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We study the dynamics of Bogoliubov excitations of a Bose-Einstein condensate in the quasiperi-
odic kicked rotor. In the weakly interacting regime, the condensate is stable and both the condensate
and the excitations undergo a phase transition from a quasilocalized to a diffusive regime. The cor-
responding critical exponents are identical for the condensate and the excitations, and compare very
well with the value ν ≈ 1.6 for non-interacting particles.

Ultracold atoms are clean, controllable, and flexible
systems whose dynamics can be modeled from first prin-
ciples. Interacting ultracold bosons are often well de-
scribed in the frame of a mean-field approximation lead-
ing to the Gross-Pitaevskii equation (GPE) [1], which
is useful in a wealth of situations of experimental inter-
est: Superfluidity and vortex formation [2], chaotic be-
havior [3], soliton propagation [4], etc. Ultracold atom
systems are thus increasingly used to realize simple mod-
els that are inaccessible experimentally in other areas of
physics [5].

Ultracold gases in a disordered optical potential have
been used as an emulator for the Anderson model [6],
allowing the direct observation of the Anderson localiza-
tion [7]. The quantum kicked rotor (QKR), obtained by
placing cold atoms in a pulsed standing wave, is also a
(less obvious) emulator for the Anderson physics [8]: It
displays dynamical localization, a suppression of chaotic
diffusion in the momentum space, recognized to be equiv-
alent to the Anderson localization. Recent studies sug-
gest that interactions (treated in the frame of the GPE)
lead to a progressive destruction of the dynamical local-
ization, which is replaced by a subdiffusive regime [9, 10]
in analogy with what is numerically observed for the 1D
Anderson model itself [11].

Applying standing-wave pulses (kicks) to a Bose-
Einstein condensate (BEC) may lead to a dynamical in-
stability which transfers atoms from the condensed to
the non-condensed fraction, a phenomenon which is not
described by the GPE. The most common “higher or-
der” approximation in this context is the Bogoliubov-de
Gennes (BdG) approach [12]. The BdG theory considers
“excitations” – described as independent bosonic quasi-
particles – of the Bose gas, and thus indicates how (and
how much) it differs from a perfectly condensed gas. It
has been applied both to describe the dynamical insta-
bility of the periodic kicked rotor [13] and to study a
one-dimensional weakly interacting BEC [14] in a dis-
ordered potential; it was found in the latter case that
the quasiparticles may also display Anderson localiza-
tion. Interestingly, a modified version of the QKR, the
quasiperiodic kicked rotor (QPKR), in the absence of in-
teractions, emulates the dynamics of a 3D Anderson-like

model, and displays the Anderson metal-insulator transi-
tion [15]. With this system a rather complete theoretical
and experimental study of this transition has been per-
formed [16–18]. In the present work we apply the BdG
approach to the QPKR, both to study the stability of
the condensate and the dynamics of its Bogoliubov ex-
citations. We show that for weak enough interactions,
the condensate remains stable for experimentally rele-
vant times, and that the Bogoliubov quasiparticles also
display the Anderson phase transition.
A kicked rotor is realized by submitting ultracold

atoms to short kicks of a standing wave at times sep-
arated by a constant interval T . If such kicks have
a constant amplitude, one realizes the standard (pe-
riodic) kicked rotor; which exhibits dynamical local-
ization [8, 19]. If the amplitude of the kicks is
modulated with a quasiperiodic function f(t) = 1 +
ǫ cos (ω2t+ ϕ2) cos (ω3t+ ϕ3), where ω2T , ω3T and k̄ ≡
4~k2LT/M (the reduced Planck constant) are incommen-
surable (kL is the wave-vector of the standing wave
and M is the mass of the atoms), the QPKR is ob-
tained [15]. In the absence of particle-particle interac-
tions, the Hamiltonian of the QPKR, in conventional
normalized units [19, 20], is:

H =
p2

2
+K cosx f(t)

∑

n∈N

δ(t− n). (1)

where K is proportional to the average standing wave
intensity. In such units the time interval between kicks
is T = 1, lengths are measured in units of (2kL)

−1.
Throughout this work we take ω2 = 2π

√
5, ω3 = 2π

√
13

and k̄ = 2.89 corresponding to typical experimental val-
ues [16–18]. In the absence of interactions the QPKR
displays, for low values of K and ǫ, dynamical localiza-
tion at long times (i.e.

〈

p2
〉

∼ constant); for K ≫ 1,

ǫ ≈ 1 one observes a diffusive regime
〈

p2
〉

∼ t, and in
between there is a critical region which displays a subd-
iffusive behavior

〈

p2
〉

∼ t2/3 [20].
We use in the present work a model slightly different

of the experimentally realized QPKR; we consider a si-
nusoidal potential “folded” over one spatial period of the
standing wave; in such case p becomes a discrete variable
p = k̄l, with l ∈ Z. Mathematically, this is equivalent to
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use one-period (2π in normalized units) spatial periodic
boundary conditions. In the presence of weak interac-
tions that are modeled by a mean-field nonlinear poten-
tial, the critical and the diffusive regime are not affected
whereas the localized regime is replaced by a subdiffusive
one 〈p2〉 ∼ tα, with α ∼ 0.4 [10, 21]. In the following,
we consider the weakly interacting regime and short time
scales so that this effect is negligible; we shall thus use
the term “quasilocalized” to characterize this phase.
We emphasize that in our model there is no spatial di-

lution of the boson gas, and the average nonlinear poten-
tial, which is proportional to the density, does not vary
with time. This is not the case in the usual experimental
realization of the QPKR, where the atom cloud diffuses
with time, causing a significant diminution of the spatial
density; once the system is diluted, the nonlinearity does
not play anymore an important role. Our model is thus
expected to catch more clearly the physics in presence of
the nonlinearity. One can use a torus-shaped confining
optical potential in order to realize experimentally such
a geometry [22].
In this quasi-1D geometry, we take interactions into

account via the particle-number-conserving Bogoliubov
formalism [23], at zero temperature. The gas of interact-
ing bosons is separated into two parts: (i) The condensed
part (or condensate) and (ii) the non-condensed part (or
“excitations”). The condensate is governed by the Gross-
Pitaevskii equation

ik̄
∂φ(x)

∂t
= Hφ(x) + g|φ(x)|2φ(x) (2)

where the condensate wave function φ is normalized

to unity:
∫ L

0
|φ(x)|2dx = 1 (L = 2π is the sys-

tem length) and the rescaled 1D interaction strength
g = 2k̄ω⊥aN is proportional to the S-wave scattering
length a, the number of atoms N and the transverse
trapping frequency ω⊥. The non-condensed part is de-
scribed in the Bogoliubov formalism as a set of indepen-
dent bosonic quasiparticles, whose two-component state
vector (uk, vk), satisfying the normalization condition
∫ L

0

[

|uk|2(x) − |vk|2(x)
]

dx = 1, evolves according to the
equation:

ik̄∂t

[

uk

vk

]

= L
[

uk

vk

]

. (3)

The operator L is a 2× 2 matrix:

L =

[

Q
Q†

]

LGP

[

Q
Q†

]

LGP =

[

H + 2g|φ|2 − µ(t) gφ2

−gφ∗2 −H − 2g|φ|2 + µ(t)

]

,(4)

where LGP is the usual Bogoliubov operator and µ(t) =
∫

dx (φ∗Hφ+ g|φ|4) is the time-dependent chemical po-
tential. The presence of the projection operator Q = 1−

|φ〉〈φ| ensures the total number-conservation of the parti-
cles [23]. The condensate wave-function and the Bogoli-
ubov mode amplitudes can be written as a Fourier series:

f(x) = L−1
∑

l∈Z
eilxf̃(l) and f̃(l) =

∫ L

0
e−ilxf(x)dx,

where f = φ, uk, vk. For an initial uniform distribution
φ(x, t = 0) = L−1/2, the corresponding initial values of
(uk, vk), obtained from the diagonalization of the opera-
tor L(t = 0) [24], are plane waves of momentum k (in
units of k̄)

[

ũk(l, t = 0)
ṽk(l, t = 0)

]

=

√
L

2

[

ξ + 1/ξ
ξ − 1/ξ

]

δk,l (5)

with k ∈ Z
∗, and ξ given by:

ξ =

[

k2

k2 + 2g/πk̄2

]1/4

. (6)

We emphasize that the Bogoliubov modes (uk, vk) are
momentum eigenstates only at time t = 0; once the kicks
are applied, different components of the momentum dis-
tribution are mixed.
Let us now consider the stability of the condensate

by estimating the number of non-condensed atoms (the
quantum depletion) at zero temperature of the gas which
is given by δN =

∑

k Nk, where the number of excitations
Nk in the mode k is

Nk =

∫ L

0

|vk(x)|2dx =
1

L

∑

l

|ṽk(l)|2. (7)

As the total number of particles is fixed, the number of
condensed particles is N − δN and the non-condensed
fraction is simply δN/N . As long as δN is much smaller
that the typical number of atoms ≈ 105 used in a ex-
periment, the kicked condensate is stable. Due to the
inversion symmetry of the problem, we can restrict the
study to k > 0. We will focus on the initially most pop-
ulated mode k = 1.
For the periodic kicked rotor, several studies showed

the emergence of an instability at large positive values of
g (repulsive interactions) [13], which manifests itself by
an exponential increase of the number of excitations. We
shall now study this instability in the quasiperiodic kicked
rotor for g > 0. Equations (2) and (3) can be integrated
simultaneously by a split-step method. Numerical data
are averaged over 500 random realizations of the phases
ϕ2, ϕ3 ∈ [0, 2π). Figure 1(a) displays the time evolu-
tion of N1 for different values of g in the quasilocalized

regime. For low interaction strengths g ≤ 0.1 the sys-
tem is stable in the considered time range, the average
number of excitations N1 ≤ 0.1 being very small. For
g = 1 the interplay between the kicks and interactions
leads to a slow exponential increase of the number of
quasiparticles: N1(t = 1000) ≈ 10, and for g = 4, the
condensate is clearly unstable, the number of excitations
exceeding the typical number of condensed atoms N af-
ter a few hundred kicks. Figure 1(b) shows the number
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Figure 1. (Color online) Evolution of the population of the
mode k = 1 for g = 10−2 (black +), g = 10−1 (red �), g = 1
(green ×) and g = 4 (blue ◦) (a) in the quasilocalized regime
K = 4, ǫ = 0.1 and (b) in the diffusive regime K = 9, ǫ = 0.8
(b).

of excitations for a larger kick amplitude K = 9 with
ǫ = 0.8 corresponding to the diffusive regime. In this
case, the condensate is less affected by the presence of
interactions, as the kinetic energy grows linearly with
time and eventually dominates the constant interaction
energy ≃ g. In the following, we thus focus on very low
interacting strengths g ≤ 0.1 for which N1 ≪ N meaning
that the condensate is stable and the Bogoliubov formal-
ism is valid.

We now consider the (normalized) momentum distri-

bution of the condensate, nc(p = k̄l) = |φ̃(l)|2/(Lk̄) and

that of the quasiparticles, nb(p = k̄l) = |ṽ1(l)|2 /(LN1k̄).
For g ≤ 0.1 and for short enough times, one expects the
condensate to display quasilocalization if K < K̃ and
diffusion if K > K̃, K̃ being the critical point. Our nu-
merical simulations show that this is also the case for the
quasiparticles. We have checked that momentum distri-
butions remain essentially centered around the origin so
that their first moments 〈p〉i = k̄2

∑

l lni(p) (i = c, b) are
small. Figure 2(a) shows the second moment of the dis-
tribution variance of the distribution σ2

i = 〈p2〉i − 〈p〉2i ,
with 〈p2〉i = k̄3

∑

l2ni(p), for both the condensate (i = c,
blue empty markers) and of the excitations (i = b, red
full markers) in the quasilocalized regime. For the two
values of the interacting strength g = 10−4 (triangles)
and g = 10−1 (squares), the second moment of the con-
densate saturates to a constant value σ2

c = 50, showing
that the wave-packet is quasilocalized. Assuming an ex-
ponential profile nc(p) ∝ exp(−|p|/ξ), the localization
length [25] of the momentum distribution at t = 104 is
given by ξ = σc/

√
2 ∼ 5, which evolves very slowly with

time up to t = 104 [cf. Fig. 2(a)]. In other words, for
very weak interactions and at the short time scales acces-
sible to experiments, the condensate behaves as a single
particle and displays a behavior very close to the Ander-
son localization. More interestingly, Fig. 2(a) shows that
Bogoliubov quasiparticles also tend to “localize”, although
with a larger value of the second moment σ2

b ≈ 180. The

momentum distributions in the quasilocalized regime at
t = 104 are shown in Fig. 2(b) which displays nc and nb

[same graphical conventions as in Fig. 2(a)]. The mo-
mentum distribution of the condensate has a typical ex-
ponential profile associated with Anderson localization,
whereas that of the quasiparticles presents two peaks
with exponential wings. This peculiar shape is proba-
bly due to the asymmetric initial condition, the initial
momentum distribution of the mode k = 1 [Eq. (5)] is
centered at p = k̄. The wings of the quasiparticle mo-
mentum distribution have approximately the same slope
as the condensate distribution, showing that quasiparti-
cles have the same localization length in this example.
Because nb(p) has a much flatter top than nc(p), the as-
sociated second moment σb is however significantly larger
than σc.

In the diffusive regime, the condensate and the quasi-
particles have the same dynamical behavior: Figure 2(c),
which is the equivalent of Fig. 2(a) for K = 9, ǫ = 0.8,
actually shows that σ2

c and σ2
b increase linearly with time

and that the evolution is very similar for g = 10−4 and
g = 10−1. The diffusion coefficients Dc = σ2

c/(2t) ∼ 20
and Db = σ2

b/(2t) ∼ 25 are also similar. Figure 2(d)
represents the corresponding momentum distributions at
t = 500. Both have the typical Gaussian shape associated
with a diffusion process.

These results show that the nature of the two phases
of the Anderson metal-insulator transition in the QPKR
are not changed, at least for relatively short times, by
weak interactions.

We now study the critical behavior. As Bogoliubov
quasiparticles behave like real (non-interacting) parti-
cles in the quasilocalized and diffusive regimes, it is
reasonable to expect that they also display the Ander-
son transition. The universality of this second-order
phase-transition has been recently demonstrated exper-
imentally in the absence of interactions [18], by show-
ing that the experimental value of the critical exponent
ν = 1.63 ± 0.05 is independent of the microscopic pa-
rameters of the system, and consistent with the numer-
ically predicted value 1.58 ± 0.02 [26]. In order to ac-
cess the critical properties of the system, we use a finite-
time scaling method [20, 26] which allows one to char-
acterize the critical regime of the phase transition and
to extract its critical exponent ν. The critical regime
is shown to correspond to a subdiffusive expansion with
exponent 2/3: σ2 ∝ t2/3 [20]. We cross the transition
along the path ǫ(K) = 0.1 + 0.14(K − 4) used in [16].
Figure 3 shows that, for small nonlinearities, the criti-
cal exponent is the same for both components and com-
pares very well with the (non-interacting) experimental
measurement ν = 1.63± 0.05 [18], but their values tend
to become different for higher values of g. The critical
point is also found to be the same for both the conden-
sate and the excitations. Its value, K̃ ≈ 6.38 ± 0.05
at g = 0, practically does not change (inside the sta-
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Figure 2. (Color online) Dynamics of the condensate and of the quasiparticles. Variance of the momentum of the condensate
σ2
c (t) (empty blue markers) and of the quasiparticles σ2

b(t) (full red markers) for g = 10−4 (triangles) and g = 10−1 (squares)
in the (a) quasilocalized regime (K = 4, ǫ = 0.1) and (c) in the diffusive regime (K = 9, ǫ = 0.8). Momentum distributions of
the condensate nc(p) (empty markers) and of the quasiparticles nb(p) (full markers) at t = 104 (logarithmic scale) in the (b)
quasilocalized regime and (d) diffusive regime.

tistical uncertainty) up to g = 0.1, in accordance with
the self-consistent theory prediction of [10]. This is the
main result of the present work: Bogoliubov quasipar-
ticles undergo a second-order phase transition and the
corresponding critical exponent has the same value as
the one observed for a non-interacting system of inde-
pendent particles. This suggests that the concept of uni-
versality is valid for independent particles, for interacting
condensates and for Bogoliubov quasiparticles: All these
conceptually different objects undergo a phase transition
with the same critical exponent. For g ≥ 0.1, the value of
the critical exponents starts to deviate from the univer-
sal value illustrating that the system enters a new regime
where the kicked condensate is changed by the presence
of interactions, that is, the subdiffusive character of the
quasilocalized regime becomes important even for short
times [10].

The above study is restricted to the Bogoliubov mode
k = 1. Experimentally, Bogoliubov modes can be se-
lectively excited using two laser waves whose directions
are chosen so that their wave-vector difference ∆kL cor-
responds to the wave-vector k of the desired mode [27].
Considering another mode k 6= 1 is equivalent to a change
of the initial condition in the Bogoliubov equations and
should not change our results. We checked numerically
that theses modes, which are initially less populated than
the k = 1 mode, display the same behavior, but are much
more affected by finite-time effects, as their initial mo-
mentum distribution is more asymmetric [see Eq. (5)].
We also mention that it would be interesting to extend
the present study to higher values of g and/or longer time
scales where dynamical localization is supposed to be ef-
fectively destroyed, and see if quasiparticles display the
same subdiffusive dynamics below the critical point, as
predicted for the condensate by the self-consistent the-
ory [10], but such a study is outside the scope of the
present work.

In conclusion, in a quasiperiodic kicked rotor, in the
very weakly interacting regime, the condensate is stable
for times that are larger than the experimental time-scale
(presently up to 1000 kicks). In this regime, both quasi-
particles and the condensate behave like single parti-

10−4 10−3 10−2 10−1

g

1.50

1.65

1.80

ν

Figure 3. (Color online) Critical exponent ν vs interacting
strength g for both the condensed fraction (blue circles) and
the Bogoliubov quasiparticles (red crosses). Error bars are
calculated via a standard bootstrap method [28].

cles undergoing the Anderson transition from a localized
regime to a diffusive regime, and display the same critical
exponent, which is compatible with the one observed for
non-interacting particles; the universality of the phase
transition is thus valid irrespectively of the type of parti-
cle. The above findings confirm the potentialities of the
quasiperiodic kicked rotor for the experimental study of
the effect of interactions on the Anderson transition. For
low positive values of g the noninteracting regime can
be experimentally observed, and, by increasing interac-
tions via a Feshbach resonance one can observe the onset
of nonlinear effects. The present work opens the way for
such an experiment, which would represent an important
advance in the physics of interacting disordered systems.
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