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Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on
scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces,
large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold
serves to favor contraction over extension. While this mechanism is well understood in highly organized
striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a
mathematical model of the actin scaffold’s local two- or three-dimensional mechanics and identify four
competing contraction mechanisms. We predict that one mechanism dominates, whereby local deforma-
tions of the actin break the balance between contraction and extension. In this mechanism, contractile
forces result mostly from motors plucking the filaments transversely rather than buckling them
longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical

understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

DOI: 10.1103/PhysRevX.4.041002

I. INTRODUCTION

The structure and motion of living cells is largely
controlled by the continuous remodeling of their cytoske-
leton, which crucially involves the contractility of networks
of actin filaments (F-actin) and myosin molecular motors.
How macroscopic motion emerges from the protein-scale
interactions between these components was first under-
stood in the context of striated muscle [1]. There, individual
myosins are assembled into so-called “thick filaments,”
bottlebrush-shaped clusters of myosin capable of binding
several actin filaments and sliding along them for long
distances—for brevity, we refer to them as “motors” in the
following. In striated muscle, F-actin and motors are
strongly organized into a periodic array of so-called
sarcomeres, contractile units where the sliding action of
the motors is harnessed to produce contraction through
F-actin’s geometrical arrangement [Fig. 1(a)].

However, in many biological situations, contractile
F-actin and myosin assemblies—be they one-dimensional
bundles or two- or three-dimensional networks—Ilack the
organization found in sarcomeres [2-8]. While the bio-
chemical processes inducing the relative motion of the
motors and filaments are similar to the ones involved in
striated muscle, here the geometrical mechanisms used to
convert this relative motion into contraction in the absence
of organization are less clear. Indeed, the filaments and
motors do not have an intrinsic propensity towards
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contraction, and can a priori yield extension just as
easily. Figure 1(b) illustrates this property in a simple
one-dimensional example. Most theoretical models of
disordered actomyosin contractility circumvent this
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FIG. 1. Geometrical foundations of contractility. Motors
bound to filaments slide toward their “barbed ends,” as for
myosin II thick filaments. (a) In striated muscle, motors are
localized close to the filaments’ pointed ends. When activated,
every motor pulls in the neighboring filaments and thus induces
local contraction. (b) If filament polarities are not carefully
selected, striated muscle-like locally contractile configurations
(top) are just as likely as extensile ones (bottom), and the
overall behavior of the actomyosin assembly is unclear. (c) The
symmetry between contraction and extension subsists in a two-
or three-dimensional network. Throughout this article, filament
extremities may or may not be cross-linked to the surrounding
medium. Even though this is not represented here, cross-linked
filaments extend beyond the cross-links and farther into this
medium, and thus cannot freely rotate around these cross-links.
Thus, the barbed and pointed arrow ends on this schematic
merely indicate filament polarity; the actual barbed and pointed
ends of cross-linked filaments are typically farther away, inside
the surrounding medium.
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question by assuming from the onset that motors either
induce an average contractile stress in the actomyosin
medium [9] or, in more detailed descriptions, that they give
rise to localized contractile force dipoles [10]. These
studies then typically move on to consider the macroscopic
consequences of such mesoscopic behaviors. In contrast,
in this paper, we adopt a different focus and ask how
the contractility emerges from the networks’ microscopic
components in the first place.

This question is most easily discussed in one-
dimensional actomyosin assemblies, i.e., actomyosin
bundles. There, in vitro experiments demonstrate that
sarcomerelike organization is not necessary for contraction
[11], and thus, the symmetry between contraction and
extension illustrated in Fig. 1(b) is spontaneously broken.
Because geometry in one dimension is very simple, there
are strong geometrical constraints on the type of mecha-
nisms that can lead to such symmetry breaking [12].
Combining these theoretical constraints with further experi-
ments, we have recently shown that F-actin buckling under
longitudinal compression enables contraction by favoring
local filament collapse in the absence of sarcomerelike
organization [13].

The situation in two-and three-dimensional actomyosin
networks is more complex than that of bundles. There, too,
contraction arises in random-polarity, disordered in vitro
networks [14—16]. From a theoretical standpoint, however,
geometry in two or three dimensions is considerably richer
than in one dimension. As a result, several mechanisms
can a priori give rise to contraction, and symmetry
considerations are less easily exploited than in bundles.
Accordingly, a range of mechanisms for the emergence of
actomyosin contraction have previously been invoked in
different levels of detail, ranging from cartoon pictures
[10,17] to more quantitative numerical [18] and analytical
[19] approaches. However, there is no consensus regarding
their relative roles in either in vivo or in vitro actomyosin
contractility.

Here, we present the first comprehensive comparison of
contractility-inducing mechanisms in disordered cytoske-
letal networks. We first exploit symmetry considerations
in two and three dimensions to identify all possible local
contraction mechanisms. We then study them individually
and compare their relative magnitudes, thus determining
the dominant cause of contractility as a function of
experimental conditions. Filament deformation is found
to play a crucial role in most relevant regimes.

II. REQUIREMENTS FOR CONTRACTION

We first show that, unlike in striated muscle, filament
sliding alone is not sufficient to induce contraction in
disordered networks. We do this by studying a minimal,
sliding-only model and demonstrating that it cannot yield
contractility.

We consider a single motor bound to multiple filaments.
The filaments are themselves cross-linked to a surrounding
rigid external medium as illustrated in Fig. 1(c). We show
that overall network contraction cannot occur under the
following main assumptions: 1. the motor stall force does
not depend on its position, 2. the motor is pointlike, 3. the
motor is undeformable, 4. filaments behave as rigid rods.
The essence of our argument is as follows. In a network,
individual motors may exert either contractile or extensile
local forces depending on the polarities of the neighboring
filaments [as in Fig. 1(b)]. In a disordered system satisfying
the above assumptions, there are as many contractile as
extensile motors and the forces produced by the former
exactly compensate those produced by the latter. Therefore,
the network does not contract overall. Thus, overall
disordered actomyosin contractility requires the breaking
of at least one of these assumptions.

We first introduce some notation. The overall contrac-
tility of a rigid disordered network is characterized by the
average local force dipole [20] D exerted by an individual
motor, where

D= "> r-fo (1)

i a=B.,P

Here, i indexes the filaments as in Fig. 1(c), a = B, P
denote the directions of the filaments’ barbed and pointed
ends respectively; therefore, each term of the double sum
over i and a corresponds to a filament section in contact
with the motor. For instance, for the example of Fig. 1(c),
i € {1,2,3}, and thus the sum has six terms. The position
vector of a cross-link is denoted as r¢, and f¢ is the force
exerted on it by filament i [Fig. 1(c)]. A negative (positive)
D denotes a contractile (extensile) system. The portion of
filament between the motor and cross-linker (i,a) is
referred to as a “filament section,” and we denote its length
by L¢. At steady state, the motor exerts a longitudinal “stall
force” f directed toward the pointed end of each filament.
This force is transmitted to the cross-linkers through the
stretching and compression of the rigid filaments. We thus
introduce the stretching moduli k(L¢) of the filament
sections, i.e., their longitudinal Hookean spring constants.
In general, D is a function of f, the L¢’s, and the k(L{)’s.

We now present our argument in more detail. Consider
the filament-motor system of Fig. 1(c). For rigid filaments,
linear elasticity applies and the forces f¢ exerted on the
cross-linkers are proportional to the motor’s stall force.
Using Eq. (1) and noting that the 7/ are constants due to the
rigidity of the external medium, this implies

D f. (2)

Now, consider a new system obtained by reversing the
filament polarities of the original system—i.e., exchanging
the barbed and pointed ends in Fig. 1(c). As polarities are
reversed, the motor reverses its sliding direction on each
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filament, which is equivalent to changing the sign of its stall
force: freversed — ¢ Using Eq. (2), the polarity-reversed
force dipole is thus D®¥e"d — —D. Hence, if the original
system generates contractile forces, then the polarity-
reversed system generates the same amount of extensile
forces.

To complete our reasoning, we consider a large-scale
disordered network comprising many filament-motor sys-
tems embedded in a rigid medium. The rigid medium can
be described as linearly elastic, and thus the network’s
overall contractile dipole is proportional to the average
dipole of a filament-motor system. Because of the net-
work’s disorder, any individual filament-motor system is
just as likely to occur as its polarity-reversed counterpart.
Averaging the force dipoles over the whole network, we
thus find that individual contractile and extensile dipoles
cancel mutually. From this, we conclude that the network
has an overall vanishing contractile force dipole, which
completes our proof.

This result is quite general, as it requires only a minimal
form of disorder, namely, polarity-reversal symmetry (i.e.,
the property that any arrangement of filaments is just as
likely as its polarity-reversed counterpart). This is a variant
of a more powerful argument valid for one-dimensional
bundles [12]; a more formal presentation is given in the
Supplemental Material [21]. Interestingly, this polarity-
reversal symmetry can be broken not only through sarco-
meric organization, which yields contractility, but also in
solution through a dynamical process of motor-filament
coalescence and sliding, which favors extension [22].
However, this process is not relevant for the rigid networks
considered here.

III. COMPETING CONTRACTILITY
MECHANISMS

While the model considered in the previous section
cannot generate contractility, such contractility is exper-
imentally observed in actomyosin networks [11,14,16,23].
This discrepancy implies that this model is an oversimpli-
fication: one or several of its assumptions must be violated.
By successively relaxing each of these assumptions,
here we systematically review all essential contraction
mechanisms and predict the magnitude of the associated
contractile forces.

A. Position-dependent stall force

Early models of nonsarcomeric actomyosin bundles
[24,25] and networks [19] proposed that motors stop upon
reaching the filament barbed ends, staying there for some
time before eventually detaching. Although experimental
evidence for this behavior in actomyosin is lacking, the
resulting accumulation of immobile motors at the filament
barbed ends would generate sarcomerelike cross-linking
[Fig. 1(a)] and thus favor contraction.

HK X KX
XXX X
KX KX

filament 1
filament 2

FIG. 2. Contraction induced by a position-dependent stall
force. As in Fig. 1 in all other figures, black squares and blue
circles represent cross-links and motors, respectively. (a) Motors
in the vicinity of a pointed end typically induce an overall
contractile (pulling) force dipole as indicated by gray arrows
representing the projection of the forces on the direction of the
filaments. (b) Motors close to a barbed end have the opposite
effect. (c) We characterize the resulting net contractility by
averaging over all possible local cross-linking configurations.

We consider a two-filament system where the motor
operation has such a dependence on its distance # from the
barbed end [Figs. 2(a) and 2(b)]. Specifically, we assume
that the stall force exerted on a filament vanishes [26] as the
motor approaches its barbed end closer than a distance
d< &

f(&) = f(1 =), (3)
The force dipole exerted by a specific configuration
depends on whether each of its filament ends is cross-
linked to the surrounding medium. For instance, we
compute the force dipole associated with Fig. 2(a) by
resolving force balance under the assumption that the
passive cross-links impose clamped boundary conditions:

LYk(LY) = LTk(LT)
k(LT) + k(L)

D = —f(£2)L5 — f(£1) (4)

where 7| and ¢, are the distances from the motor to the
barbed ends of filaments 1 and 2, respectively. The first
term on the right-hand side of Eq. (4) is always negative,
indicating that filament 2 transmits the stall force f(¢,) to
the bottom right-hand cross-link, exerting only pulling
forces. In contrast, the second term can be either positive or
negative as filament 1 distributes this force across two
cross-links and thus exerts both pulling and pushing force.
Note that Eq. (4) is derived in the rigid filament limit
€ = f/Ek(&) = 0, where £ is the average distance between
the motor and the neighboring cross-linker.

Similar to our derivation of Eq. (4), we compute the
expressions of the force dipoles associated with each
possible motor—cross-linker configuration [Fig. 2(c)].
Assuming that both the motor and the cross-linkers are
uniformly distributed on the filaments, we use these
expressions to compute the force dipole averaged over
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all possible configurations and over filament section
lengths:

D ~
< dwell> det<L Lf

where L is the total length of a filament. The condition
Ly > & guarantees that filaments are cross-linked several
times and, therefore, are not free to rotate.

To understand why the dipole of Eq. (5) is contractile, we
remind ourselves that if the stall force were the same
irrespective of motor position, the contractile force dipole
of Fig. 2(a) would exactly cancel the extensile dipole of its
polarity-reversed image [Fig. 2(b)]. According to Eq. (3),
however, the motor in Fig. 2(b) exerts a weaker force on
filament 2 than in Fig. 2(a) due to the proximity of the
filament barbed end. The contractility of Fig. 2(a) thus
exceeds the extensility of Fig. 2(b), resulting in overall
contractility. The corresponding average force dipole
[Eq. (5)] is thus proportional to the probability d/L for
the motor to be within a distance d of a barbed end,
multiplied by the typical force dipole f¢&.

B. Finite motor size

Unlike the pointlike motors considered above, a finite-
size motor bound to two filaments is not constrained to
remain at their intersection. It tends to move towards their
barbed ends, as shown in Fig. 3(a). This motion breaks the
equivalence between barbed and pointed end (also known as
polarity-reversal symmetry), thus enabling contraction [18].

We consider two filaments intersecting at an angle 4 as in
Fig. 3(a). All filament sections are cross-linked, have length
£, and are considered rigid. The motor is modeled as a rigid
dumbbell of length L,, whose heads slide on the filaments
until their stall force is reached. To enforce this condition,
we minimize the pseudoenergy [18]

E, =—f(L{ + L) (6)

under the constraint of constant L,,. Once the motor is
stalled, the midpoint of the motor is offset from the filament
intersection by a distance L,,/[2 tan(6/2)]. Computing the
force dipole D(0) from force balance as in the previous
section, we find that small values of € yield large motor
displacements and thus large force dipoles. We average
this force dipole over angles in three dimensions using
k(L) o< L™, as expected for filaments with predominantly
entropic elasticity [27,28]:

1 [= .
<Dfinite size> = 2/ Dfinite size(g) sinfdf ~ — 16fLm
0 L,<¢
(7)

To understand the source of this contractile dipole, we
draw an analogy between the motor and the slider of a

e
) force dipole |D| (log scale)

kmvg £/ 240
ke ko < 16;1—\—1/2
kL/2y
k > m Y0

¥ I 0 off kpT1/2

kT 4
A motior B
pull M Emvo

173 kogs
Yo

ypush

motor force f (log scale)

FIG. 3. Contraction induced by finite-size and deformable
motors. (a) A finite-size motor minimizes the pseudoenergy
[Eq. (6)] by orienting itself perpendicular to the bisector of the
filaments (dotted line) as shown by the gray arrows. (b) The
contractility induced by such a motor is analogous to the closing
force (thin gray arrows) of a zipper when its slider is being slid
shut (thick cyan arrow). (c) In practice, the zipperlike pulling
forces exerted at the barbed end cross-links are partially com-
pensated by pointed end pushing forces. (d) An attaching-
detaching flexible motor generates contractility in a similar
fashion. (e) Scaling regimes for the deformable motor dipole
[Eg. (10)]. Black lines present the limits of small (top curve) and
large (bottom curve) detachment rate k,; and thin gray lines
display intermediate regimes.

zipper [Figs. 3(b) and 3(c)]. Assimilating the motor’s
propensity to slide along the filaments to a closing force
applied on the zipper tab, we see that the motor pulls the
filament barbed ends together as it progresses, just like
the two sides of the zipper chain are pulled together as the
zipper closes. This induces a predominantly contractile
force dipole.

Importantly, this zipper effect induces contraction only if
the motor is displaced from the intersection of the fila-
ments, as is the case for a finite-size motor. Indeed, while
the motor pulls on the filaments’ barbed end cross-links,
it also pushes out on the pointed end cross-links, as shown
in Fig. 3(c). These two effects compensate exactly for
vanishing motor length L,, = 0, suggesting that for small
L,,, D is generically proportional to L,,. Additionally, D is
proportional to f in the rigid filament limit as discussed
above. We thus expect zipperlike contractility to scale as

D~ _anw (8)

consistent with the result of Eq. (7).
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C. Deformable motor

We now consider a variant of the previous model where
an initially pointlike motor can be stretched to a nonzero
size, again implying zipperlike contractility. We also
consider motor attachment and detachment, as experiments
indicate that it can have a significant influence on force
buildup in the regimes where the present mechanism will
eventually be found to dominate [13].

We consider the geometry of Fig. 3(d) with a motor of
variable length L,, and an associated stretching energy

. = k,,L2,/2, where k,, plays the role of a motor “spring
constant.” The motor detaches from the filaments at a fixed
rate ko and reattaches with ko, = k3, exp(—E,/kzT), thus
satisfying detailed balance. This rate is substantial only in
the region where E ~ kT, implying a motor length L,, =~
\/m of the order of a detached motor’s root-mean-
square thermal extension. We define the ratio 5=

\/kgT/k,,/E of typical motor size to filament section
length and consider the stiff motor limit # < 1, analogous
to the L,,/¢ < 1 regime considered above. The velocity v;

of motor head i depends on the projection f 1-' of the motor
tension onto the direction of the filament through its force-
velocity relationship, assumed linear for simplicity:

vi = vo(1=f1/f). (9)

where v, is the motor’s unloaded velocity. Taking into
account the stochastic attachment and detachment of the
motor and its sliding under thermal agitation, we calculate
the probability to find it in a given position on the filaments
and average the resulting steady-state force dipole over
all angles 6 in three dimensions (see Supplemental
Material [21]). We find

V2+a—+v1l+a
a(l1+a)2+a)l

<Dext> = _SﬂkBT 1 +ﬂ2 (10)

where a = kyi f/2v0k,, is the ratio of the time required to
reach stall to the spontaneous detachment time and f =
f/Vk,,kgT is the ratio of the motor stall force to the force
scale over which the attachment rate varies. The two terms
in the square brackets of Eq. (10) correspond to two
different origins for contractility. We denote the first,
p-independent term as Db, This term does not involve
the motor stall force and describes the equilibrium effects
of motor binding, which tends to pull the filaments together
and exert a contractile force dipole:
,Dpassive ~ —kBT.

ext (1 1)
The second term, denoted here by D¢, has two distinct
asymptotic regimes. If @ > 1, the motor spontaneously
detaches long before reaching stall, yielding a typical

extension L,, ~ vy/k.g. In this regime, the motor exerts
a typical force ~k,,L,, on the filaments, equal to the tension
of the spring. The resulting typical force dipole is given by
Eq. (8) as

active ~ 2 /12
Dg)c(tlve Nl - (kmLm>Lm ~ _kmvo/koff'

a>

(12)

Conversely, if @ < 1, the motor reaches stall for moderate
angles, implying a force f and an extension L,, = f/k,,.
However, in this case, the average force dipole is not
dominated by moderate angles, but rather by small angle
configurations for which 6 ~ y/a. In these configurations,
the two filaments are so close to parallel that the motor can
slide without stalling until its spontaneous detachment.
Similar to the typical motor of the a > 1 regime, these
motors have L,, ~ vy0/k.s and a spring force =k,,L,,.
In the regime 6= ./a, this yields a force dipole
D9 ~ \Ja) = —k,,v3a/k%;. Taking into account the
fact that motors can bind to both filaments only in the
region where these filaments are within a distance ~ L,, of
each other, and noting that this region is much larger for
pair of filaments separated by a small 6, we find that motors
in the small-angle regime 0 =~ \/a < 1 represent a fraction
/a of the total motor population. This leads to an average
force dipole

30 1/2
f’i/21j0

active ~, active (9 ~ ~
Dext ~ \/5'Dext (9 ~ \/(;) ~ —W .
akl k.. k
m Roff

(13)

As in the previous section, configurations where the
filaments are nearly parallel exert disproportionately large
force dipoles that dominate the average.

Figure 3(e) ties together the asymptotic regimes dis-
cussed here as a function of the original model parameters.
In the large detachment rate regime (bottom black curve),
detachment is too fast to allow the motors to escape their
initial binding region and the force dipole is dominated by
its passive component. Conversely, if detachment is slow
(top black curve), the magnitude of the motor’s stall force
matters. The passive dipole still prevails for small forces,
while intermediate and large forces are, respectively,
dominated by the active regimes of Eqs. (13) and (12).

D. Deformable filaments

While the previous sections assumed straight, stiff fila-
ments, here we consider the effect of filament deformation
on contractility. Related mechanisms were previously dis-
cussed for actomyosin bundles [12,13,29] and gels [10,17].
We discuss two asymptotic regimes: small motor forces,
which mostly induce filament bending, and large motor
forces, which significantly stretch out the filaments’ thermal
fluctuations. The typical force separating the two regimes is

fakpTE)? /82, ie., the transverse force required to pull
out a significant fraction of these fluctuations.
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1. Small-force regime f < kBTszl,/Z/E"’/2

In the absence of significant filament stretching, we
consider the filament profile as a weakly perturbed straight
line described by the wormlike chain model [Fig. 4(a)]:

kgT?, [€ (d*x\?
Ezz{Bz"/ (—x) dz—f&”], (14)

£ de

where z is the filament’s longitudinal direction, x its
transverse displacement, 67 the motor’s longitudinal dis-
placement, and ¢, the filament persistence length. The last
term of Eq. (14) represents the motor pseudoenergy as in
Eq. (6), and contact of the motor with the filaments
imposes x(6¢) = 6 tan(6/2).

In this problem, the motor can only progress toward the
barbed ends by deforming the filaments. The amplitude x
of this deformation is obtained by balancing the filament
and motor forces, implying that the filament and motor
(pseudo)energies are of comparable magnitudes and so that
x~ f&/(kgT?,). The dominant source of contractile
forces is different from the zipperlike mechanism discussed
above. Here, the displacement of the motor plucks the
filament like the finger of the musician does the string of a
harp; interestingly, this mode of deformation induces much
larger contractile force than filament buckling [10,17] in
the { <7, limit. A small transverse displacement ~x
induces a longitudinal strain y & (x/£)? along the filament.
This in turn implies a filament tension 7 = (kBTff, /&My,
where kp Tff, /&4 is the typical entropic stretching modulus
of the filament [27]. The resulting force dipole scales
as Dr —TEr —f2E/kyT. A detailed calculation (see
Supplemental Material [21]) reveals that small angles again
have a disproportionately large contribution to the average
force dipole, adding a (weak) logarithmic correction to the
predicted scaling:

(c) scaled force dipole |D|§/ kgT#,
102 :

=L

I

Jno

-2 X
10 10" 1 10

scaled motor force f§¥2/ kg T¢,"?

FIG. 4. Contraction induced by filament deformation. (a) For
small motor forces, the cost of filament deformation is mainly due
to bending. The (x, z) coordinate system is given for the darker
filament. (b) For large motor forces, filaments are fully stretched.
(c) Crossover of the force dipole D between the asymptotic
regimes of Egs. (15) and (16). The interpolating black line is
discussed in the Supplemental Material [21].

1/2
(Do) ~ 3 1n< LU, ) (15)

f<kgTE)? 181 et 16 kpT ChenafE?

where cpeng = 0.191859. This expression holds until the
thermal fluctuations of the filament, which are responsible
for its elongational compliance, are pulled out. This occurs
for y~ ¢&/¢,, implying that the small-force regime dis-
cussed here is defined by f < kzTZy/? /2, as indicated
in Eq. (15).

2. Large-force regime f > kBTf;/ 2/53/ 2

Under strong extension, the entropic fluctuations of the
semiflexible filaments are entirely pulled out, freeing an
excess length s ~ &2/¢, < &, as shown in Fig. 4(b). The
filaments are, therefore, analogous to inextensible strings of
fixed arclength 2£ + s, implying a transverse displacement
x = 1/&s. Since the stalled motor exerts a transverse force f,
force balance along the x direction imposes a longitudinal
filament tension T ~ f&/x. The force dipole is thus
essentially equal to T¢ ~ f /&€, consistent with the result
of a detailed calculation (see Supplemental Material [21]):

<Dstretch> - Cstretchf &'ﬁ P ( 16)

f>kpTE2 )8 (<t

with a numerical prefactor ¢, = 1.73463.
We illustrate the crossover between the small- and large-
force regimes in Fig. 4(c).

IV. RELATIVE IMPORTANCE OF
EACH MECHANISM

To determine the dominant contraction mechanism, we
compare the force dipoles induced by each mechanism
presented above as a function of two experimentally
controllable parameters: the number of myosin heads per
myosin thick filament N [30] and the inter-cross-link length
&. We consider actin filaments with length L, = 5 ym and
persistence length #, = 10 yum. The myosin thick fila-
ments have length L,, = N/, with /,, =3 nm, unloaded
velocity v, = 200 nms~!, and stall force f = Nf,. Since
motor heads spend only a fraction of their time bound to
actin, we estimate f, = 0.1 pN on average. We use k,, =
u/L,, with y =45 nN a typical protein filament rigidity
[31]. Myosin II has a duty ratio 1 —p;=4% and a
characteristic attachment-detachment time of 7, =3 ms
[32], yielding a motor detachment rate ko; = pY/z,.
Finally, we assume that motors slow down when their
distance to the barbed end is comparable to their
size: d = L,,.

The colored domains in Fig. 5 indicate as a function of N
and ¢ which of the four dipoles computed in Sec. III has
the largest magnitude [Egs. (5), (7), (10), (15)—(16)]. The
bottom right-hand half of the diagram is left blank, as it
involves very large motors (L,, > &) not captured by our
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FIG. 5. Contractile forces as a function of experimentally

controllable parameters. Colors identify the dominant contraction
mechanism in each parameter regime. Contours indicate the
magnitude of the contractile force dipole per myosin head
(D)/N. Symbols indicate the in vitro experimental regimes of
Ref. [16] (circle), Refs. [15,33] (square) and Ref. [34] (triangle).

current approach; our assumptions £ < ¢, and d < ¢ < Ly
are satisfied throughout the top left-hand (colored) half.
The finite motor size mechanism tends to dominate in the
vicinity of the diagonal where the motor size L,, is largest.
The deformable motor mechanism dominates in the bottom
left-hand corner of the diagram; for these small values of
N and &, and given that the myosin thick filaments are
hardly stretchable (u > f), thermal agitation dominates

and Dlive « DY Deformable filament mechanisms
govern contractility in large-£ regions where the filament
sections are most flexible and can thus be deformed by
motor forces. Finally, the position-dependent stall force
mechanism is always negligible in front of the finite-size
motor mechanism; thus, it never dominates contractility.
This picture is remarkably insensitive on precise parameter
values (see Supplemental Material [21]).

We next consider the total force dipole (D), defined as
the sum of the four force dipoles computed in Sec. III. The
magnitude of the total dipole per myosin head (D)/N is
represented by contour lines in Fig. 5. In the £ 2 0.3 um
region, these forces compare with the force dipole exerted
by a myosin head in striated muscle D/N =
(500 pN x 3 um)/300 = 5 pN um; filament deformation-
based mechanisms dominate most of this parameter region.
Conversely, for £ < 0.3 um, forces are much weaker, and
possibly too small for experimental observation. Consistent

with this, the typical network parameters used in in vitro
experimental studies of actomyosin contractility are con-
fined to the strong-contractility region (Fig. 5, symbols
[35]). Interestingly, these symbols lie between the deform-
able filaments and the finite motor size contraction
domains, suggesting that both mechanisms could play a
role in these experiments.

V. DISCUSSION

While the emergence of contractility in strongly organ-
ized actomyosin assemblies is well understood, here we
consider this process in disordered networks such as those
found in nonmuscle cells. Among all possible local con-
traction models, actin filament deformation (bending or
stretching) is most prominent in favoring locally contractile
configurations of motors and filaments over locally exten-
sile ones. In this mechanism, filament deformation causes
contractility rather than being a mere by-product of it.
Local rearrangements due to the motors’ finite size could
also play a role in in vitro experiments. We formulate
quantitative predictions of the forces generated by these
mechanisms, yielding insights into the influence of the
network’s microstructure and enabling experimental
verifications.

The predicted importance of filament deformation is
consistent with in vitro studies where the deformation of a
reconstituted actomyosin sheet is found to exactly coincide
with the amount of deformation of individual filaments,
suggesting that filament deformation indeed causes con-
traction [14]. We also account for the observed inhibition of
contractility by excessive cross-linking (D vanishes for
& — 0) [15]. Additionally, the fact that almost parallel
filaments dominate contractility in most of the mechanisms
studied here is in good agreement with simulations sug-
gesting that filament alignment favors contraction [37]. It
would be interesting to extend our results to partially
bundled networks—which readily form in vitro [38]—
knowing that contraction within a bundle also crucially
involves filament deformation [12,13]. Note, however, that
in the mechanism described here, motors pull on the
filaments in both the longitudinal and transverse direction,
while in bundles only longitudinal forces are significant.
Consequently, motors pulling transverse to a bundle might
be much more effective at deforming the actin and thus
generating contraction than the motors within, as the latter
are deforming the filaments through comparatively inef-
fective buckling. Finally, we note that in vitro parallel
bundles of actin filaments contract considerably less than
antiparallel bundles [23], in contradiction with a robust
prediction of the position-dependent stall force model [24];
this supports our finding that the position-dependent stall
force has little effect on contractility. This conclusion
could, however, be modified in networks of, e.g., kinesin
motors and the stiff filaments microtubules.
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Although we find that filament deformations dominate
many significant regimes of actomyosin contraction, our
focus on local actin deformation could still lead to an
underestimation of their effect. Indeed, nonlocal deforma-
tions of the network over several mesh sizes could be more
favorable than local deformations in heavily cross-linked
networks or regimes where motors are larger than the inter-
cross-link length. Collective effects could also be of
importance, as stress propagation through the elastic
filament network could lead to cooperativity between
distant motors. We note that our weakly deformed networks
approach is only relevant for small motor forces or during
the very early stages of larger-scale contraction. Further
work is required to analyze strongly deformed or dynami-
cally reorganizing networks and the corresponding syner-
gies between several of the mechanisms described here.
On such longer time scales, the microscopic interactions
between filaments and motors considered here could
furthermore shed light on the self-organization of
disordered actomyosin networks into more organized
structures [7].

Assessments of the experimental relevance of the mech-
anisms described here will be facilitated by recent develop-
ments in in vitro assays [11,14,16,23,30]. Indeed, these
now allow precise tuning of the motor and network
characteristics as well as detailed monitoring of the net-
work deformations, from which the magnitude of the local
force dipole could be inferred. How these considerations
apply in vivo is a fascinating question, which requires
further investigations into alternatives to the paradigm of
sarcomerelike contraction.
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