
HAL Id: hal-01073178
https://hal.science/hal-01073178

Submitted on 6 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A bidirectional path-finding algorithm and data
structure for maritime routing

Dieudonné Tsatcha, Eric Saux, Christophe Claramunt

To cite this version:
Dieudonné Tsatcha, Eric Saux, Christophe Claramunt. A bidirectional path-finding algorithm and
data structure for maritime routing. International Journal of Geographical Information Science, 2014,
28 (7), pp.1355-1377. �10.1080/13658816.2014.887087�. �hal-01073178�

https://hal.science/hal-01073178
https://hal.archives-ouvertes.fr

Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/8707

To cite this version :

Dieudonné TSATCHA, Eric SAUX, Christophe CLARAMUNT - A bidirectional path-finding
algorithm and data structure for maritime routing - International Journal of Geographical
Information Science - Vol. 28, n°7, p.1355-1377 - 2014

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/8707
mailto:archiveouverte@ensam.eu

RESEARCH ARTICLE

A Bidirectional Path-Finding Algorithm and Data Structure for

Maritime Routing

(Received 00 Month 200x; �nal version received 00 Month 200x)

Route planning is an important problem for many real time applications in open
and complex environments. The maritime domain is a relevant example of such
environments where dynamic phenomena and navigation constraints generate dif-
�cult route �nding problems. This paper develops a spatial data structure that sup-
ports the search for an optimal route between two locations while minimizing a
cost function. Although various search algorithms have been so far proposed (e.g.
breadth-�rst search, bidirectional breadth-�rst search, Dijkstra’s algorithm, A∗, etc.),
this approach provides a bidirectional dynamic routing algorithm which is based on
hexagonal meshes and an Iterative Deepening A∗ algorithm (IDA∗), and a front to
front strategy using a dynamic graph that facilitates data accessibility. The whole
approach is applied to the context of maritime navigation, taking into account nav-
igation hazards and restricted areas. The algorithm developed searches for optimal
routes while minimizing distance and computational time.

Keywords: Maritime routing, computational geometry, arti�cial intelligence, geographic

information science, navigation aids.

1. Introduction

Route planning between two geographical positions in a dynamic and open environment is of-
ten a frustrating problem for maritime navigation. As the number of entities and rules in these
environments increase, path-�nding problems are often non straightforward. Several success-
ful algorithms developed for Intelligent Transportation Systems (ITS) have been applied to
terrestrial environment where path-�nding algorithms are network constrained. This is exem-
pli�ed by in-vehicle Route Guidance System (RGS) and real time Automated Vehicle Dispatch-
ing System (AVDS) where routing strategies rely on road networks. Maritime environment also
needs e�cient algorithms to �nd the shortest path from an origin to a destination. But while
prede�ned tracks exist for tankers or large ships, the maritime environment remains an open
space where navigation in any direction is allowed, this making the path-�nding problem a
rather di�erent issue than in network environments.
The challenge considered in this paper is to perform a real-time path-search where a given

path is continuously constrained by the objects and the phenomena that are likely to modify
the environment and the navigation. The real-time decision process to develop should be com-
puted in a few seconds, this being su�cient to take into account possible environment changes
(e.g. modi�cation of visibility (fog, night), perception of ships or drifting objects) and to sup-

Dieudonné Tsatcha, Eric Saux, Christophe Claramunt

2

port collision avoidance. Such a path-�nding search should also take into account the speci�c
properties of the maritime environment. Table 1 summarizes the main di�erences between
maritime and network-based routing. Navigation in a maritime environment is constrained by
several properties such as rules (e.g. tra�c regulation, collision regulations (U.S. Coast Guard
1999)), restricted areas (e.g. tra�c separation zones or lines), hazard areas (e.g. shoals), mobile
objects (e.g. ships) and change dynamically with tide, current and wind. Moreover, visibility
which is not constant (e.g., fog, day vs. night) can in�uence the perception of entities and ac-
tions to perform (Tsatcha et al. 2013). All these constraints have an impact on the resources,
both on computational time and memory space, and penalize real time path-�nding.
Nowadays, and to the best of our knowledge, Electronic Chart Display and Information Sys-

tems (ECDIS) used for maritime navigation integrate some path-�nding algorithms as men-
tioned by Xu et al. (1994) and Yu et al. (2003). However, none of them take into account all
the constraints previously described. Current maritime routing algorithms are usually applied
to ship races and take into account meteorologic phenomena (wind, current) on top of raster
data (Ahmadi et al. 2008). Figure 1 shows an example of a route proposed by MaxSea1 soft-
ware where the two most important factors involved in achieving optimum courses are the
weather forecast and the speed of the boat. However, this approach does not preserve security
and cannot be considered as real time routing.

Table 1. Main di�erences between maritime and network-based routing.

Space Entities Time Route planning

Maritime routing Open Dynamic High in�uence Mainly based on landmarks
Network-based routing Constrained Dynamic Low in�uence Mainly network-constrained

Figure 1. Example of a maritime route (black straight line) derived by MaxSea software that crosses a
land area.

The approach presented in this paper is oriented to a navigation decision-aid system that
should facilitate the decision-process of a captain in high stress situations by proposing an
e�cient path to follow. Let us �rst restrict the study to a real time path-�nding problem ap-
plied to a two-dimensional maritime environment (i.e., 2D map) by taking into account both
the length of the trajectory and the static objects composing a region. The choice of a planar

1http://www.maxsea.com

International Journal of Geographical Information Science 3

representation rather than an ellipsoidal representation is motivated by the area of navigation
that is rather of the size of a region (i.e. coastal navigation) than of the size of a part of the Earth
(i.e. o�-shore navigation, less constrained by the environment). The maritime environment is
modelled by S57 vector data1 (format de�ned by the International Hydrographic Organization
(IHO)). In order to achieve planning tasks, most of current maritime transport systems super-
impose a grid over a region, and a graph is used to �nd the best paths. Usually, the terrain is
modelled by regular squares (or tiles), hexes or octiles de�ning the mesh (Yap 2002). However,
the number of cells in the path, as well as computational time, can be reduced in the search
process using an iterative approach. In order to do so, let us introduce an iterative bidirectional
path-�nding algorithm based on an optimal graph structuring a hexagonal mesh. The search
algorithm is founded on an Iterative Deepening A∗ algorithm (IDA∗) .
The remainder of the paper is organized as follows. Section 2 introduces themain approaches

or algorithms used in path-�nding strategies and suggests the more relevant type of mesh for
maritime routing. Section 3 introduces the background theory used to built two complementary
meshes associated to the bidirectional path and proposes an optimized data structure for storing
the hexagonal cells. Section 4 develops the approach retained to merge the IDA∗ algorithm
and the bidirectional strategy for hexes and presents a case study. Finally, section 5 draws some
conclusions and highlights future work.

2. Path-Finding Algorithms

Two classes of algorithms are usually applied to �nd an optimal path connecting two points
denoted s (starting point) and t (terminal point): unidirectional and bidirectional algorithms.
Each of them has many variants but the most useful algorithms are admissible algorithms. A
search algorithm is admissible if it guarantees to �nd a valid solution that satis�es a minimal
path among the set of existent solutions.
Moore (1957) and Dijsktra (1959) algorithms are commonly considered as the �rst admissible

algorithms. Let us consider a mesh (i.e. a partition of the search area into cells) related to a
directed graph G(X,U) where X is a collection of nodes (i.e. cells) and U is a collection of
arcs. Each arc of U can be considered as an ordered pair of nodes of X . Starting with a node
n0 including initial point s and for each iteration, the algorithm explores some parts of the
graph2 and marks the best successor of the current node until to reach the ending node nN

that includes terminal point t. A path can be de�ned by a sub-graph of G where the selected
nodes ofX can be arranged in increasing number and where the initial node n0 is assumed to
be the root node. A path u starting from root node n0 to an ending node nN is denoted as a
sequence of arcs, such as:

u = (en0n1
, en1n2

, en2n3
, en3n4

, en4n5
, . . . , enN−1nN

)

where s ∈ n0, t ∈ nN and enk−1nk
is the arc formed by the nodes nk−1 and nk. Alternatively,

one can write:

u = (n0, n1, n2, n3, n4, ..., nN).

The length of the path is computed using the distance l, i.e. :

l(u) =
∑N−1

i=0 ||enini+1
|| , where ||.|| is the L2 norm.

1http://www.iho.int/iho_pubs/IHO_Download.htm
2In the conceptualization developed, a graph is related to a mesh. A directed graphG(X,U)whereX is a collection of nodes and
U is a collection of arcs. Each arc of U may be considered as an ordered pair of nodes of X .

4 International Journal of Geographical Information Science

The best successor nj of current node ni minimizes the distance l(ni, nj) + λn0,ni
where

l(ni, nj) is the cost between nodes ni and nj , and λn0,ni
is the minimal cost to reach node

ni starting from n0. Dijkstra’s algorithm has been extended into a more e�cient algorithm
denoted A∗ by including the estimated remaining cost to reach the �nal node nN . A∗ es-
timates the optimal cost of a current node ni with an evaluation function having the form
f(ni) = g(ni)+h(ni), where g(ni) is the cost of the �nding path from n0 to ni, and h(ni) is a
heuristic estimating the cost of the remaining path to reach nN from ni. A

∗ is admissible and
never overestimates the cost function f at each iteration in comparison with algorithms which
estimate the cost function at the end of the process. It has an iterative variant method denoted
“Iterative Deepening A∗” (IDA∗) proposed by Korf (1985) where the search is performed by
a depth analysis in the graph.
All admissible algorithms can be applied by a bidirectional approach. The bidirectional al-

gorithms belong to the second class of algorithms. The aim is to �nd the optimal path using
a heuristic in both directions denoted “forward front” and “backward front” originated from
starting node n0 and ending node nN . A Bidirectional Heuristic Pohl A∗ search (BHPA∗)
was proposed by Pohl (1971). It was later improved by Kwa (1989) who proposed a Bidirec-
tional Search A∗ (BSA∗) by adding several speci�c operations (nipping, pruning, trimming
(removing) and screening (not placing)). The interest of these operations is to avoid unneces-
sary explorations and prevent repeated expansions in both fronts (Pulido et al. 2012). However,
these two heuristics have a crucial drawback called missile metaphor (where the two searches
pass without touching each other) due to the fact that they perform a heuristic with the prin-
ciple front-to-end1. In comparison with BHPA∗ and BSA∗, Sint and de Champeaux (1977)
and de Champeaux (1983) proposed a front-to-front2 principle. Kaindl and Kainz (1997) show
that the front-to-front evaluations are more e�cient than the front-to-end evaluations. In the
90’s, Dillenburg and Nelson (1994) and Manzini (1995) introduced an approach in comparison
with the bidirectional search called perimeter search. This approach is based on a front-to-front
strategy using a breadth-�rst search and generates nodes around the evaluated node and stores
all of them located within a research area limited by a boundary. Later, Kaindl and Kainz (1997)
devised an algorithm computationally cheaper than the previous ones that relies on dynamic
changes called di�erence approaches. This approach is grounded on a known cost g(ni) and
its heuristic estimates the cost from a given evaluation function h(ni) which minimizes the
estimations obtained with other heuristics.
Cui and Shi (2011) show that the sort of grid used can have an impact on the performance

of path-�nding algorithms. Sahr et al. (2003) and Tong et al. (2013) introduce relevant dis-
crete global grid systems (DGGSs) which are considered to be a promising structure for global
geospatial information representation based on hexagonal grids. Having the objectives to �nd
an optimal path in real-time in a maritime environment, we propose a routing algorithm based
on a front-to-front Bidirectional Iterative Depth A∗ algorithm (BIDA∗). The bidirectional al-
gorithm is dynamic and develops a non overlapping mesh paving part of the maritime envi-
ronment.
Hexagonal mesh performs the three main factors usually used to evaluate a graph search on

a grid:

(1) It minimizes the branch-factor value3 de�ned by Korf (1985). This criterion is illus-
trated in �gures 2(a), 2(b), 2(c), 2(d) and summarized in table 2.

1Evaluations estimate the minimal cost of some paths from an evaluated node ni to the terminal node nN .
2Evaluations estimate the minimal cost of some paths from an evaluated node ni in the forward front to node nj of the backward
front.
3The branch-factor value is the number of possible adjacent nodes in order to avoid backtrack.

International Journal of Geographical Information Science 5

(2) It minimizes the number of nodes contained in the solution path. According to Yap
(2002), this path minimizes the number of changes in direction.

(3) It proposes an optimal cluster movement (Youse� and Donohue 2004). This criterion
enables to determine the longest node sequence in a direction while minimizing both
the direction changes and the total number of nodes composing the path (Figure 3).

Table 2. Number of adjacent nodes and branch-factor value for di�erent grids.

Grid Tiles Hexes Octiles

Adjacent nodes 4 6 8 for diagonal or 5 for non-diagonal cells
Branch-factor 3 3 5 for diagonal cells and 3 for non-diagonal cells

These facts have made hexagonal mesh as the optimal method which o�ers several advan-
tages for a grid solution for the navigation planning problem. The next section focuses on the
data structure used to implement the BIDA∗ algorithm with a hexagonal mesh. The BIDA∗

algorithm is then detailed in section 4.

(a) (b) (c) (d)

Figure 2. Branch-factor for (a) a hexagonal grid, (b) a square tile grid, (c) an octagonal grid and a non-
diagonal cell, (d) an octagonal grid and a diagonal cell.

Figure 3. Optimal cluster movement on di�erent grids.

6 International Journal of Geographical Information Science

3. Hexagonal Mesh Path and Data Structure

The aim of this section is to �nd the directions of propagation in the bidirectional search while
producing a complementary mesh for the solution path. This is achieved by a two-step ap-
proach. The �rst step presented in section 3.1 determines the modelling process for a hexagonal
mesh. This implies that the hexagonal cells should not overlap when the two paths meet. The
second step, detailed in section 3.2, selects the more e�cient direction of propagation that min-
imizes the constraints required by the application. Finally, section 3.3 proposes a data structure
to store the hexagonal cells of the solution path.

3.1. Complementary Hexagonal Mesh

The main principle of this process is based on mesh parallelism applied on the planar faces.
According to Pottmann et al. (2007a), parallelism can be used to produce a uni�ed view or
complementary mesh by keeping optimal nodes and the o�set of geometrical properties. Let
us consider twomeshesM andM ′ displayed in �gure 4. These authors prove that these meshes
are combinatorially equivalent if and only if there is a 1-1 correspondence between vertices and
edges. It follows that two meshesM andM ′ are considered as parallel since the corresponding
edges are parallel (Pottmann et al. 2007b).

Figure 4. Example of parallel meshesM andM ′ with planar faces. Meshes are combinatory equivalent
and corresponding edges are parallel.

Let us consider two points s and t in a two-dimensional space corresponding to the starting
and terminal points. There always exists a propagation initiated by s that covers the terminal
point t with a hexagon. Based on the proof of parallelism between meshes, there exists one
and only one hexagon (node) initiated by a centre b that contains the point t and whose mesh
initiated by itself meets exactly the mesh initiated by the centre s. One of the complexities of
this algorithm is to compute the coordinates of the centre of the hexagon which covers point
t starting from point s. The computation of the centre b is realized assuming the hexagonal
mesh to be represented by a two-dimensional �xed matrix where indexes i and j represent
the indexes of the columns and rows respectively using zigzag axes (Figure 5(a)). Finding the
hexagonal cell that contains t is equivalent to �nd the indexes (i, j) of the hexagonal cell which
covers t. The coordinates of this centre are derived from the formulae detailed as follows, where
we consider Γ(O,

−→
i ,
−→
j) being the initial coordinate system of �gure 5.

The strategy to compute the centre b = (bx, by) of the hexagon that contains terminal node
t = (tx, ty) is realised by a two-step approach. The �rst step subdivides the space with rect-
angular tiles corresponding to a two-dimensional matrix. A tile is identi�ed by its indexes
(itile, jtile) and the coordinates of its left-top corner. In �gure 5, the widths of the rows and
columns are respectively equal to H and S. The second step is to use the indexes of the tile
containing the terminal point t for determining the indexes (ihex, jhex) of the �nal hexagon
and the coordinates of its centre.

International Journal of Geographical Information Science 7

(a) (b)

Figure 5. Schema of a hexagonal mesh (a) in a coordinate system Γ(O,
−→
i ,
−→
j) and (b) in a local coordi-

nate system γ(O′,−→u ,−→v).

The indexes (itile, jtile) of the tile that contains t are computed by equation 1:
itile =

⌊

tx
S

⌋

jtile =

⌊

ty
H

⌋

⌊

ty−
H

2

H

⌋

when itile is odd

when itile is even

=
⌊

yts

H

⌋

with yts = ty − itile mod 2×H
2

(1)

In addition, the point t can be de�ned in the local coordinate system γ(O′,−→u ,−→v) associ-
ated to the tile that contains t (Figure 5(b)). Its local coordinates (tx_tile, ty_tile) are de�ned by
equation 2:

tx_tile = tx − itile × S and ty_tile = yts − jtile ×H (2)

The next step concerns the identi�cation of the hexagonal cell (among the three possible
hexagonal cells that intersect the tile (itile, jtile)) containing the terminal point t. This point
belongs either to the light black area or the dark black one in �gure 5(a). The boundary of these
two areas is de�ned by the following equation:

x_tile = R×

∣

∣

∣

∣

1

2
−

y_tile

H

∣

∣

∣

∣

(3)

It results that the indexes (ihex, jhex) of the hexagon that contains point t(tx, ty) are:

ihex=

{

itile when tx_tile > R×
∣

∣

∣

1
2 −

ty_tile
H

∣

∣

∣

itile−1 otherwise

jhex=

{

jtile when tx_tile > R×
∣

∣

∣

1
2 −

ty_tile
H

∣

∣

∣

jtile − itile mod 2 + d otherwise

with d =

{

1 when ty_tile >
H
2

0 otherwise

(4)

8 International Journal of Geographical Information Science

The parameter d di�erentiates the case where t belongs to the dark black top (d = 0) or dark
black bottom (d = 1) hexagon.
Finally, the coordinates of the centre of the hexagon that contains point t are:

bx = ihex × S +R and by = jhex ×H + H
2 (5)

Centering the reference system Γ to starting point s by a translation of vector (R, H2) leads
to the new coordinates:

bx = ihex × S and by = jhex ×H (6)

Two kinds of mesh can be distinguished for the paving. One can have a �at (Figure 5(b))
or pointy orientation (Figure 6(b)). The second orientation is derived from the �rst one by
changing the coordinate system. We arbitrary chose this orientation in the following sections.

Let Γ′(s,
−→
i′ ,
−→
j′) be this new reference system displayed in �gure 6. Γ is derived from Γ′ by

applying a rotation of angle π
2 (Equation 7). In this new coordinate system, the point b =

(bx, by) is de�ned by equation 8.

(−→
i
−→
j

)

=

(

cos(π2) −sin(
π
2)

sin(π2) cos(π2)

)

×

(−→
i′
−→
j′

)

=

(−→
−j′
−→
i′

)

(7)

(

bx
by

)

Γ

= (bx by)×

(−→
i
−→
j

)

= (bx by)×

(−→
−j′
−→
i′

)

= −bx
−→
j′ + by

−→
i′

= (by − bx)×

(−→
i′
−→
j′

)

=

(

by
−bx

)

Γ′

(8)

(a) (b)

Figure 6. Schema of a hexagonal mesh in a coordinate system Γ′(s, i′, j′).

Finally, starting from a hexagonal cell centred on initial point s, this modelling process en-
ables to compute the centre b of the hex-cell containing the �nal point t to be joined while

International Journal of Geographical Information Science 9

producing a complementary mesh for the routing problem. The next section focuses on the
choices of directions of propagation for the forward and backward fronts in the bidirectional
search.

3.2. Directions of Propagation in the Bidirectional Search

This section introduces a real-time dynamic direction �nding while avoiding backtracks. A
direction of exploration is hereafter denoted as a beam. Assuming a hexagonal mesh, the ob-
jective is to determine the set of hexes contained in a beam corresponding to a next possible
direction (i.e. the search area) on which the BIDA∗ algorithm will be applied. Each searching
area is de�nedwith three adjacent hexes whose number corresponds to the value of the branch-
factor (see section 2). It results that there exists six beams (three beams and their symmetric)
initiated by a hexagonal cell (Figure 7).

(a) (b) (c)

Figure 7. Symmetry in the direction of beams.

Assuming an initial hexagon of centre c, space is partitioned into conic sections (Conei)
6
i=1

centred on this hexagon. Each conic section, obtained by a rotation of π
3 around c, contains

three adjacent hexes that can be chosen in the path-�nding. A conic section is identi�ed by its
direction of propagation denoted Vi being the interior bisector.
The solution beams result from a minimisation problem. One has to determine the e�cient

beams that minimize the criteria required by the application. The navigation or displacements
imply to take into account two fundamental types of constraints: spatial and temporal. Each of
them can be consistency or requirement constraints. On the one hand, consistency constraints
are generic and do not depend on a project or application. They are always related to the
intrinsic properties of the entities located in the environment. On the other hand, requirement
constraints represent as an example building regulations, best-practise construction rules, or
client requirements, which may vary from the applications (Borrmann et al. 2009). Therefore,
let us consider (cs, ct)i the pair of spatial and temporal constraints restricted to the beam i.
The challenge of the computational algorithm is to �nd the beam which satis�es the set of
constraints or minimizes the functions modelling these constraints. Regarding the temporal
constraint satisfaction problem, Schwalb and Vila (1998) de�ne it like a computational solution
to represent and perform queries on temporal occurrences and relations.
Borrmann et al. (2009) distinguishes three di�erent types of spatial constraints: distance con-

straint (distance, closerThan, fartherThan and maxDist), directional constraints (above, below,
northOf, southOf, eastOf, westOf) and topological constraints (disjoint, meet, overlap, cover,
coveredBy, contain, equal and inside). This section explores directional constraints and the
next section 4 dedicated to BIDA∗ satis�es the distance and topological constraints. The di-

rectional constraint is expressed as to be as close as possible to the directionD =
−−→
bibj de�ned

from the straight line joining the centres bi and bj of the cells associated to the forward and
backward fronts (see �gure 8). The bidirectional process leads to use symmetrical beams on
both parts of the propagation. Thus, optimal direction Vī minimizes the criterion de�ned by
equation 9:

10 International Journal of Geographical Information Science

(̂D,Vī) = Mini=1...6(̂D,Vi) (9)

Figure 8. Symmetrical propagation using complementary beams.

3.3. Data Structure

This section develops an optimized data structure to implement the BIDA∗ algorithm taking
into account the issue of memory consumption. This implies that the data structure should en-
able to store the two oriented beams of the bidirectional search. This latter should be dynamic,
including relationships linking a parent hexagon to a sequence a neighbouring child cells. The
process should also be optimized with the objective that the coordinates of each hexagon and
corresponding vertices must be computed only once. The proposed data structure is modelled
as two separated dynamic oriented and complementary graphs where the root nodes are the
hexagons that contain initial points s and t and whose the centre coordinates are de�ned by
section 3.1. Two nodes are joined by one direction or arc (parent-child).We derive the following
notations regarding the relations between two neighbouring nodes:

Rpc : parent-child relation
Rcp : child-parent relation
R

p
bb : brother-brother relation having parent p

(10)

The data structure allows to build and store hexagons by a dynamic process. Figure 9 shows
that the hexagonal mesh can be organised from global or local points of view. According to
an absolute reference system, a hexagon is identi�ed with its row and column indexes (i, j) as
explained in section 3.1. As regards a local reference system centred on a current hexagon, six
child hexagons are placed on di�erent directions (NE,E, SE, SO,O,NO) identi�ed as Vi in
the previous section:NE is denoted by 1,E by 2, SE by 3, SO by 4,O by 5 andNO by 6. In the
absolute reference system, relations between indexes (row, column) of two neighbouring nodes
exist. Assuming the variation (δi,δj)d in direction d from a node (i, j) to a node (i′, j′), indexes
can be computed using equation 11. Table 3 identi�es the variation coe�cients associated with
the possible directions.

(i′, j′) = [−1]i(δi, δj)d + (i, j) (11)

International Journal of Geographical Information Science 11

(a) (b)

Figure 9. Modelling of neighbouring cells in a local (left) or global (right) reference system.

Table 3. Variation coe�cients between parent and child.

d 1 2 3 4 5 6
(δi,δj)d (−1, 0) (−1, 1) (0, 1) (1, 1) (1, 0) (0,−1)

A hexagonal cell (i, j) is de�ned in the graph from the following notation:

m
n [Hex(i, j)]

dpc

S

dpc: direction parent-child of the current cell from

the parent point of view

(i, j): indexes of the current hexagon (row, column)

m,n: left and right directions bordering direction dpc

S: set of directions identifying the children

(12)

In �gure 9(b), the graph node related to the cell (i− 1, j) is denoted as 6
2[Hex(i− 1, j)]16,1,2.

Directions m = 6, dpc = 1 and n = 2 are de�ned from the indexes (i, j) of the parent cell
and correspond to a beam having a direction V1 illustrated by �gure 7(c) (right con�guration).
Directions in set S = {6, 1, 2} are de�ned from the indexes (i − 1, j) of the current cell and
identify the possible neighbouring cells (i−2, j), (i−2, j+1) and (i−1, j+1) extending the
structure. Considering the de�nition of a hexagonal mesh in any directions and at the same
resolution, the modelling is realized by a growing process. The �rst step is the modelling of
the root cell (i, j) (Figure 10). To start with, the cell (i, j) is assimilated to a point. It can be
either the starting point s or the centre of the hexagon containing the terminal point t. Rotating
around the centre of the cell enables to update the set of children stored in set S. At the end of
this process the data structure is restricted to a single root cell denoted as 0

0[Hex(i, j)]01,2,3,4,5,6.
By convention, a null direction (m = 0, dpc = 0 or n = 0) implies that the cell has no parent.

Figure 10. Illustration of the root cell modelling process.

The second step consists in the creation of the six child cells of the initial or root cell. This
step de�nes the �rst ring around an initial hexagon (Figure 11). In order to optimize the data
structure, the brother-brother relations Rp

bb between the children are updated. The graph dis-
played in �gure 12 shows the data structure associated to the �rst ring of cells where the cell
(i, j) is the root node. Each arc is oriented from a child to its parent and labelled with the di-
rection dcp. The direction dcp is not only used in order to label the arcs in the graphs of �gures

12 International Journal of Geographical Information Science

12 and 14 but also to update the child nodes in S of the parent cell. It can be derived that if a
child node “looks” its parent in direction dcp then the parent “looks” its child in the direction
dpc de�ned by equation 13:

dpc = (dcp + 2) mod 6 + 1 (13)

Figure 11. Illustration of the �rst ring modelling process.

Figure 12. Graph corresponding to the structure of �gure 11.

Applying the previous process to the following child cells leads to the second ring mod-
elling process illustrated by �gure 13 and corresponding graph presented in �gure 14. Starting
from the �rst child cell 6

2[Hi−1,j]
1
6,2,1 three child cells are built in directions 6, 1 and 2 (Fig-

ure 13(a)). This leads to the de�nition of cells 5
1[H(i− 2, j)]65,6,1,

6
2[H(i− 2, j + 1)]16,1,2 and

1
3[H(i− 1, j + 1)]21,2,3 (Figure 14). These new cells are considered as the children of the cur-

rent cell (i− 1, j) that implies to update the brother relations Rp
bb between the new three cells

and the older ones (i.e. to update the relations between brothers (i, j + 1), (i − 1, j + 1) and
brothers (i− 1, j − 1), (i− 2, j)). The bordering new brothers to update are indicated by the
indexesm and n in the cell notation. This implies to create a link between the brothers identi-
�ed by directionsm and (m+4) mod 6+ 1 (according to the current cell (i− 1, j)) as well as
the brothers identi�ed by directions n and n mod 6 + 1. In the previous example, set S of cell
(i, j + 1) is modi�ed to include its new brother in its direction 1. Thus, number 1 is removed
from S and cell (i, j+1) becomes 1

3[H(i, j+1)]22,3 (Figure 14). The same principle is applied to
cell (i−1, j−1)where S is modi�ed to include its new brother in its direction 1. Thus, number
1 is removed from S and cell (i− 1, j − 1) becomes 5

1[H(i− 1, j − 1)]65,6 (Figure 14). This pro-
cess is repeated on the next child cells of the root cell (see �gures 13(b),13(c),13(d),13(e),13(f))
and ends the second ring. Next iterations are based on the same principle. The resulting data
structure is optimized in the sense that there is no graph node duplication and that node links
are computed once.

International Journal of Geographical Information Science 13

(a) (b) (c) (d)

(e) (f)

Figure 13. Illustration of the second ring modelling process.

Figure 14. Graph corresponding to the structure of �gure 13(a).

The previous data structure has been presented from a general context and for a whole mesh.
Using a direction of propagation like de�ned in �gure 7 of section 3.2 limits the number of
computation and produces a sub-graph of the proposed one. This reduces the computation
cost and provides an optimal data structure to apply the bidirectional iterative path-�nding
algorithm.
From a computational and visualisation point of view, two neighbouring cells are joined by

two common vertices. Assuming the vertices (vi)
6
i=1 of a hexagon (where v1 is the vertex at the

top of a hex-cell) and in order to avoid repeated vertex calculations, each direction Vi is linked
to the vertex vi in the hexagonal cell. In �gure 15, the rotation around the centre of the hexagon
(i, j) in direction (Vi)

6
i=1 leads to the creation of the six vertices vi. Each of these vertices are

common to the parent cell (i, j) and two of its child cells. For each hexagonal cell, a hash table
stores all the vertices previously computed avoiding redundant vertex computations in the
mesh and optimizing the visualisation process. The hash table is updated taking into account
the mesh generation process. As an example and after the creation of the root cell (i, j) (Figure
15), the vertex v2 belongs to the three cells (i, j), (i − 1, j) and (i, j + 1) and a neighbouring

14 International Journal of Geographical Information Science

cell (i− 1, j) has its two vertices v4 and v5 already built (hash table view per line). Centred on
a cell and analysing the hash table, one deduces the vertices not yet de�ned and their direction
of construction.

Figure 15. Hash table illustrating the vertex computations of the hexagon during the creation of the
root cell (i, j).

4. BIDA
∗ on Hexes

4.1. Bidirectional Path-Finding based on IDA
∗

The complexity of search algorithms is usually considered in terms of time, space and cost of
the solution path. IDA∗ is known to be asymptotically optimal in these three dimensions for
exponential tree searches (Korf 1985). This latter can be e�ciently combined with bidirectional
search and IDA∗ is the only known algorithm that is able to �nd an optimal solution when
practical resources are limited. Dantzig (1960) initially proposed the bidirectional algorithm and
an interpretation as follows: “If the problem is to determine the shortest path from a given origin
to a given destination, the number of comparisons can often be reduced in practice by fanning out
from both the origin and the destination, as if they were two separate independent problems. . . .

However, once the shortest path between a node and the origin or the destination is found in one
problem, the path is conceptually replaced by a single arc in the other problem.” Nicholson (1966)
and Dreyfus (1969) proposed many approaches to improve this previous description. From this
interpretation, Korf (1985) derives that bidirectional search optimizes space and time by search-
ing simultaneously forward from the initial state and backward from the goal state, and storing
the states generated until a common one is found on both search frontiers. Table 4 summarizes
the cost of the IDA∗ algorithm with di�erent grids (Yap 2002). The hexagonal mesh o�ers a
good compromise between the length of the path and the complexity. Assuming that a hashing
schema and hexagonal mesh are used, it results that the complexity of bidirectional algorithm

in time and space is O(2.42
D−H

2).

Table 4. Complexity of IDA∗ according to di�erent grids (Yap 2002).
D = l(u) and H corresponds to the e�ect of the heuristic on the algo-
rithm.

Grid Tiles Hexes Octiles

Average depth 1.00D 0.81D 0.71D

IDA∗ complexity 0(3.00D−H) 0(2.42D−H) 0(2.77D−H)

The principle of IDA∗ is as follows. For each iteration, a Depth-First Search (DFS) is real-
ized to �nd the next node in the graph. TheDFS explores the three possible nodes in a beam

International Journal of Geographical Information Science 15

cutting the branches when the value of the cost function f(ni) = g(ni) + h(ni) exceeds a
threshold value. The cost function f(ni) considers that g(ni) is the cost of the �nding path
from s to ni, and h(ni) is a heuristic estimating the cost of the remaining path from ni to t.
The threshold value used for an iteration is the minimum cost value among all the possible
cost values at the previous iteration. The idea of this algorithm is not to minimize the depth
search, but rather to minimize the total cost of the path (i.e. function f). An example of node
selection is illustrated by �gures 16, 17 and 18. Our algorithm restricted to a search direction
constrained by beams does not counteract the admissibility property of IDA∗ algorithm.

Figure 16. An initial graph with cost values. Figure 17. The solution path.

Figure 18. Node selection (in dark grey) using IDA∗.

The algorithm presented in appendix A provides the main concepts used in the implemen-
tation of BIDA∗ for the case studies presented in section 4.2. Map represents the set of ge-
ographical features used for the maritime environment. Two threads T1 and T2 have been
applied in parallel for the bidirectional search. (tip) causes the current thread to suspend its
execution for a speci�ed period avoiding concurrent processing. Each thread is related to a
dynamic data structure of search denoted asMeshi (i = 1, 2) where a mesh is a set of hexag-
onal cells as de�ned by equation 12. At each step of the hexagon cell creation, a node N (i,j)

corresponds to a vertex and can be assimilated to a row of the hash table (see �gure15). In order
to avoid a redundant process, each mesh is managed by two stacks of nodes. The �rst stack of
nodes is a set of promising nodes to explore and evaluate using a function f = g+ h, denoted
as open stack (Stack1). Stack1 has a LIFO

1 architecture. The second is a set of visited nodes
that are not selected to reach the goal and is denoted as closed stack of nodes (Stack2). The

1Last-in, First-out

16 International Journal of Geographical Information Science

radius of the hexagonal cells is linked to parameter r. It ensures either a �ne or large resolu-
tion of the solution path. Two approaches can be taken into account. On the one hand, r can be
invariant during the path-�nding algorithm as presented in �gure 20 ensuring a single level of
resolution. On the other hand, a multi-resolution approach can be used where a discrete grid
system is represented by a group (aperture) of 3, 4 or 7 hexagons (Sahr 2011). All these apertures
preserve the centre of the current cell but its radius can change allowing to re�ne or enlarge
the resolution dynamically. Three parameters enable the change of resolution of hexagonal
cells: i) centre c ii) radius r and iii) deviation angle α computed between the symmetrical axes
of two consecutive resolutions. Thus, one can determine the properties (i.e. r′, c′ and α′) of a
hexagonal grid at a lower resolution from the parameters at a higher one (i.e. r, c and α). In
aperture 4, the parameters are computed as follows: r′ = 2∗r, c′ = c and α = 0. Figure 19 is an
example of BIDA∗ algorithm with such a multi-resolution approach applied on an aperture
4. The main drawback encountered using a multi-resolution strategy is that it counteracts the
complementarity conditions (see section 3.1) between the two directional paths, i.e. the two
last cells of each directional path intersect.

4.2. BIDA
∗ for Maritime Routing

TheBIDA∗ algorithm has been applied to maritime data to �nd the optimal route joining two
positions corresponding to the departure and arrival points of a ship trajectory. In order to �nd
an optimal route, one should take into account two constraints. The �rst one is to avoid hazard
areas during routing while taking into account meteorological and environmental information
such as wind and current. The second one is to consider the semantic information generated by
a region or an object (e.g. cardinal buoy, alignment) that canmodify the trajectory ship. In order
to avoid hazard areas and for each iteration of theBIDA∗ algorithm, let us compute the spatial
relationships (equal, disjoint, intersect, touch, cross, within, contain, overlap (Freeman 1975))
between a cell (i, j) in the mesh and the di�erent objects forming the maritime environment.
If an intersection exists, the search tries to �nd an other solution path among the brother cells
(see section 3.3). In the case where no solution is found among the “brothers”, the strategy is to
have a backward process. One comes back to the “father” cell in order to �nd a solution among
its brothers. In the case study, the cost function g (respectively h) evaluates the Manhattan
distance between the starting (respectively ending1) and the current point.
The approach has been applied to maritime data extracted from Electronic Navigational

Charts (ENC). These charts are de�ned from vector �les where geographic objects are mod-
elled using geometrical primitives like point, line, polygon de�ned in the European Datum 1950
(ED50) geodetic datum. The S572 format describes the concepts of the maritime environment
with their attributes. The proposed example uses electronic chart number 7066 provided by
the SHOM3 (“Service Hydrographique et Océanographique de la Marine”, Brest, France) and
represents a maritime area in the surrounding area of Brest city in France.
The user �rst submits departure point s, destination point t and the radius of the hexagonal

cells. The cell radius can be arbitrary set for computational time purpose (large radius reduces
computational time) or having a meaning for the application like being a safety or security
area around the ship related to a minimal distance and de�ned according to the speed and rate
of turn4 of the ship.

1In the bidirectional algorithm, the ending point does not correspond to the terminal point t but to the centre of the front node in
the symmetrical path.
2http://www.iho.int/iho_pubs/IHO_Download.htm
3http://www.shom.fr
4ROT attribute in the Automated Identi�cation System (AIS) format.

International Journal of Geographical Information Science 17

Figures 19 and 20 respectively illustrate the results using a multi-resolution and a single
resolution hexagonal mesh. In our case study, the relevant cells of the bidirectional path are
displayed satisfying the heuristic function while avoiding the hazard areas like land areas (light
grey areas), buoys (light grey circles) and restricted areas (dark grey areas). The sea area is rep-
resented by a white colour. The prototype was implemented in Java language using the Java
topology suite (JTS5) for representing the spatial relationships. The black line illustrates the
proposed route and the hexagonal cells correspond to the graph nodes deployed for this so-
lution. Each node of the graph builds exactly three children. The three black nodes in �gure
19 are the children of the current nodes in the forward and backward fronts. Table 5 pro-
poses some results to evaluate the performance of the strategy. The criteria hereafter used
are the ratio γ quantifying the gain of nodes in the ordinary path-�nding problem and the
computational time. The ratio γ evaluates the number of cells required in the proposed al-
gorithm in comparison with the number of cells needed for covering the whole search space

(Nbhexagon = Surface of the search space
Surface of a hexagon

). As an example, the ratio γ1 of the �rst use case in table 5 is

equal to 142177−1014
142177 = 0.99. This means that only 1% of the cells of a coverage grid is needed

to compute the optimal solution. Computational time presented in the last column of table 5
has been obtained by a computer with an Intel Celeron Processor E3200 (2.40 GHz). One can
remark that this strategy minimizes the processing time by optimizing the storage of nodes.
This is especially true in large and open environnments.

Figure 19. Example of iterative maritime routing using theBIDA∗ algorithm on a dynamic data struc-
ture. Case 1: multi-resolution hexagonal meshes with an aperture 4.

Table 5. Evaluation of the proposed strategy in comparison with a usual strategy based on a coverage grid.

Departure point
s (km)

Destination point
t (km)

Radius of a
hexagon (m)

Number of cells
in the graph

Number of cells mesh-
ing the environment

Number of cells
in the solution
path

γ Computational
time (ms)

-524282.64
5379318.29

-497390.83
5382653.57

50 1014 142177 338 0.99 21350

-524282.64
5379318.29

-510401.87
5377558.01

50 576 142177 172 0.99 8207

-524313.63
5379102.12

-497019.12
5382653.57

96 567 38568 185 0.98 5309

-524313.63
5379102.12

-497019.12
5382653.57

122 432 23881 144 0.98 5332

-524313.63
5379102.12

-497297.90
5385000.62

150 558 15798 159 0.96 11477

-505228.18
5375396.25

-497297.90
5385000.62

103 240 15798 80 0.98 2969

5http://www.vividsolutions.com/jts/jtshome.htm

18 REFERENCES

Figure 20. Example of maritime routing solution (black line) using theBIDA∗ algorithm on a dynamic
data structure. Case 2: single resolution hexagonal mesh.

5. Conclusion

This paper introduces a spatial data structure applied to a real-time path-�nding algorithm in
open maritime environments. It is based on a hexagonal mesh and a dynamic data structure.
This data structure is applied to a BIDA∗ algorithm in order to derive an optimal track in
terms of distance and complexity. The proposed data structure has several properties that (i)
determine a complementary hexagonalmesh producing a complete paving for the solution path
and (ii) optimize the direction of propagation by following one of the three directions required
by the branch-factor. This latter is implemented on a dynamic and hierarchical graph avoiding
the duplication of graph nodes and the redundancy of information in the nodes. Furthermore,
this data structure reduces computational time and memory space costs of the solution path
that is relevant for real-time path-�nding. In the context of real-time maritime navigation,
one can use a bidirectional path-�nding to have real-time foresights of the route to follow.
Accordingly, the real-time track process can facilitate captain decision making during high
stress or workload situations. A direction for future research is to integrate additional maritime
navigation constraints like weather, meteorological information and the semantics generated
by entities or other mobile objects around the ship (Tsatcha et al. 2013). All these constraints
could further improve the proposed safety track.

Acknowledgements

The authors acknowledge the three anonymous referees for their detailed and valuable com-
ments which have improved this paper. We are also grateful to the SHOM (“Service Hydro-
graphique et Océanographique de laMarine”, Brest, France) for their maritime data and support
in this research.

References

Ahmadi, S., Ebadi, H., and Valadan, Z., 2008. A new method for path �nding of power trans-
mission lines in geospatial information system using raster networks and minimum of mean
algorithm.World Applied Sciences Journal, 3 (2), 269–277.

REFERENCES 19

Borrmann, A., Hyvärinen, J., and Rank, E., 2009. Spatial Constraints in Collaborative Design
Processes. In: Proceedings of the International Conference on Intelligent Computing in Engi-
neering (ICE’09). Berlin, Germany, Berlin, Germany.

Cui, X. and Shi, H., 2011. A*-based path�nding in modern computer games. International Jour-
nal of Computer Science and Network Security (JCSNS), 11 (1), 125–130.

Dantzig, G.B., 1960. On the shortest route through a network. Management Science, 6 (2), 187–
190.

de Champeaux, D., 1983. Bidirectional heuristic search again. Journal of the ACM (JACM), 30
(1), 22–32.

Dijsktra, E.W., 1959. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1 (1), 269–271.

Dillenburg, J.F. and Nelson, P.C., 1994. Perimeter search. Arti�cial Intelligence, 65 (1), 165–178.
Dreyfus, D., 1969. An appraisal of some shortest-path algorithms. Operations research, 17 (3),
395–412.

Freeman, J., 1975. The modelling of spatial relations. Computer Graphics and Image Processing,
4 (2), 156–171.

Kaindl, H. and Kainz, G., 1997. Bidirectional heuristic search reconsidered. Journal of Arti�cial
Intelligence Research, 7, 283–317.

Korf, R.E., 1985. Iterative-deepening-A: an optimal admissible tree search. In: Proceedings of the
9th International Joint Conference on Arti�cial Intelligence (IJCAI’85), Vol. 2 Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1034–1036.

Kwa, J.B., 1989. BS*: an admissible bidirectional staged heuristic search algorithm. Arti�cial
Intelligence, 38 (1), 95–109.

Manzini, G., 1995. BIDA*: an improved perimeter search algorithm.Arti�cial Intelligence, 75 (2),
347–360.

Moore, E., 1957. The shortest path through a maze. In: Proceedings of the International Sympo-
sium on Theory of Switching Cambridge Harvard University Press.

Nicholson, T.A.J., 1966. Finding the shortest route between two points in a network. The Com-
puter Journal, 9 (3), 275–280.

Pohl, I., 1971. Bi-directional search. In: Meltzer and Michie, eds. Machine Intelligence., Vol. 6
Edinburgh University Press, 127–140.

Pottmann, H., Brell-Cokcan, S., andWallner, J., 2007a. Discrete surfaces for architectural design.
In: P. Chenin, T. Lyche and L.L. Schumaker, eds. Curves and Surfaces: Avignon 2006. Nashboro
Press.

Pottmann, H., et al., 2007b. Geometry of multi-layer freeform structures for architecture. ACM
Transactions on Graphics - Proceedings of ACM SIGGRAPH 2007, 26 (3), article No. 65.

Pulido, F.J., Mandow, L., and Pérez de la Cruz, J.L., 2012. A two-phase bidirectionnal heuristic
search algorithm. In: Proceedings of the Sixth Starting AI Researcher’s Symposium (STAIRS),
240–251.

Sahr, K., 2011. Hexagonal discrete global grid systems for geospatial computing. Archives of
Photogrammetry, Cartography and Remote Sensing, 22, 363–376.

Sahr, K.,White, D., and Kimerling, J.A., 2003. Geodesic discrete global grid systems.Cartography
and Geographic Information Science, 30 (2), 121–134.

Schwalb, E. and Vila, L., 1998. Temporal constraints: a survey. Constraints, 3 (2-3), 129–149.
Sint, L. and de Champeaux, D., April 1977. An improved bidirectional heuristic search algo-
rithm. Journal of the ACM (JACM), 24 (2), 177–191.

Tong, X., et al., 2013. E�cient encoding and spatial operation scheme for aperture 4 hexagonal
discrete global grid system. International Journal of Geographical Information Science, 27 (5),
898–921.

20 REFERENCES

Tsatcha, D., Saux, E., and Claramunt, C., 2013. A modeling approach for the extraction of se-
mantic information from a maritime corpus. Advances in Geographic Information Science,
In: S. Timpf and P. Laube, eds.Advances in Spatial Data Handling. Springer Berlin Heidelberg,
175–191.

U.S. Coast Guard, 1999. Navigation rules: international-inland. Technical report, U.S. Depart-
ment of Transportation, United States Coast Guard, 2100 Second St., SW Washington, DC
20593-0001.

Xu, J., Lathrop, J., and G., R., 1994. Improving cost-path tracing in a raster data format. Com-
puters & Geosciences., 20 (10), 1455–1465.

Yap, P., 2002. Grid-based path-�nding. In: Proceedings of the 15th Conference of the Canadian
Society for Computational Studies of Intelligence on Advances in Arti�cial Intelligence, 44–45.

Youse�, A. and Donohue, G.L., 2004. Temporal and spatial distribution of airspace complexity
for air tra�c controller workload-based sectorization. In: Proceedings of the 4th American In-
stitute of Aeronautics and Astronautics (AIAA) Aviation Technology, Integration and Operations
Forum, Chicago, IL.

Yu, C., Lee, J., and Munro-Stasuik, M.J., 2003. Extensions to least-cost path algorithms for road-
way planning. International Journal of Geographical Information Science, 17 (4), 361–376.

Appendix A. Maritime Path-Finding Algorithm based on BIDA
∗

Algorithm A.1:

Input Starting point s and terminal point t: two geographical positions.
1: r: the radius of a hexagonal cell.
2: Map: the set of geographical features representing the environment.

Output Path: the set of nodes (i.e. vertex and its indexes) de�ning the solution path.
3: function BIDA∗(s, t, r,Map) ⊲ The main bidirectional path-�nding function based on two

threads.
4: Mesh1,Mesh2, Stack11, Stack12, Stack21, Stack22, Path1, Path2 ← ∅

5: Cell, Pnode← ∅

6: ObstacleArea← selectFeaturesFromMap(Map) ⊲ This procedure selects the
features/objects to avoid during the navigation (e.g. restricted areas, hazard areas, buoys, etc.).

7: while joinMeshes(Mesh1,Mesh2) 6= true do
8: if currentThread() = T1 then
9: Cell← updateMesh(T1, s, t, r,Mesh1, Stack11, Stack12,Mesh2)
10: Pnode← parentNode(Cell)
11: Path1 ← Path1 ∪ Pnode
12: wait(tip)
13: else if currentThread() = T2 then
14: Cell← updateMesh(T2, s, t, r,Mesh2, Stack21, Stack22,Mesh1)
15: Pnode← parentNode(Cell) ⊲ Update the indexes.
16: Path2 ← Path2 ∪ Pnode
17: wait(tip)
18: end if
19: end while
20: Path← mergingPath(Path1, Path2)
21: return Path ⊲ Return the optimal path.
22: end function
Input Tj : the thread to process.
23: s and t: two geographical positions.
24: r: the radius of a hexagonal cell.
Input and
Output Meshj : a directional mesh.

REFERENCES 21

25: Stack1: the stack of selected nodes for the solution path.
26: Stack2: the stack of visited nodes and evaluated using function f = g+h. The best promising node

is at the top of the stack.
27: function updateMesh(Tj , s, t, r,Meshj , Stack1, Stack2,Meshi) ⊲ This procedure returns the

best cell in Meshj in the path-�nding search and updates the outputs.
28: Cell← ∅

29: if Meshj = ∅ then
30: if currentThread() = T1 then

31: N (0,0) ← buildF irstNode(s, r) ⊲ s is the centre of the �rst cell and N (0,0) is the �rst
node of the forward front (Figure 11).

32: else
33: N (0,0) ← buildLastNode(s, t, r) ⊲ The function computes the centre b of the last node

using the formula presented in section 3.1 and generates the �rst node of the backward front.
34: end if
35: pushStack(N (0,0), Stack2) ⊲ Put the �rst node at the top of the stack of the visited nodes.
36: else
37: if Stack2 6= ∅ then
38: N (i,j) ← popStack(Stack2) ⊲ This function selects the best node at the top of the

stack.
39: if positionSelected(N (i,j), Stack1) = true) then ⊲ This function checks if node

N (i,j) corresponds to a geographical position or space that has already been selected and stored in
Stack1

40: return ∅

41: end if
42: if (meetObstacle(N (i,j), ObstacleArea) = true) then
43: return ∅

44: else
45: PartialCell ← extractRelationsFromMesh(Meshj , N (i,j)) ⊲ Centred on

N (i,j), the function extracts the set of vertices (and their relations) already built inMeshj . For the

�rst node N (0,0), this function only computes the �rst hexagonal cell 00[Hex(0, 0)]01,2,3,4,5,6.

46: Cell← buildCell(PartialCell,N (i,j),Meshj) ⊲ Computes the cell associated

to N (i,j) from PartialCell and its complementary (i.e. the vertices of N (i,j) not yet de�ned) (Figure
15).

47: storeCell(Cell,Meshj)
48: Vī ← optimalDirection(Meshj ,Meshi)
49: Beam← generateThreeBestNodes(Cell, Vī)
50: pushStack(sort(Beam), Stack2)
51: pushStack(N (i,j), Stack1)
52: return Cell
53: end if
54: end if
55: end if
56: end function

