
HAL Id: hal-01073200
https://hal.science/hal-01073200

Submitted on 9 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rule Induction for Sentence Reduction
João-Paolo Cordeiro, Gaël Dias, Pavel Brazdil

To cite this version:
João-Paolo Cordeiro, Gaël Dias, Pavel Brazdil. Rule Induction for Sentence Reduction. 16th Por-
tuguese Conference in Artificial Intelligence (EPIA 2013), Sep 2013, Azores, Portugal. pp 528-539,
�10.1007/978-3-642-40669-0_45�. �hal-01073200�

https://hal.science/hal-01073200
https://hal.archives-ouvertes.fr

Rule Induction for Sentence Reduction

João Cordeiro1, Gaël Dias2, and Pavel Brazdil3

1 University of Beira Interior, DI-Hultig,

Rua Marquês d’Ávila e Bolama, Covilhã 6200-001, Portugal,

jpaulo@di.ubi.pt
2 University of Caen Basse-Normandie, GREYC Hultech,

Campus Côte de Nacre, F-14032 Caen Cedex, France,

gael.dias@unicaen.fr
3 University of Porto, INESC-TEC,

Rua Dr. Roberto Frias, 378, 4200 - 465 Porto, Portugal

pbrazdil@inescporto.pt

Abstract. Sentence Reduction has recently received a great attention from the

research community of Automatic Text Summarization. Sentence Reduction con-

sists in the elimination of sentence components such as words, part-of-speech

tags sequences or chunks without highly deteriorating the information contained

in the sentence and its grammatical correctness. In this paper, we present an unsu-

pervised scalable methodology for learning sentence reduction rules. Paraphrases

are first discovered within a collection of automatically crawled Web News Sto-

ries and then textually aligned in order to extract interchangeable text fragment

candidates, in particular reduction cases. As only positive examples exist, In-

ductive Logic Programming (ILP) provides an interesting learning paradigm for

the extraction of sentence reduction rules. As a consequence, reduction cases are

transformed into first order logic clauses to supply a massive set of suitable learn-

ing instances and an ILP learning environment is defined within the context of

the Aleph framework. Experiments evidence good results in terms of irrelevancy

elimination, syntactical correctness and reduction rate in a real-world environ-

ment as opposed to other methodologies proposed so far.

1 Introduction

The task of Sentence Reduction (or Sentence Compression) can be defined as sum-

marizing a single sentence by removing information from it [14]. Therefore, the com-

pressed sentence should retain the most important information and remain grammatical.

But a more restricted definition is usually taken into account and defines sentence reduc-

tion as dropping any subset of words from the input sentence while retaining important

information and grammaticality [6]. This formulation of the task provided the basis for

the noisy-channel and decision tree based algorithms presented in [6], and for virtually

most follow-up work on data-driven sentence compression [8] [13] [2]. One exception

can be accounted for [15] [18], who consider sentence compression from a more general

perspective and generate abstracts rather than extracts.

Sentence reduction has recently received a great deal of attentions from the Nat-

ural Language Processing research community for the number of applications where

2 Lecture Notes in Computer Science: Cordeiro J., Dias G., Brazdil P.

sentence compression can be applied. One of its (direct) applications is in automatic

summarization [14] [17] [16]. But there exist many other interesting issues for sen-

tence reduction such as automatic subtitling [21], human-computer interfaces [20] or

semantic role labeling [19].

In this paper, we present an unsupervised scalable methodology for learning sen-

tence reduction rules following the simplest definition of sentence compression. This

definition makes three important assumptions: (1) only word deletions are possible and

no substitutions or insertions allowed, (2) the word order is fixed and (3) the scope of

sentence compression is limited to isolated sentences and the textual context is irrel-

evant. In other words, the compressed sentence must be a subsequence of the source

sentence, which should retain the most important information and remain grammatical.

The proposed methodology is based on a pipeline. First, Web news stories are

crawled and topically clustered. Then, paraphrase extraction and alignment are re-

spectively performed based on text surface similarity measures and biologically-driven

alignment algorithms. Then, reduction cases, which can be seen as interchangeable text

fragments are extracted and transformed into first order logic clauses, eventually en-

riched with linguistic knowledge, to supply a massive set of suitable learning instances

for an Inductive Logic Programming framework (Aleph). Experiments evidence good

results in terms of irrelevancy elimination, syntactical correctness and reduction rate in

a real-world environment as opposed to existing methodologies proposed so far.

2 Related Work

One of the first most relevant work is proposed by [6], who propose two methods. The

first one is a probabilistic model called the noisy channel model in which the prob-

abilities for sentence reduction P (t|s) (where t is the compressed sentence and s is

the original sentence) are estimated from a training set of 1035 (s, t) pairs, manually

crafted, considering lexical and syntactical features. The second approach learns syn-

tactic tree rewriting rules, defined through four operators: SHIFT, REDUCE, DROP

and ASSIGN. Sequences of these operators are learned from a training set and each

sequence defines a transformation from an original sentence to its compressed version.

The results are interesting but the training data set is small and the methodology relies

on deep syntactical analysis.

To avoid language dependency, [8] propose two sentence reduction algorithms. The

first one is based on template-translation learning, a method inherited from the ma-

chine translation field, which learns lexical reduction rules by using a set of 1500 (s, t)
pairs selected from a news agency and manually tuned to obtain the training data. Due

to complexity difficulties, an improvement is proposed through a stochastic Hidden

Markov Model, which is trained to decide the best sequence of lexical reduction rules

that should be applied for a specific case. This work proposes an interesting issue but

the lack of a large data set of learning pairs can not really assess its efficiency.

To avoid supervised learning, a semi-supervised approach is presented in [13], where

the training data set is automatically extracted from the Penn Treebank corpus to fit a

noisy channel model. Although it proposes an interesting idea to automatically provide

Rule Induction for Sentence Reduction 3

new learning instances, it is still dependent upon a manually syntactically-labeled data

set, in this case the Penn Treebank corpus.

[2] propose an hybrid system, where the sentence compression task is defined as an

optimization of an integer programming problem. For that purpose, several constraints

are defined, through language models, linguistic and syntactical features. Although this

is an unsupervised approach, without using any parallel corpus, it is completely knowl-

edge driven, as a set of hand-crafted rules and heuristics are incorporated into the system

to solve the optimization problem.

More recently, [15] [18] propose a tree-to-tree transduction method for sentence

compression. Their model is based on synchronous tree substitution grammar, a for-

malism that allows local distortion of the tree topology and can thus naturally capture

structural mismatches. Their experimental results bring significant improvements over a

state-of-the-art model, but still rely on supervised learning and deep linguistic analysis.

In this paper, we propose a real-world scalable unsupervised ILP learning frame-

work based on paraphrase extraction and alignment. Moreover, only shallow linguistic

features are introduced and propose an improvement over surface text processing.

3 The Overall Architecture

Our system autonomously clusters topically related Web news stories, from which para-

phrases are extracted and aligned. From these aligned sentence pairs, structures called

reduction cases are extracted and transformed into learning instances, which feed an

ILP framework called Aleph appropriately configured for our problem. The learning

cycle is then computed and a set of sentence reduction rules is generated, as a result.

Fig. 1. The main architecture of our system.

A reduction rule obtained from the learning process states a number of conditions

over a candidate elimination segment (X), as well as its relative left (L) and right (R)

contextual segments4. In particular, the input Web news stories are splitted into sen-

tences, which are then part-of-speech tagged and shallow parsed5. For that purpose, the

OpenNLP library6 has been used. So, given sentence (1),

Pressure will rise for congress to enact a massive fiscal stimulus package (1)

its shallow parsed counterpart is defined in sentence (2).

4 A segment means just a sequence of words.
5 A shallow parser is a non-hierarchical sentence parser.
6 http://opennlp.apache.org/

4 Lecture Notes in Computer Science: Cordeiro J., Dias G., Brazdil P.

[NP Pressure/NNP] [VP will/MD rise/VB] [PP for/IN] [NP congress/NN]

[VP to/TO enact/VB] [NP a/DT massive/JJ fiscal/JJ stimulus/NN package/NN] (2)

In the learning process, three types of learning features are considered: words, part-

of-speech tags and chunks7. As a consequence, a learned rule may state conditions

involving these three types. Formula 1, expresses such rule in a high level notation.

eliminate(X) <= |X| = 2 ∧ Lc = VP ∧ X2 = NN ∧ R1 = to ∧ Rc = VP (1)

The rule should be read as follows: eliminate segment X if its size is two words long,

its second word is a noun (NN), the left and right context segments are verb phrases

(VP), and the first word of the right context is the word “to”. We can see that this rule

applies to sentence (2), resulting in the elimination of the “for congress” segment

thus giving rise to the compressed sentence (3).

Pressure will rise to enact a massive fiscal stimulus package (3)

3.1 Paraphrase Extraction and Alignment

The first process called the Gauss Selection consists in the automatic identification and

extraction of paraphrases from topically related Web news stories. It is based on lexical

unigram exclusive overlaps in a similar way to some approaches in the literature [1, 5,

4]. In the work of [4], a significant comparison of paraphrase identification functions

is proposed and results over standard test corpora reveal that some of their proposed

functions achieve good performances. After several experiments, we noticed that the

Gaussian functions could be adequately parametrized for the extraction of assymetrical

paraphrases, thus satisfying our practical goal. A Gaussian function has the general

form described in Equation 2.

f(x) = a · e
−

(x−b)2

2·c2 (2)

In our case, the Gaussian function computes the likelihood of two sentences being

paraphrases. So, (x) is the relative number of lexical unigrams in exclusive overlap

between a pair of sentences. So, the more exclusive links two sentences share, the more

likely they will be paraphrases. As the measure must be a real value in the unit interval

a is settled to 1. Moreover, in order to learn reduction rule we must find paraphrases

where one sentence is smaller than the other one. As a consequence, the b parameter

allows to tune this dissimilarity degree, which in our case is equal to 0.5. An example

is given below where sentences (4) and (5) are paraphrases.

Pressure will rise for congress to enact a massive fiscal stimulus package (4)

Pressure will rise to enact a fiscal package (5)

After paraphrase extraction, a combination of Biology-based sequence alignment

algorithms [9] [11] is proposed in [3] to word-align any paraphrasic sentence pair. As a

consequence, the alignment process over sentences (4) and (5) gives rise to the aligned

sentences (6) and (7). For that purpose, a specific mutation matrix based on a modified

version of the edit distance is computed as in [3].

7 A sentence segment of related words grouped by a shallow parser.

Rule Induction for Sentence Reduction 5

Pressure will rise for congress to enact a massive fiscal stimulus package (6)

Pressure will rise ___ ________ to enact a _______ fiscal ________ package (7)

3.2 Learning Instance Selection

After identifying relevant paraphrases and aligning them at word level, specific text seg-

ments that evidence local sentence reduction cases, which can then be used as reduction

instances in the learning process, must be defined. We call these structures reduction

cases. For example, by looking at sentences (6) and (7), we can observe three reduction

cases: (a) “for congress”, (b) “massive”, and (c) “stimulus”.

So, first, in order to consider a reduction case, one must have a segment aligned with

an empty sequence (lets say a middle segment, represented by X), surrounded by left

(L) and right (R) contexts of commonly aligned words. For example, in segment (a) we

have L = “Preasure will rise” and R =“to enact a”, and so as a consequence,

the triple 〈L, X,R〉 is selected as a reduction case. In that same alignment, we have two

more reduction cases, with X=“massive” and X=“stimulus”.

Then, in order to select a relevant reduction case, an evaluation function is defined

as in Equation 3. In particular, the value(〈L, X,R〉) function gives preference to reduc-

tion cases having long contexts relatively to the misaligned segment X . The longer the

contexts the higher the linguistic evidence indicating a true reduction case. A threshold

must be set for the selection decision. We have pick one ensuring that the length of the

contexts outweighs the length of the misaligned segment, i.e. |X| ≤ |L| + |R|.

value(〈L, X, R〉) = 1 −
|X|

|L| + |R| + 1

2

(3)

Following our example, the first selected reduction case is given in sentences (8)

and (9). Note that all the other reduction cases would be selected although with different

strength values.

Pressure will rise for congress to enact (8)

Pressure will rise ___ ________ to enact (9)

3.3 ILP Learning

After extracting sentence reduction cases, our final step is to transform them into learn-

ing instances in order to build a learning model. Within this context, one interesting

advantage of ILP8 is the possibility to learn exclusively from positive instances, con-

trarily to what is required by most supervised learning models. In our problem, this

turns out to be a key aspect, since negative examples are difficult to obtain or even not

available.

Another important characteristics of ILP is the way in which learning features

can be defined, normally through first-order logic predicates. Indeed, most learning

paradigms require a complete and exact feature set specification, before starting the

learning process. With ILP, we can afford to simply define a broad set of “possible

8 Inductive Logic Programming

6 Lecture Notes in Computer Science: Cordeiro J., Dias G., Brazdil P.

features” that can be selected by the system during the learning process. This character-

istics is particularly interesting as the set of all the exact learning features can be huge

and as consequence lead to data sparseness in a classical learning paradigm.

We have considered three feature categories: words, part-of-speech tags and chunks.

Each reduction case is transformed into a first-order logic representation, involving

these features. An example related with the reduction case of section 3.2 is given below:

reduct(1, t(2,0),

[pressure/nnp/np, will/md/vp, rise/vb/vp],

[for/in/pp, congress/nn/np] ---> [],

[to/to/vp, encat/vb/vp, a/dt/np]).

Each reduction case is represented by a 5-ary Prolog term “reduct/5”. The first

argument is a sequential number9. The second one contains a 2-ary term, which repre-

sents the reduction dimensionality, where its first argument is the misaligned segment

size (|X|) and the second argument the kind of transformation that is applied, e.g. 0

means that there is a complete deletion of the misaligned segment. The third, fourth

and fifth arguments contain Prolog lists representing respectively the L, X , and R seg-

ments. Each list element is a triple with the form of “WORD/POS/CHUNK”.

4 The Aleph Framework

The learning process has been perfomed with an ILP system called Aleph [12], that we

have specifically configured for our task. Aleph is a machine learning system written

in Prolog and was initially designed to be a prototype for exploring ILP ideas. It has

become a mature ILP implementation used in many research projects ranging form

Biology to Natural Language Processing. In fact, Aleph is the successor of several and

“more primitive” ILP systems such as: Progol [7] and FOIL [10], among others, and

may be appropriately parametrized to emulate any of those older systems.

4.1 Configuring Aleph

Before starting any learning process in Aleph, a set of several specifications must be

defined which will direct the learning process. Those involving the definition of the

concept to be learned, the declaration of the predicates that can be involved in the rule

formation, the definition of the learning procedure, optionally the definition of rule

constraints and a set of learning parameters, among other details. In this subsection, we

describe the most relevant settings, defined for our learning problem.

In Aleph, the learning instances are divided in three files: the background knowl-

edge (BK) file (*.b) and two files containing the positive (*.f) and negative (*.n) learning

instances . This last one is optional and was not used in our case, as explained before.

Hence, our positive instances file contains the set of all sentence reduction cases ex-

tracted from the aligned paraphrasic sentences and transformed into first-order logic

predicates.

The BK file contains the learning configurations including their associated predi-

cates and parameters. We start by showing an excerpt of the head of our BK file, which

contains the settings, modes, and determinations, for our learning task.

9 It simply means the instance identifier

Rule Induction for Sentence Reduction 7

%--

% SETTINGS

:- set(minpos, 5).

:- set(clauselength, 8).

:- set(evalfn, user).

:- set(verbosity, 0).

%--

% DECLARATIONS

:- modeh(1, rule(+reduct)).

:- modeb(1, transfdim(+reduct, n(#nat,#nat))).

:- modeb(3, chunk(+reduct, #segm, #chk)).

:- modeb(*, inx(+reduct, #segm, #k, #tword)).

:- determination(rule/1, transfdim/2).

:- determination(rule/1, chunk/3).

:- determination(rule/1, inx/4).

The first block specifies the learning parameters we have been using, where minpos

is the minimum coverage and clauselength is the maximum number of clauses (con-

ditions) a rule can have. The evalfn parameter establishes that the rule evaluation func-

tion is defined by the “user”, meaning that we are defining our own evaluation function

in the BK file. The verbosity parameter is simply related with the level of output that is

printed during the learning process.

The second block of the BK file header contains the main procedures for rule con-

struction. The modeh/2 function defines the “learning concept”, which is called as

rule. The modeb/2 and determination/2 directives establish the predicates that

can be considered for rule construction, as well as the way they can be used, like num-

ber of times that a given predicate can occur in the rule (first argument of modeb/2).

In particular, we defined three predicates that can be used in the rule formation

process: transfdim/2, chunk/3, and inx/4. The first one states the transformation

dimensionality (e.g. a reduction from 2 to 0 words), the second one states the chunk type

for a specific text segment and the third predicate states a positional10 word or part-of-

speech (POS) occurrence. Note that in the mode directives, the predicate arguments

starting with # represent data types, which are also defined in the BK file. For instance,

#nat and #k represent natural numbers, #segm a text segment, #chk a chunk tag and

#tword represents either a word or a POS tag. In order to understand the kind of rules

being produced, the following example codifies Formula 1 presented in section 3.

rule(A) :-

transfdim(A,n(2,0)), chunk(A,left,vp),

inx(A,center:x,2,pos(nn)),

inx(A,right,1,to),

chunk(A,right,vp).

From the rule body, we have transfdim(A, n(2,0)) as the first literal, stating

that it is a two word elimination rule. The second and fifth literals respectively state that

the left and right textual contexts must be verb phrases (vp). The third literal states that

the second word from the elimination segment (center:x) must be a noun (pos(nn))

and the fourth literal obliges that the first word in the right context must be “to”. With

this example we can see that different linguistic aspects (lexical, morpho-syntactical

and shallow-syntactical) can be mingled into a single rule.

10 In a relative index position (third argument: #k).

8 Lecture Notes in Computer Science: Cordeiro J., Dias G., Brazdil P.

It is important to point at the fact that special concern has been dedicated to the mis-

aligned segment i.e. literals of the form chunk(A, center:x, *), as it can be formed

by multiple chunks. Thus, only for this segment (center:x), we let rules with multiple

chunk types to be generated. Two structures can be formed: XP-YP and XP*YP, with

XP and YP representing chunk tags. In particular, the first structure means a sequence

of exactly two chunks and the second structure represents a sequence of three or more

chunks, with the first one being XP and the last one YP. For example, pp*np represents

a sequence of three or more chunks starting with a prepositional phrase (pp) and ending

with a noun phrase (np). This would match chunk sequences like “pp np np” or “pp

np vp np”.

We have set a user-defined cost function and a number of integrity constraints as a

strategy to better shape and direct the learning process [12]. The cost function shown

as follows combines the rule coverage with a given distribution length, giving prefer-

ence to rules having four and five literals. The 17047 value is the number of learning

instances used. For each training set, this value is automatically defined by the Java

program that generates the Aleph learning files.

cost(_, [P,_,L], Cost) :-

value_num_literals(L, ValueL),

Cost is P/17047 * ValueL.

value_num_literals(1, 0.10). % |

value_num_literals(2, 0.25). % 1.0 - _

value_num_literals(3, 0.50). % | _ _

value_num_literals(4, 1.00). % | _ _ _ _

value_num_literals(5, 0.60). % | _ _ _ _ _ _

value_num_literals(6, 0.40). % | _ _ _ _ _ _ _

value_num_literals(7, 0.20). % --->

value_num_literals(_, 0.00). % 1 2 3 4 5 6 7

The set of integrity constraints was designed to avoid certain undesired rule types,

such as reduction rules without any condition over one of the three textual segments

(left, center:x and right). This is achieved through the constraint shown below, where

the countSegmRestr/5 predicate counts the number of conditions on each segment.

false :-

hypothesis(rule(_), Body, _),

countSegmRestr(Body, NL, NX, NY, NR),

not_valid(NL, NX, NY, NR).

not_valid(_, 0, _, _). %--> the center:x segment is free

not_valid(0, _, _, _). %--> left segment is free.

not_valid(_, _, _, 0). %--> right segment is free.

As a consequence of several experimental iterations taken, we have decided that it

would be better to include constraints for avoiding the generation of a kind of over-

general rules, which are likely to yield bad reduction results. For example, rules that

just constrain on chunks. This is exactly what the following two integrity constraints

are stating:

false :-

hypothesis(rule(_), Body, _),

Body = (chunk(_,_,_), chunk(_,_,_), chunk(_,_,_)).

false :-

hypothesis(rule(_), Body, _),

Body = (transfdim(_,_), chunk(_,_,_), chunk(_,_,_), chunk(_,_,_)).

Rule Induction for Sentence Reduction 9

4.2 Learned Rules

The output of a learning run produces a set of sentence reduction rules similar to the

ones illustrated in section 4.1. In particular, we will discuss the results of the quality of

the set of learned reduction rules by applying them on new raw sentences and measuring

their correctness with different measures in section 5. It is important to keep in mind

that the learning model can generate thousands of reduction rules and in Table 1 we

show only four of them, as well as their application on new sentences11.

1 L1 = IN ∧ X1 = DT ∧ R1 = NN ∧ |X| = 4 for all the iraqi people and for
✿✿✿✿✿✿✿✿✿✿✿✿

all those who love iraq X

2 L1 = NNS ∧ X3 = NN ∧ R1 = IN we need new faces
✿✿✿✿✿✿✿✿✿

and new blood in politics X

3 Lc = VP ∧ X1 = NN ∧ R1 = to ∧ |X| = 1 my comment has
✿✿✿✿✿✿

everything to do with the way the X

4 L1 = NNS ∧ X2 = NN ∧ R1 = IN shia and kurdish parties
✿✿✿✿✿✿✿✿

took control of parliament ×

Table 1. Four examples of learned rules applied to new text.

From these four examples, we can see that three rules were positively applied and

the rule from case 4 was badly applied. This case illustrates one of the main difficulties

that still persists: the generation of too general rules. Indeed, a good learning model

must be balanced in terms of specificity and generality. In fact, specific rules may be

very precise but seldom apply, while general rules may have high coverage but low pre-

cision. These issues can be evidenced by the kind of extracted rules. For example, rules

2 and 4 are similar and both state constraints only on morpho-syntactical information.

As such, they are general rules On the contrary, rule 3 is more specific by stating that

the right context R of a possible deletion of size one (|X| = 1) must contain the word

“to” immediately after the deleted segment (R1 = to). Therefore, it is much less error

prone.

5 Experimental Results

To estimate the quality of the produced reduction rules, we followed an empirical ex-

periment using a data set of Web news stories collected along a period of 90 days over

Google News API. This data set is called T90Days and contains 90 XML files, one per

day, covering the most relevant news events from each day.

In each given file, the news are grouped by events or topics, where each one contains

a bunch of related documents12. The T90Days corpus contains a total of 474MB of text

data and a total number of 53 986 aligned paraphrases extracted through the method

described in subsection 3.1. From these aligned paraphrases, a total of 13 745 reduction

cases were selected and transformed into learning instances following the methodology

described in subsection 3.2. Finally, the induction process yielded an amount of 2507
sentence reduction rules. It is important to notice that all these data sets and results are

11 To fit space constraints, we only show the relevant sentence fragment and not the overall sen-

tence. Moreover, the marked segment is the deleted one.
12 Usually from 20 to 30 Web news stories.

10 Lecture Notes in Computer Science: Cordeiro J., Dias G., Brazdil P.

freely available13 in order to provide the research community with a large scale golden

data set compared to the existing ones so far.

The evaluation of the induced rule set was performed over news set, different from

the one used for learning. For the sake of this evaluation, we applied the best rule to

each sentence and compared it with the baseline, which consists in directly applying

the reduction cases to the sentences i.e. only lexical information is taken into account.

In particular, we had to define what is the “best” rule to apply to a given sentence.

For that purpose, rule optimality was computed by combining rule support, number of

eliminated words and the application of a syntactical 4-gram language model applied to

the context of the reduction segment. While rule support guarantees some confidence

in the rule application and the number of eliminated words must be maximized, the

idea of the syntactical language model is to guarantee the syntactical correctness of

the sentence after the application of the deletion. As a consequence, only the reduction

rules, which can guarantee that the compressed sentence will be more syntactically

correct than the longer one will be applied. For that purpose, we trained a syntactical

4-gram language model over a part-of-speech tagged corpus to evaluate the syntactical

complexity of any given sentence by a sequence probability as defined in Equation 4.

Here, F = [t1, t2, ..., tm] is the sequence of part-of-speech tags for a given sentence

with size m. In particular, P (t) > P (s) is the condition that triggers the application of

the sentence reduction rule, where t is the compressed version of sentence s.

P (F) =
“

m−4
Y

k=4

P (tk | tk−1, ..., tk−4)
”

1
m

(4)

So, for each one of the two evaluations (baseline and best rule application), a random

sample of 100 reductions was manually cross-evaluated by two human annotators. In

order to take into account irrelevancy elimination and syntactical correctness, each re-

duction had to be scored with a value of 1 (incorrect reduction), 2 (semantically correct

but incorrect syntactically) and 3 (semantically and syntactically correct). Additionally,

each score was weighted by the number of eliminated words in order to give more im-

portance to longer reductions. The results are presented in Table 2 for a Cohen’s K value

for inter-rater agreement of 0.478, meaning “moderate agreement”.

Test Mean Rank Precision Mean |X| Rules/Sentence

Baseline 1.983 66.09% 1.15 0.042

ILP Rules 2.056 68.54% 1.78 5.639

Table 2. Results with four evaluation parameters.

In particular, column 2 (Mean Rank) presents the average value of both annotators.

Column 3 contains the average size of the eliminated segment (in words) and column

4 evaluates the ratio of the number of rules applied by sentence. In fact, columns 3 and

4 evidence the utility of a rule set in terms of the number of eliminated words and the

13 http://www.di.ubi.pt/˜jpaulo/competence/

Rule Induction for Sentence Reduction 11

number of reduced sentences. As stated before, on one hand the baseline test consists

in the direct use of the reduction cases, as they are in T90Days, on sentence reduction,

meaning that no induction was used. This approach resembles to what is done in [8].

On the other hand, the ILP Rule test implies the application of the best learned rule

and shows an improvement both in terms of quality and reduction size, although both

results still need to be improved. In the final section, we will propose new perspectives

to improve our approach.

6 Conclusions and Future Directions

In this paper, we described an ILP learning strategy that learns sentence reduction rules

from massive textual data automatically collected from the Web. After paraphrase iden-

tification based on Gaussian functions and alignment through a combination of biology-

based sequence alignment algorithms, sentence reduction cases are selected and pre-

pared to be used in the learning process, handled by an ILP framework called Aleph

[12]. Different aspects distinguish our system from existing works. First, it relies on

its exclusive automation. Each step takes place in a pipeline of tasks, which is com-

pletely automatic. As a result, the system can process huge volumes of data compared

to existing works. Second, it is based on shallow linguistic processing, which can easily

be adapted to new languages. Finally, we propose a freely available golden data set to

the research community in order to apply existing techniques to larger data sets than

existing ones [6].

However, improvements still need to be performed. As the overall strategy is based

on a pipeline, different errors tend to accumulate step after step. So, each stage must be

individually improved. In particular, we noticed from the results that many errors were

due to incorrect text tokenization. As a consequence, we believe that the identification of

multiword units will improve the quality of rule induction. Moreover, we will propose

to automatically tune the generalization process so that we can avoid the induction of

over-generalized reduction rules.

Acknowledgements

This work is funded by the ERDF – European Regional Development Fund through the

COMPETE Programme (operational programme for competitiveness) and by National

Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Founda-

tion for Science and Technology) within project “FCOMP - 01-0124-FEDER-022701”.

References

1. Barzilay R, Lee L. 2003. Learning to Paraphrase: An Unsupervised Approach using Multiple-

Sequence Alignment. Proceedings of the 4th North American Chapter of the Association for

Computational Linguistics Conference (NAACL 2003).

2. Clarke J, Lapata M. 2006. Constraint-based Sentence Compression: An Integer Programming

Approach. Proceedings of the 21st International Conference on Computational Linguistics

and 44th Annual Meeting of the Association for Computational Linguistics (ACL 2006).

12 Lecture Notes in Computer Science: Cordeiro J., Dias G., Brazdil P.

3. Cordeiro J, Dias G, Cleuziou G, Brazdil P. 2007. Biology Based Alignments of Paraphrases

for Sentence Compression. Proceedings of the Workshop on Textual Entailment and Para-

phrasing associated to the 45th Annual Meeting of the Association for Computational Lin-

guistics Conference (ACL 2007).
4. Cordeiro J, Dias G, Brazdil P. 2007. New Functions for Unsupervised Asymmetrical Para-

phrase Detection. Anonymous. Anonymous.
5. Dolan WB, Quirck C, Brockett C. 2004. Unsupervised Construction of Large Paraphrase

Corpora: Exploiting Massively Parallel News Sources. Proceedings of 20th International

Conference on Computational Linguistics (COLING 2004).
6. Knight K., Marcu D. 2002. Summarization beyond sentence extraction: A probabilistic ap-

proach to sentence compression. Artificial Intelligence, 139(1):91-107.
7. Muggleton S. 1999. Inductive Logic Programming: Issues, Results and the Challenge of

Learning Language in Logic. Artificial Intelligence, 114(1-2):283-296.
8. Le Nguyen M, Horiguchi S, Ho BT. 2004. Example-based Sentence Reduction using the Hid-

den Markov Model. ACM Transactions on Asian Language Information Processing, 3(2):146-

158.
9. Needleman SB, Wunsch CD. 1970. A General Method Applicable to the Search for Similar-

ities in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology, 48(3):443-

453.
10. Quinlan JR. 1990. Learning Logical Deinitions from Relations. Machine Learning.,

5(3):239-266.
11. Smith TF, Waterman MS. 1981. Identification of Common Molecular Subsequences. Journal

of Molecular Biology, 147:195-197.
12. Srinivasan A. 2000. The Aleph Manual, Technical Report. Computing Laboratory, Oxford

University, UK.
13. Turner J, Charniak E. 2005. Supervised and Unsupervised Learning for Sentence Compres-

sion. Proceedings of the 43rd Annual Meeting of the Association for Computational Linguis-

tics Conference (ACL 2005).
14. Hongyan H, McKeown KR. 2000. Cut and Paste based Text Summarization. Proceedings of

the 1st North American Chapter of the Association for Computational Linguistics Conference

(NAACL 2000).
15. Cohn T, Lapata M. 2008. Sentence Compression Beyond Word Deletion. Proceedings of

the 22nd International Conference on Computational Linguistics (COLING 2008).
16. Zajic DM, Dorr BJ, Lin J. 2008. Single-Document and Multi-Document Summarization

Techniques for Email Threads using Sentence Compression. Information Processing and

Management, 44(4):1600–1610.
17. Siddharthan A, Nenkova A, McKeown K. 2004. Syntactic Simplification for Improving

Content Selection in Multi-Document Summarization. Proceedings of the 20th International

Conference on Computational Linguistics (COLING 2004).
18. Cohn T, Lapata M. 2009. Sentence Compression as Tree Transduction. Journal of Artificial

Intelligence Research, 34(1):637-674.
19. Vickrey D, Koller D. 2008. Sentence Simplification for Semantic Role Labeling. Proceed-

ings of the 46th Annual Meeting of the Association for Computational Linguistics Conference

(ACL 2008).
20. Corston-Oliver S. 2001. Text Compaction for Display on Very Small Screens. Proceedings

of the Workshop on Automatic Summarization associated to the 2nd North American Chapter

of the Association for Computational Linguistics Conference (NAACL 2001).
21. Vandeghinste V, Pan Y. 2004. Sentence Compression for Automated Subtitling: A Hybrid

Approach. Proceedings of the Workshop on Text Summarization Branches Out associated to

the 44th Annual Meeting of the Association for Computational Linguistics Conference (ACL

2004).

