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Performance Comparison of Three- and Five-Phase 
Permanent Magnet Generators for Marine Current 
Turbine Applications Under Open-Circuit Faults 

 
Seifeddine Benelghali, Fatiha Mekri, Mohamed Benbouzid and Jean Frédéric Charpentier 

 
Abstract—Multiphase generators seems to be an interesting 

solution for variable-speed drive applications and particularly 
attractive for renewable energy generation. In this context, the 
performance of a five-phase permanent magnet synchronous 
generator are evaluated within a marine current turbine and 
compared to a classical three-phase generator. For both 
topologies, a robust nonlinear control strategy, namely high-
order sliding mode control, is adopted. Hence, the generators 
performances are analyzed, during open-circuit faults, and 
conclusions are derived regarding multiphase generators key 
features marine applications. 

 
Index Terms—Marine Current Turbine MCT), five-phase 

Permanent Magnet Synchronous Generator (PMSG), open-
circuit fault, high-order sliding mode control. 

 

I. INTRODUCTION 
 

Marine energy has become an issue of significant interest 
achieving a spectacular increase in the last years. It is 
currently the focus of much industrial and academic research 
around the world [1-3]. Indeed, the astronomic nature of this 
resource makes it predictable, to within 98% accuracy for 
decades, and independent of prevailing weather conditions. 
This predictability is critical to a successful integration of 
renewable energy in the electrical grid. 

Nevertheless, several marine energy projects over the 
world are facing difficulties delaying their complete 
achievement. These difficulties mainly concern installations 
high-cost and maintenance [4]. 

As marine current turbines are similar in many aspects to 
wind turbine technologies, their theoretical and experimental 
studies are essentially based on wind turbine experiences. 
Therefore, critical aspects, as availability and reliability, are 
emphasized by the analysis of the collected data from wind 
turbine farms. 
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In this context, it has been shown that electrical and control 
system failures account for the highest percentage of failures 
[5]. Such failure high rate is not tolerable for MCTs due to 
site intervention and maintenance high-costs. Furthermore, 
the marine environment harsh nature requires a long term 
planning beforehand to investigate human intervention 
periods [4]. 

In this context, multiphase generators seem to be 
interesting alternative to classical three-phase generators [6]. 
Indeed, multiphase generators offer additional degrees of 
freedom that can be used for fault-tolerant operation. In fact, 
under fault conditions, their remaining healthy phases can be 
used to compensate the faults and continue the MCT 
operation [7-8]. 

This paper deals then with a detailed analysis and a 
comparative study of three- and five-phase PMSG within the 
context of a marine current turbine application in normal and 
faulty conditions (an open-circuit fault). First, a method is 
proposed for the determination of the PMSG optimal currents 
leading to copper losses minimization under an open-circuit 
mode. Then, these currents are associated to a high-order 
sliding mode control approach for robustness purposes. 

Using a previously developed MCT simulator, the 
generators performances are analyzed under an open-circuit 
mode for the same hydrodynamic input torque and the same 
extracted power [3]. 

 

II. MCT MODELING BRIEFLY [3] 
 

A. MCT Simulator 
 

The Matlab/Simulink®-based MCT simulator has adopted 
a multiphysics approach to model the whole system, 
including the resource, the rotor, the gearbox, and the 
generator (Fig. 1). This simulator can evaluate marine current 
turbine performances and dynamic loads over different 
operating conditions. Currently, it incorporates all types of 
horizontal-axis turbines. Due to its modularity, the five-phase 
PMSG has been easily incorporated and investigated. 

 

B. Five-Phase PMSG Model 
 

The three-phase PMSG mode is already described in [3]. 
A five-phase PMSG electric model in a natural base is given 
for the kth phase by 
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Fig. 1. Marine current turbine global scheme. 
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where Rs is the stator resistance, φsk is the stator flux, and ek is 
the emf induced in this phase by the permanent magnets. 

Assuming that the k phases are regularly shifted and there 
is no saturation and no saliency effects. Therefore, the 
following can be obtained [9-10] 
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where L is the phase inductance, M1 is the mutual inductance 
between two adjacent phases (±2π/5 electrical shift), and M2 
is the mutual inductance between two phases shifted of ±4π/5. 

Phase magnetic couplings make multiphase generators 
control more complex [6]. To achieve a simpler control, it is 
possible to work in a base in which the phases are 
magnetically decoupled. Using Concordia transform, (1) can 
be rewritten in this new base [11]. Hence, the three-phase 
generators (zero sequence, primary, and secondary) model is 
deduced in the [z,α,β] plane. 
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As the generator is wye-coupled, the current zero sequence 
component is null. 

It is possible to control the main and the secondary 
generator independently, since both of them are magnetically 
decoupled. Indeed, the system behaves as if there are two 
different generators mechanically coupled. If the main 
generator has p pole pairs and the secondary one has 3p. The 
five-phase PMSG control is therefore achieved using the 

appropriate Park transform to each generator (3). This 
transform leads to define two d-q rotating frames: The first 
one corresponds to the first harmonics and rotates at ω, and 
the second one corresponds to the third harmonics and rotates 
at –3ω. An homopolar frame is also obtained. It corresponds 
to the fifth order harmonics. In this context, the stator voltage 
can be expressed as 
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The five-phase PMSG electromagnetic torque is given by 

 

emT = =
Ω Ω

r rr r rr
p p s se i + e iei           (6) 

 
and its dynamics by 
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where Ω is the generator speed, J the inertia, and f the viscous 
friction coefficient 

 

III. PMSG-BASED MCT CONTROL 
 

A. Problem Formulation 
 

High-order sliding mode has been adopted for the control 
of the PMSG-based marine current turbine. This robust 
control approach has been chosen mainly due to the tidal 



resource characteristics such as turbulence and swell effects 
and the inevitable uncertainties inherent in PMSG-based 
marine current turbines [3]. Indeed, although many modern 
techniques can be used for this purpose, sliding mode control 
has proved to be especially appropriate for nonlinear systems, 
presenting robust features with respect to system parameter 
uncertainties and external disturbances [12-13]. 

Figure 2 illustrates the proposed PMSG-based MCT 
control scheme. 

 
B. Reference Current 

 
In normal operation, minimizing copper losses for a 

constant given torque Tmax leads to express the optimal 
reference current of each phase as [9], [14-15] 
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If an open-circuit fault occurs, torque ripples appear if the 

above classical control remains adopted. Indeed, torque 
ripples are due to interactions between the currents 
nonsymmetrical system with the emf symmetrical system. To 
avoid these ripples an adaptive control method is proposed to 
determine current references. 

To ensure the multiphase generator operation continuity 
with minimum copper losses when an open-phase fault 
occurs, an adaptive control strategy has been previously 
proposed in [14]. In this method the faulty phases are firstly 
detected. Then a new system is considered. This new system 
only comprises the healthy phases. For example, in case of 
one or two faulty phases the new emf vector for each healthy 
phase (here the first phase) is given by 
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where q’ is the active phase number and hk = 1 for an active 
phase and hk = 0 for a faulty one. 

Therefore (8) is rewritten as follows 
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This strategy remains valid in normal and faulty 

operations to achieve a constant and filtered torque at 
minimum copper losses. 

 

C. High-Order Sliding Mode Control 
 

The PMSG-based MCT proposed control strategy has 
been previously applied and tested in [3]. 

It is based on a step-by-step procedure: 
1) First, the speed reference ωref is generated by a 

Maximum Power Point Tracking (MPPT) strategy. 
2) Then, an optimal electromagnetic torque, which 

ensures the rotor speed convergence to ωref is computed using 
the following equation. 
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Where α is a positive constant. Afterwards, current references 
are derived to ensure the PMSG torque convergence to the 
optimal one and to minimize the error between the current 
and its reference Let us define the following sliding surfaces 
for the first d-q frames (A similar approach is done for the 
second d-q frame). 
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Fig. 2. The proposed PMSG-based MCT control scheme. 



Where ϕ1(t,x), ϕ2(t,x), γ1(t,x), and γ2(t,x) are uncertain 
bounded functions that satisfy 
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The proposed high-order sliding mode control, which is in 

fact a second-order one, has been designed using the super 
twisting algorithm. The controller contains two parts: 
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To ensure the sliding manifolds convergence to zero in 

finite time, the gains can be chosen as follows [13]. 
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IV. COMPARATIVE STUDY USING THE MCT SIMULATOR 
 

The three- and five-phase PMSG comparative study has 
have been carried-out using the above cited MCT simulator. 
In this case, simulations are based on 2-kW PMSG-based 
MCT with a constant tidal resource for comparison 
simplification in contrary to [7]. Moreover, generator 
comparisons were made for the same torque and the same 
generated power. 

The control strategy, for the five-phase PMSG, is based on 
the second-order sliding mode simultaneous control of the 
main and secondary generators in the two d-q frame as above 
presented. 

 
A. Healthy Condition Operation 

 
The three- and five-phase PMSG-based MCT control 

performances in healthy conditions are shown in Figs. 3 to 7, 
respectively illustrating the rotor speed, the generated power, 
the mechanical torque, and the PMSG currents. These 
simulation results lead to the following main conclusions: 

– The five-phase PMSG-based MCT generated power is 
very smooth (Fig. 4). 

– The peak-to-peak torque ripples are significantly 
reduced in the five-phase PMSG (Fig. 5). 

It is therefore obvious that a multiphase generator is more 
appropriate for MCTs normal operation than a classical three-
phase generator. 
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Fig. 3. Marine current turbine generator speed under normal conditions. 
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Fig. 4. Marine current turbine power under normal conditions. 
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Fig. 5. Marine current turbine mechanical torque under normal conditions. 
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Fig. 6. Five-phase PMGS currents under normal conditions. 
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Fig. 7. Three-phase PMSG under normal conditions. 
 

B. Operation under Open-Circuit Fault Conditions 
 

The two generators performances are now evaluated under 
an open-circuit in the first phase. In this case, a reference 
current is now on-line determined under faulty conditions to 
achieve a constant and smooth torque, equals to the one under 
normal conditions, and leading to minimum copper losses. 

Simulation results are shown in Figs. 8 to 11, the 
generated power, the mechanical torque, and the PMSG 
currents. These simulation results lead to the following main 
conclusions: 

– The five-phase PMSG-based MCT generated power is 
still quiet smooth even in faulty conditions (Fig. 8). 
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Fig. 8. Marine current turbine power under open-circuit fault conditions. 
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Fig. 9. Marine current turbine torque under open-circuit fault conditions. 
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Fig. 10. Five-phase PMGS currents under open-circuit fault conditions. 
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Fig. 11. Three-phase PMGS currents under open-circuit fault conditions. 
 

– The torque ripples are significantly reduced in the 
five-phase PMSG thanks to the proposed procedures 
(Fig. 9) [15]. Indeed, the torque remains quiet smooth. 
Therefore, no extra stresses are induced in the MCT 
torque. 

– The three-phase PMSG currents increase is quiet huge 
compared to the five-phase one. 

The analysis of the above performances under faulty 
conditions confirms the fact that a multiphase generator is 
clearly a candidate of choice for a marine current turbine. 

 

V. CONCLUSION 
 

This paper dealt with a comparative study of three- and 
five-phase PMSG within the context of a marine current 
turbine application in normal and faulty conditions. The 
PMSG control strategy was based on a high-order sliding 
mode approach using a super twisting algorithm. In faulty 
conditions, a reference current is on-line determined to 
achieve a constant and smooth torque, equals to the one under 
normal conditions, and leading to minimum copper losses. 

The obtained results clearly show that, even in normal 
operation, a multiphase generator is clearly a candidate of 
choice for marine current turbine applications, in comparison 
to a classical three-phase generator. 
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