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In this paper, a suboptimal distributed MPC approach for linear interconnected systems is considered, where it is assumed that the systems are coupled through their control inputs and an optimal reference tracking problem for the overall system is solved. The approach is applied to distributed MPC of a hydro-power valley case study.

INTRODUCTION

Model predictive control (MPC) involves the solution at each sampling instant of a finite horizon optimal control problem subject to the system dynamics, and state and input constraints. Solving in a centralized way MPC problems for large-scale systems may be impractical due to the topology of the plant and data communication and the large number of decision variables. Recently, several approaches for decentralized and parallel implementation of MPC algorithms have been proposed, [START_REF] Constantinides | Parallel architectures for model predictive control[END_REF] - [START_REF] Maestre | Distributed model predictive control made easy[END_REF].

In [START_REF] Venkat | Distributed MPC strategies with application to power system automatic generation control[END_REF] - [START_REF] Giselsson | Accelerated gradient methods and dual decomposition in distributed model predictive control[END_REF], approaches for distributed/decentralized MPC for systems consisting of linear interconnected subsystems have been developed. The approach in [START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF] is based on the dual decomposition method [START_REF] Cohen | Optimization with an auxiliary constraint and decomposition[END_REF], where large-scale optimization problems are handled by using Lagrange multipliers to relax the couplings between the sub-problems. In [START_REF] Giselsson | Accelerated gradient methods and dual decomposition in distributed model predictive control[END_REF], a distributed optimization algorithm based on accelerated gradient methods using dual decomposition is proposed and its performance is evaluated on optimization problems arising in distributed MPC. Also, approaches for distributed MPC for systems composed of several nonlinear subsystems have been proposed (e.g. [START_REF] Raimondo | Decentralized MPC of nonlinear systems: An input-to-state stability approach[END_REF], [START_REF] Heidarinejad | Multirate Lyapunov-based distributed model predictive control of nonlinear uncertain systems[END_REF], [START_REF] Grancharova | Distributed quasi-nonlinear model predictive control by dual decomposition[END_REF]).

In this paper, a modification of the suboptimal distributed MPC approach [START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF] is considered, where it is assumed that the interconnected linear systems are coupled through their control inputs and an optimal reference tracking problem for the overall system is solved. The approach is applied to distributed MPC of a hydro-power valley case study, described in [START_REF] Flórez | Control studies by decomposition-coordination for the optimization of the operation of hydro-power valleys[END_REF].

THE HYDRO-POWER VALLEY CASE STUDY

Description

The hydro-power valley is a set of hydroelectric production plants, depending on interconnected water resources (typically along a river) and aiming at producing a given amount of electricity according to a daily power-generation program for each power plant. In each plant, the generated power is a function of the turbine flows, which at the same time influence the reservoir levels that need to be controlled such that they are within the specified limits [START_REF] Flórez | Control studies by decomposition-coordination for the optimization of the operation of hydro-power valleys[END_REF]. The control system design for a hydro-power valley should take into account the fact that the valley can face unpredictable events, such as plant failures or meteorological changes.

The configuration of the considered hydro-power valley is depicted in Fig. 1 [START_REF] Flórez | Control studies by decomposition-coordination for the optimization of the operation of hydro-power valleys[END_REF].
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Power station 1 Lake Tank Turbine Turbine/pump Fig. 1. The hydro-power valley [START_REF] Flórez | Control studies by decomposition-coordination for the optimization of the operation of hydro-power valleys[END_REF].

Each power plant in the valley is characterized by the dynamics of its water storage, described as follows [START_REF] Flórez | Control studies by decomposition-coordination for the optimization of the operation of hydro-power valleys[END_REF]:

in out dh S f f dt   (1) 
where h denotes the water level, S the water surface, and in f , out f the input and output water flows, respectively. These water flows depend on the interconnections between the plants as well as the turbine flows, considered as the control inputs, and disturbance flows. By considering a sampled-data version of equation ( 1) for a purpose of discrete-time control, and gathering all equations of this form, the whole system is modeled as a classical state space representation [START_REF] Flórez | Control studies by decomposition-coordination for the optimization of the operation of hydro-power valleys[END_REF]:
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In (2): 2) are the following [START_REF] Flórez | Control studies by decomposition-coordination for the optimization of the operation of hydro-power valleys[END_REF]:
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where s T is the sampling time and 1 2 3 , , S S S are the crosssectional areas of the three tanks (see Fig. 1). The following constraints are imposed on the levels in the three tanks and on the flows through the four turbines [START_REF] Flórez | Control studies by decomposition-coordination for the optimization of the operation of hydro-power valleys[END_REF]: 
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Decomposition

The hydro-power valley system, described above, can be decomposed into the following three subsystems: Subsystem 1:
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It can be seen from equations ( 9), ( 11) and ( 13) that the three subsystems are coupled through their control inputs.

DISTRIBUTED MPC OF LINEAR SYSTEMS COUPLED THROUGH THEIR INPUTS

Consider a system composed by the interconnection of M local subsystems described by the following linear discretetime models:
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The following constraints are imposed on the subsystems: min, max,
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The following assumptions are made:
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 and the cost function given by:

1 , 1 | , 0 1 ( , ) ( , ) N M i i t k t i t k k i J U x l x u          (26) Here: , 1 | , 2 2 , 1 | , 1 | , , ( , ) 
|| || || || i i i i t k t i t k ref ref i t k t i t k t Q i t k i t k R l x u x x u u              (27) 
is the stage cost for the i-th subsystem with corresponding weighting matrices , 0 i i Q R  , and N is a finite horizon. It is supposed that N T  ( T being the specified finite horizon of the reference trajectories and the disturbance forecast, cf. assumptions A1 and A2). The sets X i and U i are defined by: min, max,
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and they represent convex (polyhedral) sets. Problem P1 can be decomposed by using the dynamic dual decomposition approach [START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF], [START_REF] Cohen | Optimization with an auxiliary constraint and decomposition[END_REF]. The following decoupled state equations can be formulated:
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The variable i n i v  can be interpreted as the influence of the other subsystems in the update of i x . Then, the constraints (31) are relaxed by introducing the corresponding Lagrange multipliers i n i p  (also referred to as prices) in the cost function (26) and the following distributed reference tracking MPC problem is formulated: Problem P2 (Distributed MPC):
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Since the problem P1 is convex and the Slater's condition holds for the inequality constraints (21)-( 22), then opt * ( ) ( )

V
x V x  (there will be no duality gap between the primal and the dual problem [START_REF] Boyd | Convex optimization[END_REF]).

The inner decoupled optimization problems in problem P2 are Quadratic Programming (QP) sub-problems, since the constraints (33) are linear and the stage cost function ,
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 the optimal solution of P3 i . It should be noted that the optimal solution to these sub-problems depends on the values of the prices P . From the formulation of the distributed MPC problem P2 it can be seen that the computation of * i U , * i X and * i V for given prices P is completely decentralized. However, finding the optimal prices requires coordination [START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF]. According to the duality theory [START_REF] Boyd | Convex optimization[END_REF] 
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In [START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF], a suboptimal algorithm for on-line computation of distributed MPC for linear interconnected systems (coupled through their states) has been suggested, where the prices are updated iteratively by a gradient step (similar to (40)). Also, a stopping criterion for the iterative updates is proposed in [START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF] that can be locally verified by each subsystem and that guarantees closed-loop suboptimality above a pre-specified level and asymptotic stability of the overall system. The algorithm in [START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF] is adapted to the case considered here, where the linear systems are coupled through their inputs.

SIMULATION RESULTS FOR THE DISTRIBUTED MPC OF THE HYDRO-POWER VALLEY The distributed MPC approach is applied to the hydro-power valley, described above. The sampling time in the model ( 2)-( 6) is 

Q i   , 1 diag(1, 10) R  , 2 3 1 R R   .
The distributed MPC approach, described in the previous section is used to generate the four control inputs (turbine flows) for an initial state x .

It can be seen that the closed-loop trajectories obtained with the suboptimal distributed MPC approach deviate slightly from the reference ones. The accuracy of the tracking of water level 3

x can be improved by increasing the requirement for the level of suboptimality of the distributed MPC solution.
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  ) [726.4, 283.85, 264.2] [m] x t  and a disturbance 2 ( ) d t in the river flow, shown in Fig. 2 (it isassumed that 1 ( ) 0 d t  ). The obtained suboptimal trajectories of the four turbine flows and the water levels in the three tanks are depicted in Fig.3to Fig.9along with the reference trajectories generated by a supervisory optimization algorithm.
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 are constant matrices. It can be seen that the subsystems (15) are coupled through their control inputs. Let the overall state, control input, and disturbance input be denoted by:
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