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Abstract. In order to help to choose similarity or distance measures
for information retrieval systems, we compare the orders these measures
induce and quantify their agreement by a degree of equivalence. We both
consider measures dedicated to binary and numerical data, carrying out
experiments both on artificial and real data sets, and identifying equiv-
alent as well as quasi-equivalent measures that can be considered as
redundant in the information retrieval framework.
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1 Introduction

Information retrieval systems provide results in the form of document lists or-
dered by relevance, usually computed as the similarity between the document
and the user request. The choice of the similarity measure is then a central com-
ponent of the system. In such applications, the similarity values themselves are
of little importance, only the order they induce matters: two measures leading
to the same document ordering can be considered as equivalent, and it is not
useful to keep them both. Likewise, several machine learning algorithms only
depend on the similarity rankings and not on their values, such as the k-nearest
neighbor classification, hierarchical clustering with complete or single linkage, or
the monotone equivariant cluster analysis [1].

To formalize this notion, several authors introduced the definition of equiva-

lent comparison measures [2–5], as measures always inducing the same ranking,
and exhibited classes of equivalent measures. To refine the characterization of
non-equivalent measures, equivalence degrees were then proposed [6] to quantify
the disagreement between the rankings, considering both the number of inver-
sions and their positions, through the generalised Kendall tau [7, 8].

In this paper we propose a systematic study of these equivalence and quasi-
equivalence properties both for measures dedicated to presence/absence and to
numerical data, i.e. data respectively in {0, 1}p and in R

p, taking into account the
main existing similarity, distance and scalar product measures. We compute the
equivalence degrees considering both artificial and real data, the latter consisting
of training data from the 2008 Image CLEF challenge [9].



2 Order-based equivalence degrees for similarity and distance measures

As opposed to previous work [6], the protocol we consider here corresponds to
the use of an information retrieval system: it consists in comparing to a request
data all n points of the data set, ranking them according to their similarity to this
request and averaging the result over several requests. This better reflects the
application case, whereas the protocol used in [6] considering all n(n−1)/2 data
pairs simultaneously and ordering them in a single ranking was more focused on
a theoretical comparison of similarity measures. Furthermore, in this paper, we
extend the comparison framework to the case of numerical data.

The paper is organised as follows: section 2 recalls the definitions of equiv-
alence and equivalence degrees for comparison measures and details the exper-
imental protocol. Sections 3 and 4 respectively analyse the results obtained in
the case of binary and numerical data.

2 Order-based Comparison of Comparison Measures

Denoting X the data universe, similarity measures are functions S : X ×X → R

quantifying proximity or resemblance: they take as argument object couples and
give as a result numerical values that are all the higher as the objects are close.
Distance measures d : X ×X → R

+ quantify dissimilarity and return values that
are all the smaller as the objects are close. Similarity and distance measures build
the set of comparison measures.

2.1 Definitions

Order-based Equivalence Several authors [2–5] considered the issue of a theo-
retical comparison between similarity measures and defined two measures m1 and
m2 as equivalent if they induce the same order when comparing objects: more
formally they are equivalent if and only if ∀x, y, z, t, it holds that m1(x, y) <
m1(z, t) ⇔ m2(x, y) < m2(z, t) and m1(x, y) = m1(z, t) ⇔ m2(x, y) = m2(z, t).

It has been shown [4, 5] that, equivalently, m1 and m2 are equivalent if and
only if there exists a strictly increasing function f : Im(m1) → Im(m2) such
that m2 = f ◦ m1, where Im(m) = {s ∈ [0, 1]/∃(x, y) ∈ X 2, s = m(x, y)}.

It is to be noted that when a distance is compared to a similarity measure, it
is necessary to take into account their opposite sense of variation: the inequalities
in the first definition must be the opposite one of the other; the function of the
second definition must be strictly decreasing.

Order-based Equivalence Degrees In order to refine the characterization
of non-equivalent measures, it has been proposed to quantify the disagreement
between the induced rankings, by equivalence degrees [6]: two measures leading
to a few inversions can be considered as more equivalent than measures inducing
opposite rankings. Furthermore, two measures can be considered as less equiva-
lent if the inversions occur for high similarity values than if they occur for low
values: in the framework of information retrieval systems for instance, most often
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only the first results are taken into account, inversions occurring at the end of
the document lists are not even noticed.

The generalized Kendall tau Kpt,pm
[7, 8] compares two rankings r1 and r2

defined on a set of elements E , taking into account the number of inversions as
well as their positions: it associates each element pair (i, j) ∈ E2 with a penalty
P (i, j) and is defined as the sum of all penalties divided by the number of pairs.
Four penalty values are distinguished: if the pair (i, j) is concordant (i.e. r1 and
r2 agree on the relative position of i and j: formally denoting δl = rl(i) − rl(j)
the rank difference of i and j in ranking rl, if δ1δ2 > 0 or δ1 = δ2 = 0), then
P = 0; if the pair is discordant (i.e. δ1δ2 < 0), P = 1; if it is tied in one ranking
but not in the other one, P = pt ∈ [0, 1]. Lastly if it is present in one ranking but
missing from the other one, one distinguishes whether both i and j are missing
(P = pm ∈ [0, 1]), or only one is (the pair is then handled as a normal one).

The equivalence degree between two comparison measures m1 and m2 is thus
computed as follows: given a data set D and a request x ∈ D, all points y ∈ D are
ranked according to their similarity to x, according to m1 and m2. The rankings
rk
1 and rk

2 induced on D, restricted to their top-k elements, i.e. to the objects
with rank smaller than a given k are then compared, leading to:

dk
D

(m1, m2) = 1 − K0.5,1(r
k
1 , rk

2 )

It equals 1 for equivalent measures and 0 for measures leading to opposite rank-
ings. We set pt = 0.5 considering that when breaking a tie, there is 1 chance out
of 2 to come up with the same order as defined by the second ranking. We set
pm = 1 considering that a missing data pair indicates a major difference and
can be penalized as a discordant pair. Lastly, for any given k, each data point
x ∈ D is successively considered as request, and the degrees are averaged over
all requests.

2.2 Considered Data Sets

We carry out experiments considering both binary and numerical data, i.e. re-
spectively the universes X = {0, 1}p and X = R

p, and for each of these two
types, artificial and real data set.

For the real data, we consider the ImageClef training corpus [9] that contains
1827 images annotated in a multi-label framework (e.g. indicating whether the
image shows buildings or vegetation). On one hand we use the image labels to
define binary data, encoding the presence or absence of each label. We suppressed
some labels in xor relation with others (such as night, related to day, or outdoor,
related to indoor) as well as subcategory labels (tree, subsumed by vegetation,
and sunny, partly cloudy and overcast subsumed by sky). As a result, the binary
data set contains p = 11 attributes. On the other hand, we encode the images
using their histograms in the HSV space (using p = 6×2×2 = 24 bins) expressed
as percentages, to get a vector description. It is to be noted that this vector
description is such that the sum of all attributes is constant.

The artificial data are generated according to the real data, so as to study the
effect on equivalence results of potential specific data configurations, e.g. variable
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Table 1. Classic binary data similarity measures, normalised to [0, 1] (the definitions
may thus differ from the classic ones).

Similarity measure Notation Definition

Jaccard Jac a

a+b+c

Dice Dic 2a

2a+b+c

Kulczynski 2 Kul 1
2

“

a

a+b
+ a

a+c

”

Ochiai Och a
√

a+b
√

a+c

Rogers and Tanimoto RT a+d

a+2(b+c)+d

Russel and Rao RR a

a+b+c+d

Simple Matching SM a+d

a+b+c+d

Sokal and Sneath 1 SS1 a+d

a+ 1

2
(b+c)+d

Yule Q Y uQ ad

ad+bc

Yule Y Y uY
√

ad
√

ad+
√

bc

density or cluster structures. In the binary case, the artificial data consists of
all points in a regular grid in {0, 1}11, resulting in 211 = 2048 points. In the
numerical case, the artificial data set is randomly generated following a uniform
distribution on [0, 100]24.

3 Binary Data Similarity Measures

3.1 List of Considered Measures

Formally, similarity measures for binary data are defined as functions S : {0, 1}p×
{0, 1}p → R possessing the properties of maximality (∀a, y, S(x, x) ≥ S(x, y))
and symmetry [10, 11], although the latter is not always required [12].

Table 1 recalls the definition of 10 classic similarity measures, using the
following notations: for any point x ∈ {0, 1}p, X denotes the set of attributes
present in x, i.e. X = {i|xi = 1}; for any data pair (x, y), a, b, c, d denote the
number of attributes respectively common to both points a = |X∩Y |, present in
x but not in y or vice-versa, b = |X−Y | and c = |Y −X |, and present in neither
x nor y, d = |X̄ ∩ Ȳ |. The measures not depending on d (the first 4 in Table 1)
are called type I similarity measures, the others type II similarity measures. As
can be seen from the table, the first 2 measures follow the same general scheme
proposed by Tversky [12] Tveα,β(x, y) = a/(a + αb + βc) corresponding to the
special case where α = β = 1 or 1/2 respectively.

3.2 Analytical Equivalence Results

Several classes of equivalent similarity measures were established, exhibiting
their functional dependency [3–5]. For the measures defined in Table 1 they
are: (i) {Jaccard, Dice, symmetrical Tversky’s measures Tveα,α}, (ii) {Rogers
and Tanimoto, Simple Matching, Sokal and Sneath 1}, (iii) {Yule Q, Yule Y},
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Table 2. Full rank equivalence degrees for artificial binary data.

Jac Kul2 Och RT RR SM SS1 YuQ YuY Random

Dic 1 0.97 0.99 0.87 0.89 0.87 0.87 0.86 0.86 0.50
Jac 0.97 0.99 0.87 0.89 0.87 0.87 0.86 0.86 0.50
Kul2 0.98 0.88 0.88 0.88 0.88 0.88 0.88 0.50
Och 0.88 0.89 0.88 0.88 0.87 0.87 0.50
RT 0.76 1 1 0.90 0.90 0.50
RR 0.76 0.76 0.77 0.77 0.50
SM 1 0.90 0.90 0.50
SS1 0.90 0.90 0.50
YuQ 1 0.50
YuY 0.50

(iv) each of the remaining measures forming a class by itself. For the Tversky’s
measures, it was more generally shown [5] that two measures with parameters
(α, β) and (α′, β′) are equivalent if and only if α/β = α′/β′.

3.3 Experimental Results

Full Rank Comparison Table 2 contains the full rank equivalence degrees
computed in the case of the artificial data. The top graph of Figure 1 offers a
graphical representation of these values, together with their standard deviation.

As a baseline, we include a measure that generates random similarity values
so as to have a reference equivalence degree. This measure has an equivalence
degree of 0.5 with all measures: on average it ranks differently half of the pairs.

From the equivalence degrees equal to 1, three groups of equivalent measures
are numerically identified, accordingly to the theoretical results (see Section 3.2).
The non-1 degrees give information on the non equivalent measures. It can first
be noted that they all have high equivalence levels: apart from the random
measure, the minimal degree equals 0.76, which implies that the proportion of
inversions is always lower than 24%. Furthermore, it appears that some measures,
although not satisfying the definition of equivalence, have very high equivalence
degrees, above 0.97 (Jac/Och, Kul2/Och, and Jac/Kul2): the latter, that actually
equals the set of type I measures, lead to very few differences and can actually
be considered as quasi-equivalent and thus redundant.

Figure 1 illustrates these degrees with their standard deviation, representing
measure pairs in decreasing order of their degrees. To improve the readability, it
only represents a single member of each equivalence class, and does not consider
further the random measure. Taking into account the standard deviation, it can
be observed on the top graph that for full rank comparison there is no significant
difference between the degrees computed on the artificial and the real data. Thus
all comments on the measures also hold for the real data set.

This graph also highlights the difference between the two measure types, as
already mentioned: whereas type I measures appear highly equivalent one to
another, the ”intra equivalence” of type II measures is smaller. The latter do
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Fig. 1. Equivalence degrees and their standard deviation: (top) full ranking, (middle)
top-100 (bottom) top-10. For each measure pair the left (resp. right) bar corresponds
to artificial (resp. real) data.

not resemble each other more than they resemble the type I measures, which
makes their category less homogeneous and more diverse.

Top-k Comparison The middle and bottom graphs of figure 1 show the equiv-
alence degrees obtained when considering, respectively, the top-100 and top-10
ranked lists. We keep the same abscisse axis used for the full ranking, to underline
the differences occuring when the list is shortened.

It can first be observed that the degrees are globally lower than for the full
rank comparison: the minimum is 0.42 for k = 100, 0.09 for k = 10, indicating
major differences in the ranked lists provided by the measures. The equivalence
degree of the random measure with any other one (not shown on the graphs)
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falls down below 0.1: the list it induces has next to nothing in common with the
other lists, and almost all data pairs get a missing penalty.

This decrease indicates that the global agreement observed when comparing
the full rankings is actually mainly due to the last ranked data. This under-
lines that a study of the inversion positions, besides their number, is necessary,
especially when it comes to selecting non equivalent measures in an informa-
tion retrieval framework. Still, this decrease does not occur for all measures:
the intra type I pairs as well as those involving a type I measure with Rogers
Tanimoto appear to be stable from full ranking to top-100 and top-10. Due to
this behaviour, RT, although being a type II measure, is closer to the type I
category than to type II. These measures can be considered as equivalent even
for restricted rankings, and redundant for information retrieval applications.

Another difference when focusing on the top-k rankings comes from the stan-
dard deviations: it appears that their values considerably increase. Furthermore,
they globally take higher values on the real data than on the artificial ones.
This may be due to the regular distribution of the artificial data, which insures
independence with respect to the request data. On the contrary, the real data
probably follow a distribution with variable density, and the data request may
have different effects, depending on whether it belongs to a dense or to a sparse
region. Still, as for the full rank comparison, and except for RT, no significant
difference between artificial and real data can be observed.

Lastly, it appears that the Yule Q and Russel Rao measures become the most
isolated ones, far from all others: for YuQ, this can be explained by the fact that
it very often takes value 1. Indeed, this occurs for all data pairs (x, y) such that
b = 0 or c = 0. Thus, the set of data in its top-k list is much larger than those of
the other measures, leading to many missing data pairs. The RR behaviour can
be explained similarly: this measure only takes p + 1 = 12 different values in a
universe of size p. Thus its top-k lists contain the whole data set even for low k
values, again leading to many missing pairs when comparing to other measures.

4 Numerical Data Similarity Measures

4.1 List of Considered Measures

Numerical data comparison measures are based on distances or on scalar prod-
ucts [11]. The formers possess properties of positivity, symmetry, minimality,
equivalently to the binary data similarity measures. Moreover, they satisfy the
triangular inequality. The most classic distances are the Minkowski family, and
in particular the Euclidean distance, denoted de, and the Manhattan distance.

The most common dot products comprise the Euclidean dot product ke, the
gaussian kernel kgσ = exp(−de(x, y)2/(2σ2)) and the polynomial kernel kpγ,l =
(〈x, y〉 + l)

γ
. With the exception of the gaussian kernel, they do not correspond to

classic similarity measures because they do not possess the maximality property,
as e.g. k(x, 2x) > k(x, x). To obtain it, it is necessary to normalize them, defining
k̃(x, y) = k(x, y)/

√

k(x, x)k(y, y). The similarity then only depends on the angle
between the two vectors.
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Table 3. Full rank equivalence degrees for artificial numerical data.

L2 EDP NEDP GK50 GK100 PK3 NPK3 Random

L1 0.90 0.63 0.84 0.90 0.90 0.63 0.89 0.50
L2 0.63 0.87 1 1 0.63 0.97 0.50
EDP 0.76 0.63 0.63 1 0.66 0.50
NEDP 0.87 0.87 0.76 0.90 0.50
GK50 1 0.63 0.97 0.50
GK100 0.63 0.97 0.50
PK3 0.66 0.50
NPK3 0.50

4.2 Analytical Results

Using the functional definition of equivalence, two equivalence classes can be
distinguished. The first one obviously groups the Gaussian kernels with the Eu-
clidean distance: kgσ = f ◦ d with f : x 7→ exp(−x2/(2σ2)) that is decreasing.
All Gaussian kernels are thus equivalent: in particular, this implies that all σ
values always lead to the same ranking.

The second class, grouping the Euclidean dot product and the polynomial
kernels, is defined down to a data translation: for even values of γ, the function
g(x) = (x + l)γ , such that kpγ,l = g ◦ ke, is increasing only under the condition
that x ≥ −l. Now denoting α the value such that ∀x∀ixi+α ≥ 0 and e the vector
such that ∀i ei = α, after applying the translation by e, one has ∀x∀i xi ≥ 0
and thus 〈x, y〉 =

∑

i xiyi ≥ 0 > −l. It can be underlined that in a classification
framework the l value does not matter as it scales the feature space attributes
and is counterbalanced by the weighting coefficient learned by the classifier.

In the case where the data are such that ‖x‖ = 1 for all x, these two classes
are merged: indeed de = h◦ke with h(x) =

√

2(1 − x) that is strictly decreasing.

4.3 Experimental Results

We compare the most common measures namely the Manhattan (denoted L1)
and Euclidean (L2) distances, the Euclidean dot product (EDP) and its nor-
malised form (EDPN), the Gaussian kernel for σ = 50 (GK50) et σ = 100
(GK100), the polynomial kernel of degree 3 for l = 2000 (PK3) and its normal-
isation (NPK3). The σ and l values for the GK and PK were chosen according
to the data properties. We also add a baseline random measure.

Full Rank Comparison Table 3 contains the full rank equivalence degrees,
also illustrated, together with their standard deviation, on the top graph of
figure 2.

As in the binary data case, and for the same reason, the random measure
has an equivalence degree of 0.5 with all measures. The degrees equaling 1 are
concordant with the theoretical results and indicate the two expected equiva-
lence classes. Again, all measures have a high agreement level, as the maximal



Order-based equivalence degrees for similarity and distance measures 9

L2/NPK3  NEDP/NPK3 L1/L2    L1/NPK3  L2/NEDP  L1/NEDP  EDP/NEDP EDP/NPK3 L2/EDP   L1/EDP   
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L2/NPK3  NEDP/NPK3 L1/L2    L1/NPK3  L2/NEDP  L1/NEDP  EDP/NEDP EDP/NPK3 L2/EDP   L1/EDP   
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L2/NPK3  NEDP/NPK3 L1/L2    L1/NPK3  L2/NEDP  L1/NEDP  EDP/NEDP EDP/NPK3 L2/EDP   L1/EDP   
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Equivalence degrees and their standard deviation, for artificial and real numer-
ical data.

proportion of inversions is only 37%, obtained when comparing the Gaussian
and polynomial kernels. The observed high degree between L2 and NPK3 does
not correspond to a theoretically known result. It can be explained by the level
lines of these measures (figure omitted for space constraints): even if they locally
differ, they have the same global form and the orders they induce globally agree.

The top graph of figure 2 highlights a difference between the artificial and real
data sets that leads to a slightly different ordering of the measure pairs according
to their equivalence degrees. This can be explained by the particularity of the real
data: as they correspond to repartition histograms, their L1 norm is constant.
This specific structure of the data has consequences on the equivalence degrees.

Top-k Comparison When focusing on top-k rankings, it can be observed that
the difference between the two data types becomes less marked when k decreases.
The standard deviations increase, underlying the influence of the request data
especially on the beginning of the lists. Besides, although the equivalence degrees
significantly decrease, the order of the measure pairs in terms of equivalence
degree is not modified. Three equivalence levels can be distinguished in particular
for k = 10. The highest one is reached by the pair L2/NPK3, meaning that their
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high agreement holds for the highest similarity values. The lowest values are
reached by EDP and any other measures: EDP appears as an isolated measure
which has very less in common with the rest of the measures.

5 Conclusion

We compared similarity measures for two different data types, quantifying their
proximity and possible redundancy when looking at the ranking they induce,
and considering in particular restricted rankings associated to top-k lists. This
study, relying on the definition of equivalence degree based on the generalised
Kendall tau, takes place in the framework of information retrieval systems. Car-
rying out experiments both on artificial and real data, we showed some stability
property regarding the behaviors of comparison measures on equivalence and
quasi-equivalence results, but also some differences confirming that the equiva-
lence degrees depends on the data sets but less than one could expect.

In future works, we aim to establish relations between data set structure
and quasi-equivalence classes of measures of similarity. Lerman [2] considered
this point of view in the case of binary data, showing that if all data have the
same number of present attributes, i.e. if ∃q/∀x ∈ D |X | = q, then all similarity
measures are equivalent on D. We would like to extent this study to numerical
data and to the quasi-equivalence property.
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