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[1] Space-time rainfall simulation is useful to study questions like, for instance, the
propagation of rainfall-measurement uncertainty in hydrological modeling. This study
adapts a classical Gaussian field simulation technique, the turning-band method, in order to
produce sequences of rainfall fields satisfying three key features of actual precipitation
systems: (i) the skewed point distribution and the space-time structure of nonzero rainfall
(NZR); (ii) the average probability and the space-time structure of intermittency; and (iii) a
prescribed advection field. The acronym of our simulator is SAMPO, for simulation of
advected mesoscale precipitations and their occurrence. SAMPO assembles various
theoretical developments available from the literature. The concept of backtrajectories
introduces a priori any type of advection field in the heart of the turning band method
(TBM). TBM outputs transformation into rainfall fields with a desired structure is
controlled using Chebyshev-Hermite polynomial expansion. The intermittency taken as a
binary process statistically independent of the NZR process allows the use of a common
algorithm for both processes. The 3-D simulation with a space-time anisotropy captures
important details of the precipitation kinematics summarized by the Taylor velocity of both
NZR and intermittency. A case study based on high-resolution weather radar data serves as
an example of model inference. Illustrative simulations revisit some classical questions
about rainfall variography like the influence of advection or intermittency. They also show
the combined role of Taylor’s and advection velocities.
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1. Introduction

[2] In hydrology, the very fact motivating the simulation
of rainfall fields is to understand how the hierarchy of river
basins collects rainfall at ground and transforms rainfall var-
iability into runoff variability. For instance, recent works
studied the influence of rainfall variability on the hydrologic
response in general [Vischel et al., 2009] and on more
specific features like the scaling structure of peak flows
[Mandapaka et al., 2009]. In this perspective, hydrologic
regimes are seen as the transformation of climate through
rainfall-runoff conversion processes (see for instance, Gupta
et al. [1996] for the basis of a physical-statistical theory of
regional floods or Menabde and Sivapalan [2001]). The fi-
nality of these studies covers both water resource manage-
ment and water-related hazards.
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[3] A variety of numerical models generate rainfall fields.
The outputs of global climate models allowed hydrological
studies at continental scale [4rnell, 1999]. To use these out-
puts at finer regional scales, statistical and dynamical down-
scaling methodologies have been used to refine the space-
time description of rainfall variability [Boé et al., 2009 ; Mez-
ghani and Hingray, 2009]. A distinct body of works pro-
moted ad hoc stochastic simulators replicating the statistical
properties of historical rainfall data sets. For instance, Amoro-
cho and Wu [1977] proposed the initial concept of rain cell
clusters organized in storm bands used by the family of so-
called space-time models. Mejia and Rodriguez-Iturbe [1974]
and Bell [1987] developed two-dimensional isotropic models
generating correlated random fields using spectral analysis,
initiating the so-called meta-Gaussian model family.

[4] The simulator proposed in this study contributes to the
stochastic approach with the particularity of adapting a classi-
cal Gaussian random field generator, the turning band method
(TBM), to simulate advected intermittent rainfall fields. The
assumptions made are intimately related to the time and space
resolution of the simulated fields. Our ambition is to simulate
rainfall fields at a resolution of typically 10 min and 1 km?
over domains of several thousands of square kilometers,
where intermittency and advection are relevant features.

[s] Compared to the use of historical data sets, a stochas-
tic simulator better fits various hydrological needs. Through
a set of theoretical assumptions, it reproduces statistical
properties that are consistent with observed data (mean,
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variance, correlation length in time and space, etc.). It offers
data better resolved in space and time. It covers the long run
and allows the generation of multiple sets of fields. It thus
helps to step back from the peculiarities of a reduced num-
ber of events or, worse, of a single “project event.” This
gives better account of natural rainfall variability. In condi-
tional simulation mode, it offers ways to represent uncer-
tainties linked to measurement or sampling and to study
their propagation through hydrological modeling. The con-
trol of the simulation assumptions allows investigating indi-
vidual effects of such or such observed rainfield property, in
particular, when they are expected to change in intensity or
frequency.

[6] Our software is available under the name SAMPO,
an acronym for simulation of advected mesoscale precipita-
tions and their occurrence. It is more specific to rainfall
than existing TBM simulators like HYDRO-GEN [Bellin
and Rubin, 1996] or the TBSim suite [Emery and Lan-
tuéjoul, 2006]. This article concentrates on the generation
of rainfall sequences of homogenous type, i.e., with con-
stant statistical properties. The part of SAMPO creating the
climatological succession of rainfall types through a hidden
Markov model is not presented here.

[71 The TBM has been introduced in its general form by
Matheron [1973] and popularized for 2-D applications in
hydrology by Mantoglou and Wilson [1982]. The simula-
tion performs orthogonal backprojections in a multidimen-
sional space of a number of 1-D autocorrelated processes
generated along randomly oriented lines. Each individual
line process yields by backprojection perpendicular stripes
of equal values—the turning bands that gave its name to
the method. The accumulation of these bands generates a
multidimensional Gaussian random field that is statistically
homogeneous. The choice of the covariance function of the
line process controls the final structure of the multidimen-
sional field.

[8] To simulate advected intermittent rainfall fields, the
TBM needs to be adapted regarding the following issues.
First, rainfall distribution is skewed toward high values
almost at all time scales, and thus non-Gaussian. In this
study, we use the inverse Gaussian distribution [Chhikara
and Folks, 1974; Folks and Chhikara, 1978]. Its main
advantages are to deal with positive values, to have a
reduced number of parameters (two), and to fairly behave
for extremes (asymptotic exponential behavior of bloc-
maximum values close to Gumbel). Journel and Huijbregts
[1978] proposed to simulate non-Gaussian fields applying
an anamorphosis transformation to Gaussian fields. The an-
amorphosis is known to modify the structure of the field.
The underlying Gaussian structure has to be consistent with
the targeted structure of the transformed field.

[0] Second, rainfall fields are advected by the atmos-
pheric dynamics in a deterministic way that should also be
introduced in a simulator. Advection is a simplified view
that holds when the horizontal atmospheric organization
(saturated layers, condensation level, pressure gradient)
controls convective activity. The space and time resolution
of weather radar images evidenced this horizontal move-
ment of rainfall patterns better than rain gauge networks.
Zawadzki [1973] studied the space-time correlation of pre-
cipitation patterns using this concept, which has been also
used to produce short-term forecasting [Austin and Bellon,

1974] and to improve conventional rainfall observation at
fixed points [Niemczynowicz, 1988]. In fluid mechanics, the
notions of stream function and particle trajectory in station-
ary or incompressible fields can help to define advection
fields that are physically consistent.

[10] Third, rainy areas do not fill the entire space in most
cases and intermittency must also be simulated. A possible
choice is to use a truncated distribution with a finite proba-
bility allocated to zero rainfall in the anamorphosis trans-
formation [Bardossy, 2011]. We made an alternate choice
considering that intermittency and inner rainfall variability
are independent random fields [Barancourt et al., 1992].
The intermittent rainfall field is obtained by multiplying a
nonzero rainfall (NZR) field covering the entire space by a
binary mask (a thresholded Gaussian field following Galli
et al. [1994]).

[11] The general formulation of the intermittent rainfall
fields R, proposed in this paper will take the following form
(see section 6):

Ri(xg,t) = @(Yr(Xr, t.Up) )y, (x, .0)05 (1)

where Y and Y; are the two independent Gaussian func-
tions used to represent NZR and intermittency with Uy and
Uj featuring their respective dynamics; ¢ stands for the ana-
morphosis used to care about the skewed distribution; A
characterizes the fraction of intermittency; the combined use
of Lagrangian x; and Eulerian xz coordinates takes care
about advection. The separate specification of NZR, inter-
mittency and advection is easy to carry on and gives flexibil-
ity to control the properties of the resulting compound field.

[12] Our paper is organized as follows. Section 2 describes
the kinematics of atmospheric flow implemented in SAMPO.
Sections 3 and 4 give a short description of the TBM and
detail how the simulator preserves the correct structure when
simulating non-Gaussian distributions. Using Eulerian and
Lagrangian perspectives Section 5 shows how Taylor veloc-
ity combines to advection to generate rainfall kinematics.
Section 6 extends the simulation to intermittency fields. Sec-
tion 7 describes the practical details of the simulator imple-
mentation for advected non-Gaussian rainfall fields using a
high-resolution radar data set. Section 8 uses the simulator to
revisit some classical questions about rainfall variography,
such as how rainfall accumulation over time and advection
influence experimental variograms. It also illustrates the
kinematic effect obtained merging advection and Taylor ve-
locity. Section 9 is the conclusion.

2. Kinematic Description of the Advection Field

[13] Our simulator considers that rainfield kinematics
results from the advection of a stochastic process producing
rain in a Lagrangian space. From a meteorological stand-
point it assumes that the convective activity producing rain
is independent of the horizontal wind field advecting the
rain patterns. In practice, the Lagrangian rain production is
simulated with a 3-D TBM in which the correlation struc-
ture in time is scaled in relation to space following the Tay-
lor approach (see section 5). The horizontal wind field
controlling advection is prescribed either from observed or
simulated data. In order to have a self-consistent basic tool

3376



LEBLOIS AND CREUTIN: SIMULATION OF RAINFALL WITH ADVECTION FIELD

to reproduce the kinematics of advection in the absence of
data, we propose below a simplified parametric description.

[14] The advection U(x,f) depends on the location x with
x=(x,y) and the time ¢ and has components u(x,?) and v(x,?)
along the axes Ox and Oy, respectively. The Eulerian ob-
server can describe at any time the current lines (lines not
crossed by the flux) integrating the differential equation
dx/u=dy/v. The Lagrangian observer follows a noninertial
particle (xg,79), passing at location x, at time #,. At time ¢,
it will reach the location x; with

a1
X = %0+ / Ulx,,1)db, @

fo

where the union of locations (x,) followed by the integral is
the trajectory of the particle, which is confounded with the
current line in steady flow only.

[15] A convenient way to specify an incompressible
advection field is to equal its divergence to zero:

_Ou  Ov

[16] Let us define U as curl (¢)) with any scalar twice-
differentiable function of location and time. The vector
U(x,f) will have the following components:

_H %
u= v and v = o 4)

[17] As div (U) = div (curl () = 0, we verify that any
scalar function v of class C? determines an incompressible
advection vector U as defined in (3). % is the stream func-
tion of the 2-D advection field. Taking @ as a polynomial
function of order zero (no advection), one (uniform advec-
tion) or two (circular and other conic-like fields—ellipses,
parabolas, hyperbolas) provides a variety of possible wind
fields. Considering that any function v can be locally
approximated by a polynomial function, we understand that
these basic functions already cover many possible situa-
tions, at least at local scale. More sophisticated circulations
can be deﬁned using stream functions like, for example,
Y = a. e /% where a and b are constants and 7 is the dis-
tance to the Vortex center. The sum of two scalar fields );
and 1, yields a combination of two advection fields (from
the linearity of partial derivatives). This is a way to simu-
late more complex fields with, in particular, the possibility
to add local-scale random fluctuations on the top of a syn-
optic scale advection field coming from either observations
or numerical models. These components of the advection
field can be time dependent.

3. TBM Simulation of Gaussian 3-D Random
Fields

[18] The TBM relies on the existence of a univocal rela-
tionship between the covariance C;(r) of a 1-D random pro-
cess T(s) along an arbitrary oriented line of coordinate s and
the covariance C,(r) of the n-D isotropic Gaussian random
process Y(x) resulting from the orthogonal backprojection

of T(s) in R" (Matheron [1973, p. 462], cited by Emery and
Lantuéjoul [2006]). In 3-D, it reads

Ci(r) = S s ©

where r is the Euclidian distance separating two points.

[19] The TBM principle thus consists in (i) generating
line processes 7; of chosen covariance in N directions with
i=1,N, (i1) summing at each point (x,y,z), the values back-
projected from the N line processes, and (iii) normalizing
by a factor 1/v/N.

[20] Our simulator chooses the line directions over the
unit sphere of R® either according to random longitudes
versus random sinus of the latitude or following a low-dis-
crepancy sequence [Halton, 1964]. It generates the line
process from a white noise made of independent and identi-
cally distributed (IDD) Gaussian deviates with zero mean
and unit variance, separated by a chosen step As. The
desired covariance C; is introduced through a weighted
moving average or an autoregressive transformation. In
both cases, a set of weights is determined in relation with
this covariance. The set of K+1 moving average weights
wwma(k) is such that

1(6As)

E WMA

where K is large enough to reach the correlation extinction.
The sum of the weight squares is taken equal to the var-
iance. The set of K+1 autoregression coefficients war(k)
applied to the K previous points and to the local noise value
are given by the Yule-Walker system:

K
> Ci(lK = k| As)war (k) = Cy(kAs)  fork = 1,K,

k=1

(7
WAR ( J ZWAR C1 kAS

[21] Equations (5)—(7) are the basis of the weighting
schemes found in the literature to generate standard covari-
ance models like exponential or spherical [Journel and
Huijbregts, 1978]. More advanced approaches exist [Lan-
tuéjoul, 2002, p. 196; Emery and Lantuéjoul, 2006].

[22] The generated 3-D process Y(x,y,z) is the following
normalized sum:

1 )
Y2 = 75> Tilss), ()

where sixly,z is the orthogonal projection of (x,y,z) on the ith
line. Coming from N independent processes, the cumulated
values Y(x,y,z) are IDD and Gaussian. They have a null
expected value and a variance C3(0).

4. Asymmetric Distribution of NZR

[23] As stated in section 1, for rainfall studies we need an
anamorphosis function ¢ transforming a simulated Gaussian
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field Yz into a field R = ¢(Yx) representing the NZR inten-
sity with a non-Gaussian marginal distribution F. We detail
below how to specify the Gaussian field covariance Cy, in
order to get the desired covariance Cpgy, for the non-
Gaussian field R.

[24] To simplify notations in what follows, we leave the
coordinates (x,y,z) or (x,t) when they are not needed. Let
F(r) be the cumulative distribution function of the non-
Gaussian random variable R. The reciprocal function, or
quantile function, F~!(p) can be expressed as

r=F"'(p)=¢(G"'(p), )

where ¢ is the anamorphosis function, G~ is the reciprocal
of the Normal distribution function, and 0< p < 1.

[25] The proposed simulator uses the Chebyshev-Her-
mite polynomial expansion to approximate the anamorpho-
sis function. The development used is directly inspired
from an algorithm dealing with multivariate distributions
with correlated marginals [Van der Geest, 1998]. Other der-
ivations do exist (see for instance, Vio et al. [2001, 2002],
Guillot [1999], and referenced articles and books). Refer-
ring to the theorem of Lancaster, Van der Geest [1998]
recalls that the correlation coefficient p; between a pair of
variables (G;, G,) following a bivariate Gaussian distribu-
tion and the correlation coefficient p, between transformed
non-Gaussian variables F and F», relate as follows:

pr =Y abipl, (10)
i=1

where a; and b; are the coefficients of the Chebyshev-
Hermite expansions of F; and F,, respectively, starting
with i=1. In this work, we use standardized Chebyshev-
Hermite polynomials with positive leading coefficient
defined in relation to successive derivatives of the Gaussian
probability density function g(x) by

7(—1)” 1 a
= m@@g(x)

[26] These polynomial coefficients satisfy the following
recursion:

H,(x)

(11

Hy=1,H =X;forn>2:

1
Hy,=—(X.H,-y — (n—1)H,_,).

n

[27] This family of polynomials is orthonormal with
respect to the Gaussian distribution, which can be written
as follows:

(12)

/ Hi(x) Hy () (x) dx = 6 (13)

where 0,—; = 1 and 6;; = 0. The expansion of R takes the
form

o0

R=(Yr) = ZaiHi(YR)7
i=0

(14)

where a, is the expected value E(R), and the other coeffi-
cients a; are computed using the following equation:

+00

a; = / p(x)H;(x)g(xdx for >0,

X=—00

(15)

with Zi> 1a[2 = Var (R), the variance of R, a point to

check when the weights are numerically evaluated or when
the expansion is truncated. In addition, we can notice that
Ry and R, having the same expansion, equation (10) now
reads:

PR= D, (16)
i=1

[28] An appropriate polynomial approximation of the an-
amorphosis function thus leads to a relationship between
the correlation coefficients of, respectively, the bivariate
Gaussian and the transformed values.

[29] In practice, the coefficients of the Chebyshev-Her-
mite polynomial expansion are derived from equation (15).
Afterward, they are used to compute the covariance func-
tion Cy, needed for the Gaussian field Y, from the desired
covariance Cg, inverting equation (16) for a discrete series
of distances ». Then, the 1-D covariance function C; and
the corresponding weights w(k) are either optimized via the
simplex method according to equation (6) for the moving
average or directly computed from equation (7) for the
autoregression. SAMPO offers the two options, the moving
average being preferred in the case of strictly finite covari-
ance range (spherical model). A checking plot is proposed
to SAMPO users displaying the tuned weighting system
w(k) together with the prescribed and fitted covariance func-
tions (see Figure 1). One can notice the significant difference
due to the anamorphosis between the desired non-Gaussian
covariance and the Gaussian covariance used in the TBM.
Optimization difficulties can occur from the incompatibility
between the models of point rainfall distribution and the co-
variance function. For instance, according to Matheron
[1989], Armstrong [1992], and Lantuéjoul (personal commu-
nication), exponential variograms are compatible with
almost all distribution models when spherical variograms are
less tolerant.

[30] The quantile function 7! is also needed to compute
rain values. When it has no analytical expression, as it is
the case for the inverse Gaussian, SAMPO builds a lookup
table. Interpolation in the table proves to be faster than a di-
chotomic search on the cumulative distribution function
and more precise than the polynomial approximation of the
anamorphosis function ¢ based on its Chebyshev-Hermite
expansion.

5. Time Anisotropy and Advection of Rainfall
Fields

[31] The adaptation to rainfall of the simulation technique
described in sections 3 and 4 calls for the following three
complementary issues: (i) to introduce an appropriate anisot-
ropy to define time along the third axis, (ii) to describe the
advection effect avoiding numerical diffusion, and (iii) to
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Control display showing the set of autoregression weights (top graph) and the fitted covariance

functions (bottom graph) for NZR (the same type of graph is displayed also for intermittency). The 3-D
structure Cyy,) of the non-Gaussian process (bold line) is compared to the 3-D structure Cy, of the Gaus-
sian process (bold dashed line) obtained from the Chebyshev-Hermite expansion. The 1-D covariance
function C; numerically derived according to equation (5) (thin line) is compared to the covariance func-
tion C;* approximated from the set of autoregressive weights shown (thin dashed line almost confounded
with the thin line). In this illustration, the covariance functions are exponential and the point distribution is
an inverse Gaussian with the parameters detailed in the case study (section 7).

delineate rainy versus dry areas. This last issue is dealt in the
next section.

5.1.

[32] In its most basic form, the TBM yields 3-D homoge-
nous and isotropic Gaussian random fields. So if we apply
an anamorphosis

Time Anisotropy

R(x,y,z) = p(Yr(x,9,2)). (17)

[33] R(x,y,z) will also have a covariance function that is
isotropic. In our model, two dimensions jointly denoted by
x=(x,y) are needed to represent the horizontal plane. This
plane can be viewed at the ground surface or at any refer-
ence level below the bottom of the cloud system producing
rain. The third dimension z can be used as a time dimension
t, assuming that the precipitation system is statistically sta-
tionary in space and time, given an appropriate anisotropy.
In practice, we introduce the anisotropy through a reference
distance L and a reference duration D that satisfy:

ot bx by
P L L (%)
[34] This property is known as the Taylor hypothesis
[Taylor, 1938] and was first evidenced experimentally for
rainfields by Zawadzki [1973]. The ratio Uy =L/D has the
dimension of a velocity and is termed the Taylor velocity.
It should be realized that the Taylor velocity is not a veloc-
ity of displacement of the precipitation system. This scalar
relates the time and space evolution of rainfall patterns
[Gupta and Waymire, 1987]. The above-defined anisotropy
“stretches” or “compresses” linearly the z axis of the 3-D
space of the raw TBM simulation and gives an isotropic
correlation pattern:

(19)

o2
C(h,t) =G ﬁ—i_ﬁ )

where C is the covariance function of the rain process in
space and time and Cj is an isotropic 3-D covariance func-
tion, and /2 = || and t are space and time distances.

5.2. Advection

[35] To avoid numerical diffusion, the proposed simulator
accounts for advection during the step of orthogonal backpro-
jection of line processes. The principle consists in backproject-
ing the line processes along the backtrajectories of “rainfall
particles” instead of backprojecting on a regular grid.

[36] The equation of a backtrajectory is the following:

(20)

[37] One can notice the sign difference with equation
(2). In this equation, x; is the place where we find at a time
ty the rainfall particle that will be at a grid point x, at ¢,
given the prevailing advection. Thus, backprojecting the
turning bands at point x; at time #; allows to generate
directly the simulated value Y(x,,¢;) that will actually be at
a grid point x, at that time. The backtrajectory must be cal-
culated, either numerically (Runge-Kutta scheme) or ana-
Iytically, before the simulation can start (Figure 2). We can
notice that, in general, (i) the point x; is not on the Eulerian
2-D simulation grid and (ii) the advection field must be pre-
scribed beyond the simulation domain.

[38] Of practical importance is the case of uniform in
space and constant in time advection that simply reads

X| = Xg — U(l‘] — l‘()). (21)
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Figure 2. Sketchy illustration of (i) the computed 3-D advection backtrajectories where the time axis

is vertical and oriented upward and the horizontal geographical plane is drawn in perspective (top
graphs) and (ii) the corresponding advection field (bottom graphs in red). The scheme (a) is the space as
understood by an Eulerian observer standing at a fixed point xz. The observer grid is represented at a ref-
erence time. The simulated points at times before and after the reference time are respectively below and
above the grid. The schemes (b) and (c) show, respectively, a left-to-right linear flow and a circular,
clockwise vortex flow. Lagrangian observers will move following the advection field plotted below. A
backtrajectory describes the positions x,(7) at which are located the Lagrangian observers that will meet

at time 7 an Eulerian observer standing at xz.

[39] This case coincides with a simple transformation
from Lagrangian (subscript L where needed) to equivalent
Eulerian coordinates used in Lepioufle et al. [2012, equa-
tion (3)], where they consider U parallel to the x axis, with
no loss of generality:

X, = Xg — U.t,
YL = VE,

2 = t(L/D).

(22)

[40] In summary, time anisotropy and advection are dealt
through coordinate transformation. From any underlying 3-D-
isotropic second-order stationary random function defined in
R in Lagrangian coordinates, the choice of U and Uy defines
a companion random function in Eulerian coordinates, where
one of the three dimensions is converted into a time axis and
where a uniform constant advection is introduced. At this
stage, the simulator is thus able to simulate advected rainfall
fields as follows:

R(xg,t) = p(Yr(xg — U.t,t.Ur)) = p(Yr(x1,2.Ug)),  (23)

where ¢ is the ad hoc anamorphosis function and Uy the
Taylor velocity.

6. Rainfall Intermittency

[41] In SAMPO, the delineation between rainy and dry
areas is constructed through an indicator function /(x,7)
derived by thresholding a Gaussian field ¥;(x, ¢):

](X7 t) - 1Y,(x,t)>/\7 (24)

where the function 1 is binary, equal to 1, when the sub-
script proposition is true and 0 if not. The time anisotropy

and advection seen in the previous section can be applied
to /. The multiplication of /(x,7) by the continuous rainfall
field R(x,f) expressed in (23) carves the inner variability
of the rainy areas according to the intermittency field [see
Barancourt et al., 1992]. The threshold used to derive the
indicator function from the TBM-generated field is the
Gaussian quantile A = G~!(Fj) corresponding to a dry
fraction area Fy, which is also a nonexceedance probabil-
ity. The relation between the variogram -y, of the under-
lying Gaussian field and the variogram ~, of the binary
field got after thresholding is as follows [Lantuéjoul,
2002, p. 207]:

)\2
/ exp[f?(1+tan2/\)]dt. (25)

[42] This one-to-one mapping between the variograms
given Fy has no analytical solution, in general, but is rather
easy to invert numerically. It has a role similar to formula
(16) for NZR.

[43] In practice, this approach poses questions both
about the dependency between the NZR field and the inter-
mittency field and about the dynamics of the intermittency
field. In the presented version of SAMPO, the functions Yz
and Y; are generated independently. This option allows a
drastic simplification of the simulator and may or may not
be supported by data evidence (see discussion below in
section 8.2). If needed, different methods exist to generate
dependent 3-D random fields (see for instance, Emery
[2008]) provided the dependency between Y and Y; can
be qualified. As far as the dynamics of intermittency is
concerned, our basic choice is to use the same advection
parameters in simulating NZR and the indicator function.
More complicated advection patterns can be introduced if
needed.
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[44] Complementing equation (23), SAMPO generates
intermittent advected rainfall fields according to the general
expression announced in section 1:

Ri(xg,t) = o(Yr(Xr, t.Up) )y, (x, t.1)2A- (26)

[45] R; denotes the final advected intermittent field with,
in most simple cases, x =xp — U.t where U is a constant
and homogeneous advection, Ui and U, are the respective
Taylor velocities of NZR and intermittency that are usually
different.

7. Implementation and Illustration Case Study

[46] The flexibility allowed by the basic ingredients of a
simulation—variability of the NZR and intermittency fields
including Taylor velocity, advection field specification—
makes extensive validation difficult. However, a variety of
studies conducted using the modular structure of SAMPO
helped a step-by-step validation of each module and of sev-
eral combinations of modules. The dynamic visualization
of the simulated fields has been extensively used for
troubleshooting.

[47] With the limited intention to illustrate a possible
application of SAMPO and to show that the simulated
fields are consistent with the specified hypotheses and pa-
rameters, we present in this section a case study relying on
a data set published by Emmanuel et al. [2012, hereinafter
E2012]. The C-band weather radar of Treillicres (a Météo
France instrument close to Nantes, France) provided high-
resolution data (5 min, 250 m) considered at a distance of
less than 20 km in a rather flat area. These features allowed
assuming a good homogeneity of the data regarding possi-
ble effects of range dependence and of vertical reflectivity
profile. A meteorological analysis partitioned 24 homoge-
nous sequences taken from 12 recording days in 2009 into
four categories of rainfall (see E2012, Table 1). The param-
eters and the images used in this case study pertain to the
so-called category of showers associated to the tail end of
oceanic perturbations (Group 2 of E2012). It contains seven
rainfall sequences, which represent 104 radar images in
total. The space-time structure of the set of images has the
following characteristics (for NZR, see E2012, Figures 7
and 8). The identified space ranges are about 5 km for the
NZR and 20 km for the intermittency. A Lagrangian assess-
ment of the NZR time range, i.e., after removing advection
sequence per sequence, yields 20 min. For the intermit-
tency this range is not easy to assess because the life dura-
tion of rainy areas is usually greater than the time they
need to cross the observation domain. Based on the slope
of the variogram at the origin, we took for intermittency a
time range of 195 min. The above values correspond to
Taylor velocities of respectively 4.16 and 1.71 ms~' for
NZR and intermittency. For the considered category of
rainfall, (i) the expected value and the standard deviation of
NZR are, respectively, equal to 6.05 and 17.9 mm h™", (ii)
the probability of rain is 36.2%, and (iii) NZR and intermit-
tency fields are weakly correlated.

[48] We simulated 1000 independent rainfall sequences
of 12 h over a domain of 80 x 80 km? representing 1000
volumes of size (81 x 81 x 145) with space and time units

of, respectively, | km and 5 min. No mathematical or
software issue except computation time prevents from
choosing any other spatial resolution or domain size. The
space-time variograms are exponential. The point distribu-
tion of NZR is an inverse Gaussian that is taken constant in
space and time, with the parameter values given above. The
rainfall category being rather heterogeneous in term of
advection field, we took a set of representative advection
velocities (0, 2, 4, 8, and 16 msfl) arbitrarily oriented north-
ward and applied to both intermittency and NZR. The rain-
fall values generated at 5 min time steps are accumulated
over 15 and 30 min and 1 and 3 h.

[49] Figure 3 shows first the variograms prescribed to the
simulator. The size of the radar data domain was obviously
too small to identify directly the life duration of the rainy
areas (range of the Lagrangian time variogram beyond the
maximum distance). Also in the simulated fields, the ranges
of the space and temporal indicator variograms are close to
the domain size, and each field is highly autocorrelated.
The NZR variability occurs at smaller time and spatial
ranges. On Figure 3, we plotted the dispersion of the 5 min
variograms derived from the 1000 generated sequences.
Basically, two comments can be made about the remark-
able average fit and the dispersion of the 5 min variograms
of the individual sequences.

[s0] The average value of the generated variograms is
close to the space and time variograms prescribed for the
non-Gaussian process, which proves the consistency of the
simulator in regard to the space-time structure. Both are
significantly far from the variogram models used to gener-
ate the Gaussian values, which confirms the benefit of using
anamorphosed structure functions. A closer look neverthe-
less reveals some minor discrepancies between generated
and prescribed variograms at medium- to long range for
intermittency fields. This lack of convergence could be
linked to the life duration of rain areas.

[s1] The dispersion of the generated variograms is sub-
stantial, which shows the potential uncertainty of the struc-
ture analysis in relation with the size of the sampling domain
compared to the range of the phenomenon. The dispersion is
almost symmetric for NZR and slightly asymmetric for the
intermittency by construction. All these elements governing
the rainfall variability are embedded in the simulation and
can be transmitted to downstream studies on hydrometeoro-
logical variability and its propagation in hydrology.

[52] Figure 4 brings validation elements about the choice
of the distribution function. The inverse Gaussian appears
to fit well the radar data and the generated data as well. The
radar data set is affected by digitization but still follows
fairly well the theoretical distribution up to its largest val-
ues, around 60 mm in 5 min. The simulated values are
aligned with theoretical quantiles up to the largest inten-
sities. The extreme values have been checked through other
sets of simulation to alternate in a balanced way overesti-
mations and underestimations of the highest quantiles for
sampling reasons.

[53] The anamorphosis transformation works apparently
well both to reproduce a correct distribution of the gener-
ated values and to identify the variograms of the underlying
Gaussian process.

[s4] Figure 5 puts the final product of the simulator in
front of a radar image extracted from the study period.
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(a and b) Space and (c and d) time variograms of NZR (Figures 3a and 3c) and intermittency

(Figures 3b and 3d) computed from the case study simulations (shower-type rainfall seen by the radar of
Treilliéres, France). Each graph shows the theoretical variogram fitted to the non-Gaussian radar field
(continuous line), the variogram of the underlying Gaussian process used by the simulator (thin line),
and the average variogram deduced from the simulated data (dashed line). The time variograms are
Lagrangian for both experimental and theoretical forms, i.e., computed without advection. The boxplots
show the median, interquartile, and interdecile values taken by the experimental variograms of the simu-
lated fields (1000 sequences of 12 h at 5 min time step).

Beyond the above inspection of the replication of the pre-
scribed statistical properties (distribution and structure),
putting together simulated and radar images calls comple-
mentary comments. This juxtaposition lacks simultaneity
because the simulation is not conditional. At the elemental
time step (5 min), the simulation looks realistic in terms of
granularity of NZR and size of the intermittency patterns.
Still, the simulation looks slightly too fragmented compared
to the radar image that is organized in more compact bands.
This difference is important but understandable since no ani-
sotropy in space was prescribed to intermittency fields (see
section 8.3 for a simulation with bands). One can notice con-
centric alignments in the radar image that are related to
remaining mask effects and that, of course, are absent from
the simulation, which is homogeneous by construction.

8. Hypothesis Testing

[55] One possible application of a simulator like SAMPO
is to explore how empirically known properties of rainfall
field variograms are related to basic hypotheses included in
the simulator. We develop two examples (see later) of such
hypothesis testing pertaining to (i) the variogram range
increase with time accumulation and (ii) the dependency

between intermittency and NZR variability. We illustrate
next how Taylor velocity and advection combine together
to reproduce rainfield kinematics.

8.1.

[s6] Experimental studies showed that the ranges and sills
of experimental variograms evolve with rainfall accumulation
duration (see for instance, Lebel et al. [1987, Figure 2]).
Presenting space and time experimental variograms computed
for different accumulation durations with the parameter set-
ting of the case study (see section 7), Figure 6 shows how the
range and the sill are influenced in a similar way by increas-
ing accumulation times and advection velocities. The afore-
mentioned empirical property may thus result from both
factors.

[57] The sills of the space and time variograms decrease
with the accumulation duration at a common rate in all
directions (Figures 6a and 6¢). We find here the effect of
the so-called regularization of a random variable over time
[see Journel and Huijbregts, 1978; Bacchi and Kottegoda,
1995; Lepioufle et al., 2012].

[s8] While the range of the variograms in time and space
remains constant at different durations when there is no
advection (i.c., in the WE direction), we observe different

Variography of Cumulated Rainfall Fields
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Figure 4. Plots of the theoretical quantiles from an
inverse Gaussian distribution versus the sample quantiles
of (a) ~7 x 10° radar NZR data and (b) an equal number
of NZR values sampled in the simulated rainfall fields.

effects in space and time when advection is activated (visi-
ble in the NS direction). The space range increases with the
accumulation duration in the advection direction (see
Figure 6¢). The “advected” variogram has a weaker slope at
the origin than the orthogonal one (WE), and it reaches their
common sill significantly farer (7 km range at 15 min to
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Figure 5. Juxtaposition of (a) a typical radar image and

(b) a simulated rainfall field taken at the 5-minute elemen-
tal time step of the study. The space resolution is 1 km.

almost 25 km for 1 h). The same comment applies to space
variograms at increasing advection velocities (see Figure 6d).
One can notice that for advection velocities of 8 m s~ ' and
above, the NS space variogram undulates with an ~5 km pe-
riod close to the range of the elemental NZR variogram. This
undesirable lack of continuity in the simulated rainfields
comes from a too coarse time resolution in regard to the
advection of the field given the space resolution. The time
range also tends to increase with the duration at a given
advection velocity (see Figure 6a). But, when advection ve-
locity increases, the time range of the variogram decreases as
advection favors the renewal rate of the rainfield as experi-
enced by a Eulerian observer (see Figure 6b). We see here
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that the smoothing effect of advection is anisotropic [Lepiou-
fle et al., 2012].

8.2.

[59] By construction, the simulator considers NZR vari-
ability as independent of the shape of the rainy areas at the
elemental time step of simulation, which is of 5 min in the
present case study simulation. Figure 7 shows time and
space transition variograms, which are computed selecting
the couples of points being respectively in and out of rainy
areas and which measure the dependency between intermit-
tency and NZR. The Dirac shape of the transition vario-
grams corresponding to the elemental time step of
simulation complies with the basic design of the simulator.
The small apparent range at lag 1 in both space and time is
due to the grid cell size (1 km, 5 min). Figure 7 also shows
that this independence vanishes both in time and space as
soon as rainfields are accumulated over two elemental time
steps. Advection is a secondary factor destroying independ-
ence. As any type of rain sensor “integrates” either in time
or space or both, our conclusion is that this independence
property is kind of fleeting, as it tends to disappear as soon
as we take a measurement. This result shades a new light on
this hypothesis and, in any case, is not in contradiction with
earlier works that evidenced a significant dependency at

Intermittency and NZR Dependency

(a and b) Time and (¢ and d) space variograms computed from the case study simulations.
Space variograms distinguish WE direction (solid line) from NS direction (dashed line). On the left hand
side (Figures 6a and 6¢), four accumulation durations (15, 30 min, 1 and 3 h) are considered for an
advection velocity of 4 m s~ '. On the right hand side (Figures 6b and 6d), five advection velocities (0, 2,
4,8 and 16 m sfl) are considered for accumulation duration of 1 h. The sill of the variograms monoto-
nously decreases with both the duration and the advection velocity, allowing the unambiguous identifica-
tion of the curves in each graph.

greater than hourly time scales (see for instance, Barancourt
et al. [1992] or Braud et al. [1994] at hourly time scale or
Herr and Krysztofowicz [2005] and Bardossy and Pegram
[2009] at daily time steps).

[60] In practice, we recommend the following. In the
case where the “elemental step” is such that the independ-
ence is not valid, we indicated that the cosimulation of the
two related fields is possible via the same TBM approach
[see Emery, 2008]. In the case where the independence
assumption can be made (like in the case study proposed
section 7), we recommend using it for the sake of simplic-
ity, as long as the integrated values of the simulated rainfall
intensities exhibit the desired properties of dependency.

8.3. Rainfall Field Kinematics Through Taylor
Velocity and Advection

[61] From a physical point of view, the difference between
the two velocities is the classical one between advection and
diffusion or flow velocity and turbulence. They have very
distinct visual effects on the rainfall field kinematics—one is
modifying the shape of the field while the other one moves
this shape in a recognizable direction. They are consistent
with what radar detection shows.

[62] Figure 8 illustrates the combined effect of advection
and Taylor velocity in a case of banded convection,
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computed from the case study simulations for five accumu-
lation durations (5 min, the elemental simulation time step,
as well as 10, 15, 30, 60 min). For space, the NS (dashed
lines) and WE (solid lines) directions are distinguished.
The advection velocity is 4 m s~ ' and oriented north. The
sill of the variograms decreases with the duration, allowing
unambiguous identification of the curves.

mimicking the radar sequence used in the previous section.
We kept basically all the parameters identical. An anisot-
ropy factor 4 in the N-105-E direction is applied to the
intermittency field, leading to modify the space and time
variogram ranges in order to preserve the Taylor velocity.
The advection is perpendicular to the bands (oriented N-
15-E) and is equal to 4 ms™'. The short sequence displayed
Figure 8 shows how the renewal rates of the elemental rain-
fall structures—intermittency and NZR—combine with the
advection velocity giving the general motion. The rainy
areas are relatively stable in regard to their advection and
the NZR fluctuations are relatively fast in regard to the
shape of the rainy areas. The intermittency field clearly
organizes the rainfield in bands that are advected and
renewed in time. The rain cells inside the rainy areas are
evolving with their own dynamics. Both elements conju-
gate to simulate the birth and development of new rain
bands (northwest sector).

9. Conclusion

[63] In this study, we adapted the classical TBM to pre-
cipitation simulation in space and time. The merits of the
TBM are the speed of computation (simulation in 1-D
instead of 3-D), the flexibility (space distortion for instance

to introduce advection and diffusion) and the easiness of
parameter prescription (basically Taylor velocity and
advection in addition to classical statistical parameters of
mean and variance). The main adaptations proposed in this
study concern (1) the advection of the precipitation fields
by the prevailing winds, (2) the skewness of the marginal
distribution of precipitation rates, (3) the intermittency of
rainfall in time and space, and (4) the space-time anisot-
ropy of the rainfall process.

[64] The notion of backtrajectories introduced in the
heart of the TBM design allows the direct simulation of
potentially very diverse advected fields and avoids numeri-
cal diffusion. Illustrative runs confirm that advection veloc-
ity has a major effect on the statistical properties of rainfall
accumulation.

[65] The use of Chebyshev-Hermite polynomial expan-
sions clarifies the link between the desired structure of the
non-Gaussian generated fields and the Gaussian generating
process of the TBM lines. The optimization of the weight-
ing system is simplified and the computation of the ana-
morphosis is more tractable. Control plots (Figure 1) show
this correction is accurate and needed, as the amplitude
between Gaussian and non-Gaussian covariances reaches
up to 30% in the study case.

[66] The definition of intermittency as a binary process
statistically independent of NZR variability allows a drastic
simplification of its implementation in the simulator. Illustra-
tive runs show that the independence rapidly vanishes after
accumulation and that advection accentuate this process.
This hypothesis is thus not exclusive of earlier experimental
studies, showing dependency for rainfall accumulations
more than 1 h.

[67] The space-time anisotropy captures important
details of the precipitation dynamics summarized by the
Taylor velocity. Featuring the lifetime and size of elemen-
tary rainfall cells The Taylor velocity of NZR, relating the
lifetime and the size of elementary rainfall cells, deter-
mines the renewal rate of the internal structures of the rainy
areas. The Taylor velocity of the intermittency governs the
renewal rate of the rainy areas themselves. The combined
role of these velocities with the advection velocity proves
to produce flexible enough rainfall field kinematics.

[68] Practical applications of the SAMPO simulator that
contributed to build and test its different modules include
the development of a rainfall error model to study hydro-
logical uncertainty [Renard et al., 2011], the Lagrangian
analysis of radar rainfall fields [Emmanuel et al., 2012],
and teaching support.

[69] Current developments are oriented toward (i) condi-
tional simulations given prescribed rain gauge data sets, (ii)
rainfall type sequencing in relation with meteorological
data, or (iii) nonstationarity under orographic conditions. In
many hydrological applications, the uncertainty introduced
by gauge network sampling is a still open question and sim-
ulations conditioned to gauge readings can help assessing
measurement errors. Under middle European climate, the
simulation of the occurrence and type of rainy weather sit-
uations is compulsory to produce long series of rainfall
data. Under orographic influence the mean and variance
values of NZR and intermittency vary in space and the
advection field becomes more complex.

[70] To this end and far from an exclusive choice
between conservation laws and observed statistics, we
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Figure 8. Sequence of 5 min rainfall fields simulated with the parameters of the case study slightly
modified to obtain banded convection (intermittency anisotropy of factor 4 in the N-105-E direction).
The 4 ms~ " advection is heading N-15-E.
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