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Random tessellations associated with

max-stable random fields

Clément Dombry1 and Zakhar Kabluchko2

January 6, 2016

Abstract

With any max-stable random process η on X = Z
d or Rd, we asso-

ciate a random tessellation of the parameter space X . The construction
relies on the Poisson point process representation of the max-stable
process η which is seen as the pointwise maximum of a random col-
lection of functions Φ = {φi, i ≥ 1}. The tessellation is constructed as
follows: two points x, y ∈ X are in the same cell if and only if there ex-
ists a function φ ∈ Φ that realizes the maximum η at both points x and
y, i.e. φ(x) = η(x) and φ(y) = η(y). We characterize the distribution
of cells in terms of coverage and inclusion probabilities. Most interest-
ing is the stationary case where the asymptotic properties of the cells
are strongly related to the ergodic and mixing properties of the max-
stable process η and to its conservative/dissipative and positive/null
decompositions.

Key words: max-stable random field, random tessellation, non-singular
flow representation, ergodic properties.
AMS Subject classification. Primary: 60G70 Secondary: 60D05,

60G52, 60G60, 60G55, 60G10, 37A10, 37A25.

1 Introduction

Max-stable random fields provide popular and meaningful models for
spatial extremes, see, e.g., de Haan and Ferreira [2]. The reason is that
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they appear as the only possible non-degenerate limits for normalized
pointwise maxima of independent and identically distributed random
fields. The one-dimensional marginal distributions of max-stable fields
belong to the parametric class of Generalized Extreme Value distribu-
tions. Being interested mostly in the dependence structure, we will
restrict our attention to max-stable fields η = (η(x))x∈X on X ⊂ R

d

with standard unit Fréchet margins, i.e. satisfying

P[η(x) ≤ z] = exp(−1/z) for all x ∈ X and z > 0. (1)

The max-stability property has then the simple form

n−1
n
∨

i=1

ηi
d
= η for all n ≥ 1,

where (ηi)1≤i≤n are i.i.d. copies of η,
∨

is the pointwise maximum,

and
d
= denotes the equality of finite-dimensional distributions.

A fundamental tool in the study of max-stable processes is their
spectral representation (see, e.g., de Haan [1], Giné et al. [7]): any
stochastically continuous max-stable process η can be written as

η(x) =
∨

i≥1

UiYi(x), x ∈ X , (2)

where

- (Ui)i≥1 is the decreasing enumeration of the points of a Poisson
point process on (0,+∞) with intensity measure u−2du,

- (Yi)i≥1 are i.i.d. copies of a non-negative stochastic process Y on
X such that E[Y (x)] = 1 for all x ∈ X ,

- the sequences (Ui)i≥1 and (Yi)i≥1 are independent.

In this paper, we focus on max-stable random fields defined on X = Z
d

or R
d. In the case X = R

d we always assume that η has continuous
sample paths. Equivalently, the spectral process Y has continuous
sample paths and

E

[

sup
x∈K

Y (x)
]

< ∞ for every compact set K ⊂ R
d. (3)

Note that the equivalence follows for instance from de Haan and Fer-
reira [2, Corollary 9.4.5].

Representation (2) has a nice interpretation pointed out by Smith
[22] and Schlather [20]. In the context of a rainfall model, we can
interpret each index i ≥ 1 as a storm event, where Ui stands for the
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intensity of the storm and Yi stands for its shape; then UiYi(x) rep-
resents the amount of precipitation due to the storm event i at point
x ∈ X , and η(x) is the maximal precipitation over all storm events
at this point. This interpretation raises a natural question: what is
the shape of the region Ci ⊂ X where the storm i is extremal? More
formally, we define the cell associated with the storm event i ≥ 1 by
Ci = {x ∈ X ; UiYi(x) = η(x)}. It is a (possibly empty) random closed
subset of X and each point x ∈ X belongs almost surely to a unique
cell (the point process {UiYi(x)}i≥1 is a Poisson point process with
intensity u−2du so that the maximum η(x) is almost surely attained
for unique i).

A drawback of this approach is that the distribution of the cell Ci

depends on the specific representation (2). For instance, with the con-
vention that the sequence (Ui)i≥1 is decreasing, the cell C1 is stochasti-
cally larger than the other cells. To avoid this, we introduce a canonical
way to define the tessellation.

Definition 1. For x ∈ X , the cell of x is the random closed subset

C(x) = {y ∈ X ; ∃i ≥ 1, UiYi(x) = η(x) and UiYi(y) = η(y)}. (4)

The cell C(x) is non-empty since it contains x. In the case X = Z
d,

for any two points x1, x2 ∈ Z
d, the cells C(x1) and C(x2) are almost

surely either equal or disjoint. In the case X = R
d, for any two points

x1, x2 ∈ R
d, the cells C(x1) and C(x2) are almost surely either equal

or have disjoint interiors.
The purpose of this paper is to study some properties of the random

tessellation (C(x))x∈X . Let us stress that in this paper the terms cell
and tessellation are meant in a broader sense than in stochastic geom-
etry where they originated. Here, a cell is a general (not necessarily
convex or connected) random closed set and a tessellation is a ran-
dom covering of X by closed sets with pairwise disjoint interiors. The
following lemma provides a first simple but important observation.

Lemma 2. The distribution of the tessellation (C(x))x∈X depends on
the distribution of the max-stable process η only and not on the specific
representation (2).

To prove the lemma, introduce the functional point process (which will
play a key role in the sequel)

Φ = {φi, i ≥ 1} where φi = UiYi, i ≥ 1. (5)

Note that φi are elements of F0 = F(X , [0,+∞))\{0}, the set of non-
negative and continuous functions on X excluding the zero function.
(We may assume without loss of generality that Y does not vanish
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identically). The set F0 is endowed with the σ-algebra generated by
the coordinate mappings. It follows from the transformation theorem
that Φ is a Poisson point process on F0 with intensity measure µ given
by

µ(A) =

∫ ∞

0
P[uY ∈ A]u−2du, A ⊂ F0 Borel. (6)

The measure µ is called the exponent measure or max-Lévy measure
and is related to the multivariate cumulative distribution functions of
η by

P[η(xj) ≤ zj , j = 1, . . . , n]

= exp (−µ({f ∈ F0; f(xj) > zj for some j = 1, . . . , n}))

for all n ≥ 1, x1, . . . , xn ∈ X and z1, . . . , zn > 0. In particular, this
shows that µ depends on the distribution of η only and does not depend
on the specific representation (2). Now, Lemma 2 follows easily since
the tessellation (C(x))x∈X is a functional of the Poisson point process
Φ with intensity µ.

The aim of this paper is to study some properties of the tessella-
tion (C(x))x∈X and to relate them to the properties of the max-stable
random field (η(x))x∈X . It is worth noting that some well-known tes-
sellations like the Laguerre and some Johnson–Mehl tessellations (see,
e.g., Møller [14]) are particular cases of this setting (see Examples
8 and 9 below). Furthermore, thanks to the Poisson point process
representation by Giné et al. [7], the results from the present paper
could presumably be extended to the more general framework of up-
per semi-continuous max-infinitely divisible processes. The connection
with stochastic geometry would even be stronger via the notion of hy-
pograph: the hypograph of an upper semi-continuous max-infinitely
divisible process can be represented as the union of random closed sets
from a Poisson point process. However, for the sake of simplicity, we
consider only the case of continuous max-stable processes for which
more results are available from the literature.

The paper is structured as follows. In Section 2, we study the law of
the cell C(x) and provide some formulas for the inclusion and coverage
probabilities as well as some examples. In Section 3, we focus on the
stationary case and establish strong connections between asymptotic
properties of C(0) and properties of the max-stable random field η
such as ergodicity, mixing and decompositions of the non-singular flow
associated with η. Theorem 19 relates the boundedness of the cell
to the conservative/dissipative decomposition. Theorem 21 links the
asymptotic density of the cell with the positive/null decomposition.
Proofs are collected in Sections 4 and 5.
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2 Basic properties and examples

2.1 Basic properties

Our first result is a simple characterization of the distribution of the
cells of the tessellation.

Theorem 3. Consider a sample continuous max-stable random field
η given by representation (2). For every x ∈ X and every measurable
set K ⊂ X ,

P[K ⊂ C(x)] = E

[

inf
y∈K∪{x}

Y (y)

η(y)

]

(7)

and

P[C(x) ⊂ K] = E

[(

Y (x)

η(x)
− sup

y∈Kc

Y (y)

η(y)

)+]

, (8)

where Y is independent of η, Kc = X \K is the complement of the set
K, and (z)+ = max(z, 0) is the positive part of z.

It is well-known that the distribution of a random closed set C ⊂ X
is completely determined by its capacity functional

XC(K) = P[C ∩K 6= ∅], K ⊂ X compact,

see, e.g., Molchanov [13, Chapter 1]. Clearly, Theorem 3 implies that
for all x ∈ X the capacity functional of the cell C(x) is given by

XC(x)(K) = 1− E

[(

Y (x)

η(x)
− sup

y∈K

Y (y)

η(y)

)+]

.

Remark 4. It is worth noting that Weintraub [27] introduced (with
a different terminology) the probability that two points x and y are
in the same cell as a measure of dependence between η(x) and η(y).
More precisely, he considered

π(x, y) = P[y ∈ C(x)] = E

[

Y (x)

η(x)
∧ Y (y)

η(y)

]

, x, y ∈ X .

Clearly, π(x, y) ∈ [0, 1]. One can prove easily that π(x, y) = 0 holds
if and only if η(x) and η(y) are independent, while π(x, y) = 1 if and
only if η(x) = η(y) almost surely. Moreover, π(x, y) can be compared
to the extremal coefficient θ(x, y) which is another well-known measure
of dependence for max-stable processes defined by

θ(x, y) = − logP[η(x) ∨ η(y) ≤ 1] ∈ [1, 2]. (9)
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According to Stoev [23, Proposition 5.1], we have

1

2
(2− θ(x, y)) ≤ π(x, y) ≤ 2(2− θ(x, y)). (10)

In the case of stationary max-stable random fields, we use the notation
θ(h) = θ(0, h) and π(h) = π(0, h).

As a by-product of Theorem 3, we can provide an explicit expres-
sion for the mean volume of the cells. Denote by λ the discrete counting
measure when X = Z

d or the Lebesgue measure when X = R
d. The

volume of C(x) is defined by Vol(C(x)) = λ(C(x)). In the discrete
case, Vol(C(x)) is the cardinality of C(x).

Corollary 5. Let x ∈ X . The cell C(x) has expected volume

E[Vol(C(x))] =

∫

X
E

[

Y (x)

η(x)
∧ Y (y)

η(y)

]

λ(dy).

This together with (10) implies that the cell C(x) has finite expected
volume if and only if

∫

X (2−θ(x, y))λ(dy) < +∞. Another consequence
of Theorem 3 is an expression for the probability that the cell C(x) is
bounded.

Corollary 6. Let x ∈ X . The cell C(x) is bounded with probability

P[C(x) is bounded] = E

[

(

Y (x)

η(x)
− lim sup

y→∞

Y (y)

η(y)

)+
]

.

Furthermore, the following statements are equivalent:

i) the cell C(x) is bounded a.s.;

ii) limy→∞
Y (y)
η(y) = 0 a.e. on the event {Y (x) 6= 0}.

Remark 7. In the case when the max-stable process η is stationary,
we will see in Section 3.3 below that condition ii) can be replaced by
the following one: Y (y) → 0 a.s. as y → ∞.

2.2 Examples

As an illustration and to get some intuition, we provide several ex-
amples. Simulations of the max-stable processes together with the
associated tessellations are available on the personal webpage of the
first author.
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Example 8. The isotropic Smith process [22] is defined by

η(x) =
∨

i≥1

Uih(x−Xi), x ∈ R
d,

where {(Ui,Xi), i ≥ 1} is a Poisson point process on (0,∞)×R
d with

intensity u−2dudx and h(x) = (2π)−d/2 exp(−‖x‖2/2) is the standard
Gaussian d-variate density function. The Smith process is a station-
ary max-stable process that belongs to the class of moving maximum
processes and is hence mixing. Surprisingly, the associated tessellation
is exactly the so-called Laguerre tessellation studied in great detail by
Lautensack and Zuyev [12]. Indeed, the cell Ci is given by

Ci = {x ∈ R
d; ‖x−Xi‖2 − 2 ln(Ui) ≤ ‖x−Xj‖2 − 2 ln(Uj), j 6= i}.

In this very specific example, the cells are convex bounded polygons.

Example 9. Consider a moving maximum process of the same form
as in the previous example, but with h(x) = exp{−‖x‖/v}, x ∈ R

d,
where v > 0 is a parameter. Then, the cell Ci is given by

Ci = {x ∈ R
d; ‖x−Xi‖/v − ln(Ui) ≤ ‖x−Xj‖/v − ln(Uj), j 6= i},

and we recover a special case of the Johnson–Mehl tessellation; see
Møller [14].

Example 10. The stationary extremal Gaussian process originally
introduced by Schlather [20] corresponds to the case when the spectral
process Y in representation (2) is given by

Y (x) =

√

π

2
max(W (x), 0), x ∈ R

d,

where W is a stationary Gaussian process on R
d with zero mean, unit

variance and correlation function ρ(h) = E[W (0)W (h)], h ∈ R
d. The

extremal coefficient function is given by

θ(h) = 2T2

[
√

2

1− ρ(h)2
−
√

1− ρ(h)2

2
ρ(h)

]

, h ∈ R
d,

where T2 is the cumulative distribution function of a Student distribu-
tion with 2 degrees of freedom. Typically, ρ(h) → 0 as h → ∞, so that
θ(h) → 2T2(

√
2) < 2 and η is neither mixing nor ergodic (see Stoev

[23] or Kabluchko and Schlather [9]). The inequalities in (10) entail
that lim inf P[h ∈ C(0)] > 0 as h → ∞. This suggests that the cells are
not bounded which is consistent with the simulations available on the
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first author personal webpage. Note that the cells are neither convex
nor connected and have a pretty regular shape due to the particular
choice of the correlation function ρ(h) = exp(−‖h‖2/2) that yields
smooth Gaussian sample paths.

Example 11. Brown–Resnick processes [10] form a flexible class of
max-stable processes. They are given by (2) with the spectral process
of the form

Y (x) = exp

(

W (x)− 1

2
σ2(x)

)

, x ∈ R
d,

where W is a stationary increment centered Gaussian process on R
d,

and σ2(x) = VarW (x). Surprisingly, the process η is stationary [10].
Its distribution is completely characterized by the variogram

γ(h) = Var(W (x+ h)−W (x)), h ∈ R
d.

The extremal coefficient function is given by ([10, p. 2063])

θ(h) = 2G

(

1

2

√

γ(h)

)

, h ∈ R
d,

where G is the cumulative distribution function of the standard nor-
mal distribution. Typically, γ(h) → ∞ as h → ∞, so that θ(h) → 2
and η is mixing [23, 9]. The inequalities in (10) entail that limP[h ∈
C(0)] = 0 as h → ∞ suggesting that the cells become asymptotically
independent at large distances. Since 1 − G(u) ∼ 1/(

√
2πu) e−u2/2,

u → +∞, Corollary 5 implies that the cell C(0) has finite expected
volume (and hence, is a.s. bounded) provided that the following con-
dition is satisfied:

lim inf
h→∞

γ(h)

log ‖h‖ > 8d.

Simulations with the variogram γ(h) = 2‖h‖ are available on the first
author’s personal webpage. They show that the cells may have a very
rough shape, due to the particular choice of the variogram that yields
rough Gaussian paths.

3 The stationary case: asymptotic prop-

erties of cells

In the sequel, we focus on the case when η is a stationary sample
continuous max-stable random field on X = Z

d or Rd. We show strong
connections between the ergodic and mixing properties of the random
field η, its conservative/dissipative and positive/null decompositions
and the geometry of the cells.
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3.1 Ergodic properties and geometry of the cells

Ergodic and mixing properties of max-stable random fields have been
studied intensively by Stoev [23, 24] and Kabluchko and Schlather
[9]. A simple characterization using the extremal coefficient is known
(see, e.g., [9, Theorems 1.1 and 1.2] where the more general case of
max-infinitely divisible processes is considered).

Theorem 12 (Stoev (2008), Kabluchko and Schlather (2010)).
Let η be a stationary max-stable random field on X = Z

d or R
d.

- η is ergodic if and only if θ(h) → 2 in Cesàro mean as h → ∞;

- η is mixing if and only if θ(h) → 2 as h → ∞.

Interestingly, these results can be reinterpreted in terms of the
geometric properties of the tessellation. For r > 0, we write Br =
[−r, r]d∩X . We equip X with a measure λ which is either the counting
or the Lebesgue measure, when X = Z

d or X = R
d, respectively.

Proposition 13. Let η be a stationary, sample continuous max-stable
random field on X = Z

d or R
d.

1. The following statements are equivalent:

(1.a) η is ergodic,

(1.b) limr→+∞ E

[

λ(C(0)∩Br)
λ(Br)

]

= 0.

2. The following statements are equivalent:

(2.a) η is mixing,

(2.b) limx→∞ P[x ∈ C(0)] = 0.

Next we focus on strong mixing properties of max-stable processes,
see Dombry and Eyi-Minko [4]. The β-mixing coefficients of the ran-
dom process η are defined as follows: for disjoint closed subsets S1, S2 ⊂
X , we define

β(S1, S2) = sup
{

|PS1∪S2
(C)− (PS1

⊗PS2
)(C)|; C ∈ BS1∪S2

}

, (11)

where PS is the distribution (on the space R
S
+) of the restriction of η

to the set S, and BS is the product σ-algebra on the space R
S
+. Given

a closed subset S ⊂ X and r > 0, we define

βr(S) = β(S, Sc
r) with Sc

r = {x ∈ S; d(x, S) ≥ r}

where d(x, S) denotes the distance between the point x and the set S.
We say that η is strongly β-mixing if for all compact sets S ⊂ X ,

lim
r→+∞

βr(S) = 0.
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Proposition 14. If η is a stationary max-stable random field such
that C(0) is almost surely bounded, then η is strongly β-mixing.

We conjecture that the converse implication is also true:

Conjecture 15. If η is a strongly β-mixing stationary max-stable ran-
dom field, then C(0) is almost surely bounded.

We were not able to prove the conjecture, mainly because we lack
a lower bound for the β-mixing coefficient β(S1, S2) (only an upper
bound is given in [4]). The intuition is relatively clear though: if
the cell remains unbounded with positive probability, then the value
η(0) of the random field at the origin may have an impact at infinity
via the unbounded cell C(0). In view of Corollary 20, see below, the
conjecture can also be stated as follows: a stationary max-stable field
η is strongly β-mixing if and only if η is purely dissipative.

3.2 Preliminaries on stationary max-stable pro-

cesses

The structure of stationary max-stable processes was first investigated
by de Haan and Pickands [3]. Recently, further results were obtained
by exploiting the analogy between the theory of max-stable and sum-
stable processes. Inspired by the works of Rosiński [15, 16], Rosiński
and Samorodnitsky [17] and Samorodnitsky [18, 19], the representa-
tion theory of stationary max-stable random fields via non-singular
flows was developed independently by Kabluchko [8], Wang and Stoev
[26] and Wang et al. [25]. See also Kabluchko and Stoev [11] for an ex-
tension to sum- and max-infinitely divisible processes. In these works,
the conservative/dissipative and positive/null decompositions of the
non-singular flow play a major role.

To avoid technical details of non-singular ergodic theory, we use a
naive approach based on cone decompositions of max-stable processes
(see, e.g., Wang and Stoev [26, Theorem 5.2]). The links between this
approach and the non-singular ergodic theory are explored in Dombry
and Kabluchko [6].

The following simple lemma about cone decompositions of max-
stable processes will be useful. Recall that F0 = F(X , [0,+∞)) \ {0}
denotes the set of continuous, non-negative functions on X excluding
the zero function. A measurable subset C ⊂ F0 is called a cone if for
all f ∈ C and u > 0, uf ∈ C. The cone C is said to be shift-invariant
if for all f ∈ C and x ∈ X , we have f(·+ x) ∈ C.
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Lemma 16. Let C1 and C2 be two measurable, shift-invariant cones
such that F0 = C1 ∪ C2 and C1 ∩ C2 = ∅. Let η be a stationary max-
stable process given by representation (2). Consider the decomposition
η = η1 ∨ η2 with

η1(x) =
∨

i≥1

UiYi(x)1{Yi∈C1} and η2(x) =
∨

i≥1

UiYi(x)1{Yi∈C2}.

Then, η1 and η2 are stationary and independent max-stable processes1

whose distribution depends only on the distribution of η and not on the
specific representation (2).

The notion of Brown–Resnick stationarity introduced in Kabluchko
et al. [10] will be useful.

Definition 17. We say that the process Y = (Y (x))x∈X is Brown–
Resnick stationary if the associated max-stable process η defined by
(2) is stationary.

For future reference, we gather in the next lemma several properties
of Brown-Resnick stationary processes. A shift-invariant cone FL is
said to be localizable if there exist mappings L1 : FL → X and L2 :
FL → (0,+∞) such that for all f ∈ FL, x ∈ X and u > 0,

- L1(f(·+ x)) = L1(f)− x and L1(uf) = L1(f),

- L2(f(·+ x)) = L2(f) and L2(uf) = uL2(f).

A typical example of localizable cone is the cone {f ∈ F0; lim∞ f = 0}
with L1(f) = arg max f and L2(f) = max f (if the maximum is at-
tained at several points, we define the arg max as the smallest such
point with respect to the lexicographic order).

Lemma 18. Let Y and Y ′ be independent Brown–Resnick stationary
processes. In the case X = R

d, we assume for statements iii) and iv)
that the associated max-stable process has continuous sample paths.

i) The product Y Y ′ is also Brown–Resnick stationary.

ii) Let C be a shift-invariant cone, then Y 1{Y ∈C} is Brown–Resnick
stationary.

iii) Let K ⊂ X be compact. In the case X = R
d, we suppose that the

interior of K is non-empty. Then, modulo null sets,

{

lim
x→∞

Y (x) = 0
}

=

{

∫

X
sup
y∈K

Y (x+ y)λ(dx) < ∞
}

.

1with margins differing from the standardized form (1) by a multiplicative constant
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iv) The cone FL = {f ∈ F0; supx∈X f(x) > lim supx→∞ f(x)} is
localizable and, modulo null sets,

{Y ∈ FL} ⊂
{

lim
x→∞

Y (x) = 0
}

.

In fact, the latter inclusion holds for any localizable cone.

Statement i) is due to Kabluchko et al. [10, Corollary 8], statement
ii) is a by-product of Lemma 16 and its proof. Statements iii) and
iv) are closely related to Proposition 10 and its proof in Kabluchko
and Dombry [6]. In the proof of [6, Proposition 10], we show that
FD = F ′

D = F̃D wich implies iii); statement iv) is proven with the
same arguments as for the proof of F̃D ⊂ FD in [6], see the appendix
for more details.

3.3 Boundedness of cells

We prove that the boundedness of the cell C(x), x ∈ X , is strongly
connected with the conservative/dissipative decomposition of the max-
stable process η. Introduce the following shift-invariant cones of func-
tions:

FC =

{

f ∈ F0; lim sup
x→∞

f(x) > 0

}

, (12)

FD =
{

f ∈ F0; lim
x→∞

f(x) = 0
}

. (13)

The conservative/dissipative decomposition of η is given by

ηC(x) =
∨

i≥1

UiYi(x)1{Yi∈FC}, (14)

ηD(x) =
∨

i≥1

UiYi(x)1{Yi∈FD}. (15)

According to Lemma 16, the processes ηC and ηD are independent
stationary max-stable processes such that η = ηC ∨ ηD. In dimension
d = 1, this cone decomposition is known to be related to the the conser-
vative/dissipative decomposition of the non-singular flow generating η
(see, e.g., Wang and Stoev [26, Theorem 5.2]). The following theorem
relates this conservative/dissipative decomposition to the boundedness
of the cell C(x).

Theorem 19. Let x ∈ X . The following events are equal modulo null
sets:

{C(x) is unbounded} = {ηC(x) > ηD(x)}, (16)

{C(x) is bounded} = {ηD(x) > ηC(x)}. (17)

12



We denote by αC and αD the scale parameters of the 1-Fréchet
random variables ηC(x) and ηD(x) respectively, i.e. for all z > 0,

P[ηC(x) ≤ z] = exp(−αC/z), P[ηD(x) ≤ z] = exp(−αD/z). (18)

Note that αD +αC = 1 and that αC and αD do not depend on x ∈ X .
We say that η is purely conservative (resp. purely dissipative) if αC = 1
(resp. αD = 1).

Corollary 20. Let x ∈ X . We have:

i) P[C(x) is unbounded] = αC ,

ii) P[C(x) is bounded] = αD,

iii) C(x) is unbounded a.s. if and only if η is purely conservative,

iv) C(x) is bounded a.s. if and only if η is purely dissipative.

3.4 Asymptotic density of cells

Next we consider the decomposition of η into positive and null compo-
nents and relate it to the asymptotic density of the cell C(x). For this
purpose, we introduce a new construction of the positive/null decom-
position of max-stable processes which simplifies and extends to the
dimension d ≥ 1 the construction from Samorodnitsky [19] and Wang
and Stoev [26, Example 5.4].

Recall that we write Br = [−r, r]d ∩ X for r > 0 and that λ is
either the counting or the Lebesgue measure on X , when X = Z

d or
X = R

d, respectively. Consider the shift-invariant cones of functions

FP =

{

f ∈ F0; lim
r→∞

1

λ(Br)

∫

Br

f(x)λ(dx) > 0

}

, (19)

FN =

{

f ∈ F0; lim inf
r→∞

1

λ(Br)

∫

Br

f(x)λ(dx) = 0

}

. (20)

In the definition of FP , we assume that the limit exists. The stationar-
ity of η implies that Y ∈ FP ∪FN a.s.; see Dombry and Kabluchko [6].
According to Lemma 16, the corresponding decomposition is

ηP (x) =
∨

i≥1

UiYi(x)1{Yi∈FP }, (21)

ηN (x) =
∨

i≥1

UiYi(x)1{Yi∈FN}, (22)

where the processes ηN and ηP are independent, stationary, max-stable
and η = ηP ∨ ηN . This decomposition based on cones is equal to the
positive/null decomposition based on the underlying non-singular flow
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(see e.g., Wang and Stoev [26, Theorem 5.3] in dimension d = 1, Wang
et al. [25] in dimension d ≥ 1, Dombry and Kabluchko [6]).

Given a measurable subset C ⊂ X , we define its lower and upper
asymptotic densities by

δ−(C) = lim inf
r→+∞

λ(C ∩Br)

λ(Br)
, δ+(C) = lim sup

r→+∞

λ(C ∩Br)

λ(Br)
.

If δ−(C) = δ+(C), the common value is called the asymptotic den-
sity of C and denoted by δ(C). The following theorem relates the
positive/null decomposition of η to the asymptotic density of the cell
C(x).

Theorem 21. Let x ∈ X . The following events are equal modulo null
sets:

{δ(C(x)) > 0} = {ηP (x) > ηN (x)}, (23)

{δ−(C(x)) = 0} = {ηN (x) > ηP (x)}, (24)

where the notation δ(C(x)) > 0 means that the asymptotic density
δ(C(x)) exists and is positive.

We denote by αP and αN the scale parameters of the 1-Fréchet
random variables ηP (x) and ηN (x) respectively, i.e. for all z > 0,

P[ηP (x) ≤ z] = exp(−αP /z) and P[ηN (x) ≤ z] = exp(−αN/z).

Note that αP + αN = 1 and that αP and αN do not depend on x.
We say that the max-stable process η is generated by a positive (resp.
null) flow if αP = 1 (resp. αN = 1).

Corollary 22. Let x ∈ X . We have:

i) P[δ(C(x)) > 0] = αP ,

ii) P[δ−(C(x)) = 0] = αN ,

iii) δ(C(x)) > 0 a.s. if and only if η is generated by a positive flow,

iv) δ−(C(x)) = 0 a.s. if and only if η is generated by a null flow.

4 Proofs related to Section 2

4.1 Proof of Theorem 3

Proof of Theorem 3. We first prove (7). For f, g : X → R and K ⊂ X ,
we use the notation

f >K g if and only if f(x) > g(x) for all x ∈ K.

14



For i ≥ 1, we write mi =
∨

j 6=i φj where φi = UiYi is defined by (5).
Fix some x ∈ X . Note that x ∈ Ci if and only if φi(x) ≥ mi(x),
whence (modulo null sets)

{K ⊂ C(x)} = {∃i ≥ 1, φi(x) > mi(x) and ∀y ∈ K, φi(y) > mi(y)}
= {∃i ≥ 1, φi >K∪{x} mi}.

The events {φi >K∪{x} mi}, i ≥ 1, are pairwise disjoint so that

1{K⊂C(x)} =
∑

i≥1

1{φi>K∪{x}mi} a.s.

Hence, we obtain

P[K ⊂ C(x)] = E

[

∑

i≥1

1{φi>K∪{x}mi}

]

.

This expectation can be computed thanks to the Slivnyak–Mecke for-
mula (see, e.g., Schneider and Weil [21, page 68]). Recall from (5)
and (6) that Φ = {φi, i ≥ 1} is a Poisson point process with intensity
µ and that mi is a functional of Φ\{φi}. The Slivnyak–Mecke formula
implies that

P[K ⊂ C(x)] =

∫

F0

E

[

1{f>K∪{x}η}

]

µ(df).

Using (6), we compute

∫

F0

E

[

1{f>K∪{x}η}

]

µ(df) =

∫ ∞

0
E

[

1{uY >K∪{x}η}

]

u−2du

= E

[
∫ ∞

0
1{u>supK∪{x} η/Y }u

−2du

]

= E

[

inf
K∪{x}

Y/η

]

.

This proves (7).
In the same spirit as in the proof of (7), we have

{C(x) ⊂ K} = {∃i ≥ 1, φi(x) > mi(x) and φi <Kc mi}

whence we deduce

P[C(x) ⊂ K] = E

[

∑

i≥1

1{φi(x)>mi(x)}1{φi<Kcmi}

]

.

We obtain (8) thanks to the Slivnyak–Mecke and straightforward com-
putations.
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4.2 Proof of Corollaries 5 and 6

Proof of Corollary 5. By Fubini’s Theorem, the expected volume of
the cell C(x) is equal to

E[Vol(C(x))] = E

[
∫

X
1{y∈C(x)}λ(dy)

]

=

∫

X
P[y ∈ C(x)]λ(dy)

and, according to Theorem 3,

P[y ∈ C(x)] = E

[

Y (x)

η(x)
∧ Y (y)

η(y)

]

.

Proof of Corollary 6. For n ≥ 1, we recall that Bn = [−n, n]d ∩ X .
The sequence of events {C(x) ⊂ Bn}, n ≥ 1, is non-decreasing and we
have

{C(x) bounded} =
⋃

n≥1

{C(x) ⊂ Bn},

whence
P[C(x) bounded] = lim

n→∞
P[C(x) ⊂ Bn].

Using (8), we get

P[C(x) ⊂ Bn] = E

[(

Y (x)

η(x)
− sup

Bc
n

Y

η

)+]

.

As n → +∞, the sequence supBc
n
Y/η decreases to lim supy→∞ Y (y)/η(y).

The monotone convergence theorem entails that

lim
n→∞

E

[(

Y (x)

η(x)
− sup

Bc
n

Y

η

)+]

= E

[

(

Y (x)

η(x)
− lim sup

y→∞

Y (y)

η(y)

)+
]

,

whence we deduce

P[C(x) bounded] = E

[

(

Y (x)

η(x)
− lim sup

y→∞

Y (y)

η(y)

)+
]

.

In order to prove the equivalence of the statements (i) and (ii), we note
that

0 ≤
(

Y (x)

η(x)
− lim sup

y→∞

Y (y)

η(y)

)+

≤ Y (x)

η(x)
.

Note also that E[Y (x)/η(x)] = 1 since Y (x) is independent of 1/η(x) ∼
Exp(1). Using the fact that (a − b)+ = a (for a, b ≥ 0) if and only if
a = 0 or b = 0, we can deduce that the equality

E

[

(

Y (x)

η(x)
− lim sup

y→∞

Y (y)

η(y)

)+
]

= 1
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occurs if and only if lim supy→∞ Y (y)/η(y) = 0 a.e. on the event
{Y (x) 6= 0}. This proves the equivalence of (i) and (ii).

5 Proofs related to Section 3

5.1 Proofs of Propositions 13 and 14

Proof of Proposition 13. According to Theorem 12, η is ergodic if and
only if

lim
r→+∞

1

λ(Br)

∫

Br

(2− θ(h))λ(dh) = 0, (25)

and η is mixing if and only if

lim
h→∞

(2− θ(h)) = 0. (26)

Clearly, in view of the inequalities (10), (25) is equivalent to

lim
r→+∞

1

λ(Br)

∫

Br

P[h ∈ C(0)]λ(dh) = lim
r→+∞

E

[λ(C(0) ∩Br)

λ(Br)

]

= 0

and (26) is equivalent to limh→∞ P[h ∈ C(0)] = 0.

Proof of Proposition 14. We use here an upper bound for the β-mixing
coefficient provided by Dombry and Eyi-Minko [4, Theorem 3.1]: the
β-mixing coefficient β(S1, S2) defined by (11) satisfies

β(S1, S2) ≤ 2P[A(S1, S2)],

where A(S1, S2) denotes the event

{∃i ≥ 1, ∃(s1, s2) ∈ S1 × S2, UiYi(s1) = η(s1) and UiYi(s2) = η(s2)}.

Introducing the cells C(s1) with s1 ∈ S1, we have

A(S1, S2) = {∃(s1, s2) ∈ S1 × S2, s2 ∈ C(s1)}
= {∪s1∈S1

C(s1) ∩ S2 6= ∅}

and
β(S1, S2) ≤ 2P[∪s1∈S1

C(s1) ∩ S2 6= ∅].
We deduce that, for all compact set K ⊂ X and for all r > 0,

βr(K) ≤ 2P[∃x ∈ X , d(x,K) ≥ r and x ∈ ∪s∈KC(s)].

We prove below that if C(0) is bounded a.s., then so is ∪s∈KC(s),
whence the right-hand side in the above inequality converges to 0 (by
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the dominated convergence theorem), and limr→∞ βr(K) = 0.
Suppose now that C(0) is bounded a.s. In the discrete case X = Z

d,
the compact set K is finite and ∪s∈KC(s) is a.s. bounded as a finite
union of bounded sets. In the continuous case X = R

d, K may be
infinite but it is known that there are a.s. only finitely many indices
i ≥ 1 such that UiYi(s) = η(s) for some s ∈ K (see Dombry and Eyi-
Minko [5, Proposition 2.3]). Hence, we can extract a finite covering
∪s∈KC(s) = ∪k

j=1C(sj) and ∪s∈KC(s) is a.s. bounded as a finite union
of bounded sets.

5.2 Proof of Lemma 16

Proof of Lemma 16. By the uniqueness of the max-Lévy measure, the
max-stable process η is stationary if and only if its max-Lévy measure
µ is stationary. By the properties of Poisson point processes, Φ ∩
Ci, i = 1, 2, are independent Poisson point processes with intensity
measures dµi = 1Cidµ. The max-stable processes η1 and η2 are hence
independent with exponent measures µ1 and µ2, respectively. Since the
cone Ci is shift-invariant, so is the measure µi. Hence, the process ηi is
stationary. Finally, the distribution of ηi is characterized by the max-
Lévy measure dµi = 1Cidµ and does not depend on the representation
(2).

5.3 Proofs of Theorem 19 and Corollary 20

In the next lemma, we gather some preliminary computations needed
for the proof of Theorem 19.

Lemma 23. Let x ∈ X . We have:

i) αC = E[Y (x)1{Y ∈FC}] and αD = E[Y (x)1{Y ∈FD}],

ii) P[ηC(x) > ηD(x)] = αC and P[ηD(x) > ηC(x)] = αD,

iii) P[C(x) is bounded, ηC(x) > ηD(x)] = E

[

(

Y (x)
η(x) − lim sup∞

Y
η

)+
1{Y ∈FC}

]

,

iv) P[C(x) is bounded, ηD(x) > ηC(x)] = E

[

(

Y (x)
η(x) − lim sup∞

Y
η

)+
1{Y ∈FD}

]

.

Proof of Lemma 23. i) From (14) we get

P[ηC(x) ≤ y] = P[∨i≥1UiYi(x)1{Yi∈FC} ≤ y]

= exp
(

−
∫ ∞

0
P[uY (x)1{Y ∈FC} > y]u−2du

)

= exp(−E[Y (x)1{Y ∈FC}]/y),
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whence we deduce that αC = E[Y (x)1{Y ∈FC}]. The formula for αD is
obtained in the same way.

ii) The random variables ηC(x) and ηD(x) are independent and have
Fréchet distribution with parameters αC and αD, respectively. Hence,

P[ηC(x) > ηD(x)] = E[exp(−αD/ηC(x))]

=

∫ +∞

0
exp(−αD/u)d(e

−αC/u)

= αC .

For the last equality, we use αC + αD = 1. Similarly, P[ηD(x) >
ηC(x)] = αD.

iii) This statement is a variation of Corollary 6 and we give only the
main lines of its proof. We first prove the following version of (8): for
all compact sets K ⊂ X ,

P[C(x) ⊂ K, ηC(x) > ηD(x)]

= E

[(

Y (x)

η(x)
− sup

y∈Kc

Y (y)

η(y)

)+

1{Y ∈FC}

]

. (27)

Indeed, with the same notation as in the proof of (8), we have

{C(x) ⊂ K, ηC(x) > ηD(x)}
= {∃i ≥ 1, φi(x) > mi(x), φi <Kc mi and φi ∈ FC}

and the Slivnyak–Mecke formula entails that

P[C(x) ⊂ K, ηC(x) > ηD(x)]

= E





∑

i≥1

1{φi(x)>mi(x)}1{φi<Kcmi}1{φi∈FC}





=

∫

F0

E
[

1{f(x)>η(x)}1{f<Kcη}1{f∈FC}

]

µ(df).

With similar computations as in the proof of (8), (27) is easily de-
duced. Then statement iii) follows from (27) exactly in the same way
as Corollary 6 follows from (8).

iv) The proof is similar and is omitted.

Proof of Theorem 19. Since {ηD(x) = ηC(x)} is a null set, it suffices
to prove the following two inclusions (modulo null sets):

{ηD(x) > ηC(x)} ⊂ {C(x) is bounded}, (28)

{ηC(x) > ηD(x)} ⊂ {C(x) is unbounded}. (29)

19



Proof of (28). We first reduce the proof of (28) to the proof of

lim
y→∞

Y (y)

η(y)
1{Y ∈FD} = 0 a.s. (30)

Indeed, (30) and statements i), ii) and iv) of Lemma 23 entail that

P[C(x) is bounded, ηD(x) > ηC(x)]

= E

[

(

Y (x)

η(x)
− lim sup

∞

Y

η

)+

1{Y ∈FD}

]

= E

[

Y (x)

η(x)
1{Y ∈FD}

]

= αD

= P[ηD(x) > ηC(x)],

and we deduce (28).
It remains to prove (30). Statements i) and iii) of Lemma 18 imply

that Y 1{Y ∈FD} is Brown–Resnick stationary and such that

∫

X
sup
y∈K

Y (x+ y)1{Y ∈FD}λ(dx) < ∞ a.s.

On the other hand, let us consider the process Z = Y
η 1{Y ∈FD}. Since

Y and 1/η are Brown–Resnick stationary and since the cone FD is shift
invariant, statement i) and ii) of Lemma 18 imply that Z = Y

η 1{Y ∈FD}

is Brown–Resnick stationary. Furthermore, for any compact set K ⊂
X ,

E

[

∫

X
sup
y∈K

Z(x+ y)λ(dx)
∣

∣

∣
Y

]

≤ E

[
∫

X

supy∈K Y (x+ y)

infy∈K η(x+ y)
1{Y ∈FD}λ(dx)

∣

∣

∣
Y

]

= E

[

sup
y∈K

η−1(y)

]

∫

X
sup
y∈K

Y (x+ y)1{Y ∈FD}λ(dx) < ∞ a.s.

In the last equation, we used the independence of Y and η, the sta-
tionarity of η and the fact that E

[

supy∈K η−1(y)
]

< ∞ (see Dombry
and Eyi-Minko [4, Theorem 2.2]). As a consequence,

∫

X
sup
y∈K

Z(x+ y)λ(dx) < ∞ a.s.
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and Lemma 18-iii) implies that limx→∞ Z(x) = 0 a.s., thus proving
(30).

Proof of (29). We consider the shift-invariant cone

FL =

{

f ∈ F0; sup
X

f > lim sup
∞

f

}

.

We will prove that the process Z = Y
η 1{Y ∈FC} is Brown–Resnick sta-

tionary and satisfies
P[Z ∈ FL] = 0. (31)

After this has been done, (29) can be deduced as follows: (31) implies
that

Y (x)

η(x)
1{Y ∈FC} ≤ sup

X

(

Y

η
1{Y ∈FC}

)

≤
(

lim sup
∞

Y

η
1{Y ∈FC}

)

a.s.,

whence
(

Y (x)

η(x)
− lim sup

∞

Y

η

)+

1{Y ∈FC} = 0 a.s.

According to Lemma 23, statement iii), we obtain that

P[C(x) is bounded, ηC(x) > ηD(x)]

= E

[

(

Y (x)

η(x)
− lim sup

∞

Y

η

)+

1{Y ∈FC}

]

= 0,

and this implies (29).
We now consider (31). Statements i) and ii) of Lemma 18 imply

that the process Z is Brown–Resnick stationary. Lemma 18-iv) entails
that P[Z ∈ FL] ≤ P[Z ∈ FD]. So, it suffices to prove that P[Z ∈
FD] = 0. Suppose by contradiction that P[Z ∈ FD] > 0. Recalling
that Z = Y

η 1{Y ∈FC}, we see that

{Z ∈ FD} = {Y ∈ FC} ∩ {Y/η ∈ FD}.

On the set {Y ∈ FC} = {lim sup∞ Y > 0}, one can construct a σ(Y )-
measurable random sequence xn → ∞ such that Y (xn) ≥ 1

2 lim sup∞ Y >
0. Then, on {Z ∈ FD} ⊂ {Y/η ∈ FD} = {lim∞ Y/η = 0}, we have
necessarily η(xn) → +∞. But η is stationary and independent of Y , so
that η(xn) has a unit Fréchet distribution that does not depend on n.
This leads to a contradiction and we must hence have P[Z ∈ FD] = 0.
This concludes the proof of (31).
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Proof of Corollary 20. Theorem 19 and Lemma 23-ii) together yield

P[C(x) is unbounded] = P[ηC(x) > ηD(x)] = αC ,

proving statement i). Statement ii) is proved similarly. Furthermore,
η is purely dissipative if ηC = 0, which is equivalent to αC = 0. We
deduce easily that η is purely dissipative if and only if C(x) is bounded
a.s. and this proves iii). The proof of iv) is similar.

5.4 Proofs of Theorem 21 and Corollary 22

Proof of Theorem 21. It suffices to prove the following two inclusions
(modulo null sets):

{ηN (x) > ηP (x)} ⊂ {δ−(C(x)) = 0} (32)

and
{ηP (x) > ηN (x)} ⊂ {δ(C(x)) > 0}. (33)

Proof of (32). Let us consider the cell of x with respect to the null
component only. It is defined by

CN (x) = {y ∈ X ; ∃i ≥ 1, Yi ∈ FN , UiYi(x) = ηN (x), UiYi(y) = ηN (y)}.

Clearly, ηN (x) > ηP (x) implies that C(x) ⊂ CN (x). We will prove
that δ−(CN (x)) = 0 on {ηN (x) > ηP (x)} and this implies (32).

We can suppose without loss of generality that η = ηN is generated
by a null flow and prove that the lower asymptotic density of C(x) =
CN (x) is equal to zero. According to Wang et al. [25, Theorem 4.1]
or Kabluchko [8, Theorem 8], max-stable random fields generated by
null flows are ergodic, whence Proposition 13 implies

E

[λ(C(0) ∩Br)

λ(Br)

]

→ 0 as r → ∞.

This implies the convergence in probability

λ(C(0) ∩Br)

λ(Br)

P−→ 0, as r → +∞

and hence almost sure converge to 0 along a subsequence. We deduce
that δ−(C(0)) = 0 almost surely and, by stationarity, the same holds
true for C(x), x ∈ X .

Proof of Equation (33). Possibly changing representation (2), we may
suppose without loss of generality that for any i ≥ 1, the random
process Ỹi = Yi1{Yi∈P} is stationary. We consider the cells

C̃i = {y ∈ X , UiỸi(y) = η(y)}, i ≥ 1.
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We will prove below that for every i ≥ 1 with probability one,

either δ(C̃i) > 0 or λ(C̃i) = 0. (34)

We show that this implies (33). On the event {ηP (x) > ηN (x)}, there
is a random index i(x) such that C(x) = C̃i(x). Furthermore, since

x ∈ C(x), we have λ(C̃i(x)) > 0 (this is clear in the discrete case, in
the continuous case, C(x) contains a neighborhood of x). According
to (34), we obtain δ(Ci(x)) = δ(Cx) > 0, proving (33).

It remains to prove (34). Recall that the Ui’s are arranged in
the decreasing order. Fix i ≥ 1 and observe that the distribution of
(Ui, Ỹi, η) is invariant under the shift

Tx(u, f1, f2) = (u, f1(·+ x), f2(·+ x)), u > 0, f1, f2 ∈ F0.

Then we observe that

λ(C̃i ∩Br)

λ(Br)
=

1

λ(Br)

∫

Br

1{x∈C̃i}
λ(dx)

=
1

λ(Br)

∫

Br

1{UiỸi(x)=η(x)}λ(dx)

=
1

λ(Br)

∫

Br

1{Tx(Ui,Ỹi,η)∈A}λ(dx)

with A = {(u, f1, f2);uf1(0) = f2(0)}. We can then apply the multi-
parameter ergodic theorem (see, e.g., [25, Theorem 2.8]) and conclude
that

lim
r→+∞

λ(C̃i ∩Br)

λ(Br)
= E[1A(Ui, Ỹi, η) | I] a.s.,

where I denotes the σ-algebra of shift-invariant sets. This shows that
C̃i has an asymptotic density,

δ(C̃i) = E[1{0∈C̃i}
| I] a.s.

Furthermore, we observe that shift-invariance implies that

E[1{0∈C̃i}
| I] = E[1{x∈C̃i}

| I], x ∈ X .

Using the fact that {δ(C̃i) = 0} ∈ I , we deduce that

E[λ(C̃i)1{δ(C̃i)=0} | I] = 1{δ(C̃i)=0}

∫

X
E[1{x∈C̃i}

| I]λ(dx)
= 0.

Taking the expectation, we obtain that

E[λ(C̃i)1{δ(C̃i)=0}] = 0

and we conclude that λ(C̃i) = 0 on the event {δ(C̃i) = 0}, proving
(34).
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Proof of Corollary 22. For the sake of brevity, we omit the proof which
is quite straightforward from Theorem 21 and very similar to the proof
of Corollary 20.
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A Proof of Lemma 18 iv)

Proof of Lemma 18 iv). To check that FL is localizable, take L1(f) =
arg max(f) and L2(f) = max(f) in the definition of a localizable
cone (note that we are working with continuous functions so that the
supremum is a maximum).

For the proof of the inclusion {Y ∈ FL} ⊂ {limx→∞ Y (x) = 0},
we prove that ηL = ∨i≥1UiYi1{Yi∈FL} admits a mixed moving max-
imum representation. According to [6, Proposition 10], this implies
that YL ∈ F̃D almost surely and hence the inclusion {Y ∈ FL} ⊂
{limx→∞ Y (x) = 0} modulo null sets. For simplicity, we omit the
subscript L and assume that Y ∈ FL almost surely. We prove that
η = ∨i≥1UiYi admits a mixed moving maximum representation. In
fact, the proof works if FL is replaced by any localizable cone. We
follow the proof of Theorem 14 in Kabluchko et al. [10] and we sketch
only the main lines. We introduce the random variables

Xi = argmax
x∈X

Yi(x), Zi(·) =
Yi(Xi + ·)

maxx∈X Yi(x)
, Vi = Uimax

x∈X
Yi(x).

Note that Xi is well-defined because of the definition of FL. If the
maximum is attained at several points, we take the lexicographically
smallest one. Clearly, we have UiYi(x) = ViZi(x −Xi) for all x ∈ X
so that

η(x) =
∨

i≥1

ViZi(x−Xi).

It remains to check that (Vi,Xi, Zi)i≥1 is a Poisson point process with
intensity measure u−2duλ(dx)Q(df), where Q is a probability measure
on F0. Clearly, (Vi,Xi, Zi)i≥1 is a Poisson point process as the image
of the original point process (Ui, Yi)i≥1. Its intensity is the image
of the intensity of the original point process. With a straightforward
transposition of the arguments of [10, Theorem 14], one can check that
it has the required form.
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