with the first order derivative in r in (3.9):

u(r, t) = ũ(r, t) exp(- 1 2 r 0 N -1 s ds) = ũ(r, t) r N-1 2 • (3.13) Then (3.9) becomes ũrr + (N -1)(3 -N ) 4 ũ r 2 -ũt = 0. (3.14)
This equation has to be supplemented with the boundary/initial conditions ũ(0, t) = 0, t ∈ (0, T ), (3.15)

(α 1 - N -1 2 β 1 )ũ(1, t) + β 1 ũr (1, t) = h(t), t ∈ (0, T ), (3.16) ũ(r, 0) = r N-1 2 u 0 (r), r ∈ (0, R). (3.17) 
For N = 3, (3.14) reduces to the simple heat equation ũrr -ũt = 0 to which Theorem 1.1 can be applied. In particular ũ ∈

G s ([ε, T ], W 2,∞ (0, 1)). Actually, it is well known that ũ ∈ C ∞ ([0, 1] × [ε, T ]
), so that we can write a Taylor expansion ũ(r, t) = rũ r (0, t) + r 3 6 ũrrr (0, t) + O(r 4 ),

where we used the fact that ũ(0, t) = ũrr (0, t) = 0. This yields Since û(., t) ∈ W 2,∞ (0, 1), both I 1 and I 3 are finite. On the other hand, using û(0, t) = 0, we obtain |û(y(r), t)| ≤ Cy(r) = C | ln r| , and hence I 2 < ∞. Thus We apply first a reduction to a canonical form similar to (1.11)-(1.14) by doing exactly the same changes of variables as those described in Section 2.1. With u 1 , u 2 , y, û, and ρ defined as in (2.6)-(2.9), we infer from (1.32) that e -B (av 2 e B u 2,x ) x = ρv 2 u 2,t + ve -Kt χ ω f.

Multiplying each term in the above equation by L 2 av 2 e 2B , and using the fact that ∂ y = Lav 2 e B ∂ x , we arrive to ûyy = ρ(y)û t + χ ω f ,

where ω = ( l1 , l2 ) := (y(l 1 ), y(l 2 )) and f (y(x), t) := L 2 a(x)v 3 (x)e 2B(x) e -Kt χ ω (x)f (x, t).

Let û0 (y(x)) := u 0 (x)/v(x). Pick l′ 1 , l′ 2 such that l1 < l′ 1 < l′ 2 < l2 , and a function ϕ ∈ C ∞ ([0, 1]) such that ϕ(y) = 1 for 0 ≤ y ≤ l′ 1 and ϕ(y) = 0 for l′ 2 ≤ y ≤ 1. Applying Theorem 1.1, we can find two functions h 1 , h 2 ∈ G s ([0, T ]) such that the solutions û1 , û2 of the following systems û1 yy -ρ(y)û 1 t = 0, y ∈ (0, 1), t ∈ (0, T ), ( Then it is sufficient to set û(y, t) := ϕ(y)û 1 (y, t) + (1 -ϕ(y))û 2 (y, t), (4.9) f (y, t) := ϕ ′′ (y)(û 1 (y, t) -û2 (y, t)) + 2ϕ ′ (y)(û 1 y (y, t) -û2 y (y, t)). (4.10)

Note that f is supported in [ l′ 1 , l′ 2 ] × [0, T ], with f ∈ G s ([ε, T ], W 1,1 (0, 1)) for all ε ∈ (0, T ), and that û solves ûyy -ρ(y)û t = χ ω f , y ∈ (0, 1), t ∈ (0, T ), (4.11) α0 û(0, t) + β0 ûy (0, t) = 0, t ∈ (0, T ), (4.12) α1 û(1, t) + β1 ûy (1, t) = 0, t ∈ (0, T ), (4.13) û(y, 0) = û0 (y), y ∈ (0, 1), (4.14) û(y, T ) = 0, y ∈ (0, 1).

(4.15)

Let f (x, t) := L 2 a(x)v 3 (x)e 2B(x) e -Kt -1 f (y(x), t).

Then f is supported in [y -1 ( l′ 1 ), y -1 ( l′ 2 )] × [0, T ] ⊂ ω × [0, T ]. We claim that f ∈ L 2 (0, T, L 2 a (ω)). Indeed, we have that T 0 ω | f (y, t)| 2 dydt, and the last integral is finite, since f is given by (4.10) and û1 , û2 ∈ L 2 (0, T, H 1 (0, 1)). For û1 , this can be seen by scaling (4.1) by û1 , integrating over (0, 1) × (0, t) for 0 < t ≤ T , and using Gronwall's lemma combined with Lemma 2.3. Thus f ∈ L 2 (0, T, L 2 a (ω)). Let u(x, t) := e Kt v(x)û(y(x), t).

Then u solves (1.32)-(1.35) and u(., T ) = 0.
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 211 Proof of Theorem 1.Reduction to the canonical form (1.11)-(1.14). Let a, b, c, ρ, and p be as in(1.5

  )w(s)ds ≥ 0 and hence w(x) -w(x 0 ) = x x 0 w ′ (s)ds ≥ 0.

  e. Integrating in (2.42) over (a, b), where 0 ≤ a < b ≤ 1, gives then θ(b, λ) -θ(a, λ) = b a cos 2 θ(x, λ)dx + λ b a ρ(x) sin 2 θ(x, λ)dx. Letting λ → ∞ in (2.47) and using (2.48)-(2.49), we infer b a ρ(x) sin 2 θ(x)dx = 0.

  1), where we used (1.20) and (1.23). (1.21) and (1.24)-(1.25) yield α 0 ẽ(0) + β 0 ẽ′ (0) = 0. On the other hand, using (1.22) and (1.24)-(1.25), we obtain

1 0 1 0L 1 0

 111 |û 0 (y)|ρ(y)dy = |û 0 (y(x))|ρ(y(x))| dy dx |dx = |u 0 (x)|v(x)e B(x) ρ(x)dx < ∞.

1 0 1 0 1 0 1 0

 1111 |û 0 (y)w(y)|ρ(y)dy ≤ ||w|| L ∞ |û 0 (y)|ρ(y)dy ≤ C||w|| H |u 0 (x)|ρ(x)dx, we infer that û0 ∈ H ′ . Setting c n := û0 (y)e n (y)ρ(y)dy for n ≥ 0, the series ∞ n=0 c n e -λnt e n belongs to C([0, T ], H ′ ) ∩ C((0, τ ], L 2

  and û(y, t) := u 2 (x, t), ρ(y) := L 2 v 4 (x).

( 3 . 1 )

 31 takes the form v(x) = C 1 √ x ln x + C 2 √ x. Picking v(x) := -√ x ln x, we see that (3.1)-(3.3) are satisfied. Performing the same change of variables as in (i) (but with the new expression of v) and applying again Theorem 2.9, we infer the existence of h ∈ G s ([0, T ]) such that the solution û of (3.4)-(3.7) satisfies û(., T ) = 0. The corresponding trajectory u satisfies (1.36)-(1.39) and u(., T ) = 0. Furthermore, u ∈

u 0 v - 2 r û - 1 1 0(|u| 2 + 1 0r 1 0

 0211211 r (0, t) = r 3 ũrrr (0, t) + O(r 2 ), so that (3.10) is fulfilled. For N = 2, (3.14)-(3.17) is of the form (1.36)-(1.39) with µ = 1/4. Therefore Theorem 1.3 can be applied to (3.14)-(3.17). Our concern now is the derivation of (3.10) when going back to the original variables. Recall that u(r, t) = ũ(r, t) √ r , v(r) = -√ r ln r, y(r) = L -1 r (s)ds, û(y, t) = ũ(r, t) v(r) = -u(r, t) ln r , so that, with dy/dr = (Lr ln 2 r) -1 , u r = -1 Lr ln r ûy . This yields at fixed t ∈ (0, T ) |u r | 2 )rdr ≤ ln 2 r|û(y(r))| 2 dr + C |û y (y(r))| 2 L 2 r ln 2 r dr =: I 1 + I 2 + I 3 .

1 0 (|u| 2 + 1 0 |u rr + u r r | p rdr = 1 0|u t | p rdr = 1 0 4 .

 121114 |u r | 2 )rdr < ∞, while for p ∈ (2, ∞) |û t (y(r), t)| p r| ln r| p dr < ∞.Thus the function x → u(|x|, t) belongs to W 2,p (B(0, 1)) ⊂ C 1 (B(0, 1)), so that (3.10) is satisfied. Appendix: proof of Corollary 1.2

  α0û1 (0, t) + β0 û1 y (0, t) = 0, t ∈ (0, T ), (4.2)û1 y (1, t) = h 1 (t), t ∈ (0, T ),(4.3)û1 (y, 0) = û0 (y), y ∈ (0, 1), (4.4) and û2 yy -ρ(y)û 2 t = 0, y ∈ (0, 1), t ∈ (0, T ), (4.5)û2 y (0, t) = h 2 (t), t ∈ (0, T ), (4.6) α1 û2 (1, t) + β1 û2 y (1, t) = 0, t ∈ (0, T ),(4.7)û2 (y, 0) = û0 (y), y ∈ (0, 1), (4.8) satisfy û1 (y, T ) = û2 (y, T ) = 0 for all y ∈ [0, 1].

1 0 1 0

 11 (x, t)| 2 a(x)dxdt ≤ C T 0 χ ω (x)(L 3 a(x)v 4 (x)e 3B(x) e -2Kt )|f (x, t)| 2 dxdt = C T 0 χ ω (y(x))| f (y(x), t)| 2 | dy dx |dxdt = C

  as desired. Let f ∈ L 2 ρ be given. The linear form L(v) = 1 0 ρf vdx being continuous on H, it follows from Lax-Milgram theorem that there exists a unique function u ∈ H such that

  Remark 2.10. Since the map x → y(x) is absolutely continuous and strictly increasing on [0, 1], and the map y → ûy (y, t) is absolutely continuous on [0, 1] for all t ∈ (0, T ], we infer that x → ûy (y(x), t) is absolutely continuous on [0, 1] for all t ∈ (0, T ]. (See [6, Ex. 5.8.59 p. 391].) Thus au x (., t) ∈ W 1,1 (0, 1) for all t ∈ (0, T ].

	2,p (0, 1)), it follows that
	ãu x , au x ∈ G s ([ε, T ], C 0 ([0, 1]))
	and that (1.2)-(1.3) are satisfied. The proof of Theorem 1.1 is complete.
	3. Proof of Theorem 1.3
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