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Lifting Scheme on Graphs with Application to

Image Representation

Moncef Hidane, Olivier Lézoray, Abderrahim Elmoataz

Normandie Univ., UNICAEN, ENSICAEN, GREYC UMR CNRS 6072, Caen, France

Abstract—We propose a new multiscale transform for scalar
functions defined on the vertex set of a general undirected
weighted graph. The transform is based on an adaption of the
lifting scheme to graphs. One of the difficulties in applying
directly the lifting scheme to graphs is the partitioning of the
vertex set. We follow a recent greedy approach and extend it to
a multilevel transform. We carefully examine each step of the
algorithm, in particular its effect on the underlying basis. We
finally investigate the use of the proposed transform to image
representation by computing M-term nonlinear approximation
errors. We provide a comparison with standard orthogonal and
biorthogonal wavelet transforms.

I. INTRODUCTION

The continuous development in data sensing, gathering and

simulation has led to an ever growing volume and variety of

collected data sets. Mining these data sets, including denoising,

clustering and regression is a major challenge. Formally, a data

collection corresponds to a set V = {x1, . . . ,xN}, where each

xi belongs to R
p, p ≥ 1. The present paper is concerned with

the representation, through multiscale transforms, of functions

defined on the vertex set of a general weighted graph, referred

to as graph-signals [1]. We will focus in particular on the case

of digital images which we view as graph-signals.

In the context of image processing and analysis, the

weighted similarity graph model has become prevalent as

it allows to explicitly model self-recursions usually present

in natural images. Viewing an image as a function on an

similarity graph leads to so-called nonlocal graph-based meth-

ods [2], [3]. Multiscale transforms allow to capture the local

correlations present in the underlying signals and yield highly

compressible representations [4]. The effectiveness of this

approach motivates the introduction of similar approaches for

signals defined on general weighted graphs.

Classical wavelet transforms are obtained by computing,

through fast algorithms, inner products with a family of signals

obtained by dilating and translating a single mother wavelet

[4]. The direct adaption of this approach to graph-signals poses

obvious problems relating to the definition of intrinsic notions

of translation and dilation on a graph. These difficulties have

led to a series of recent works [5]–[8], each leading to a new

multiscale transform.

We propose in this paper a new multiscale transform for

signals defined on the vertex set of a general graph. The

approach we propose uses the lifting scheme [9] and is inspired

by the greedy variant proposed in [8]. We note that lifting-

based transforms on graphs have also been propsosed in [10]

and [11]. We extend the approach of [8] to a multiple-level

transform and examine its compression capability for digital

images.

II. LIFTING SCHEME

A. Lifting Scheme for 1D Signals

The lifting scheme [9] allows to factorize orthogonal and

biorthogonal wavelet transforms into elementary steps [12].

Let us quickly illustrate the principle for a one-dimensional

signal x = (x1, . . . , xN ). To apply the forward lifting trans-

form to x, one first needs to partition the index set {1, . . . , N}
into two sets I and J . Here, in the one-dimensional case, we

take I to be the set of odd indices and J to be the set of even

indices. Let us denote xI = (xi, i ∈ I), and xJ = (xj , j ∈ J).
A single lifting step consists of two operations: prediction and

update. In the first operation, one computes an approximation

x̃I = P (xJ) of the subsignal xI , and then evaluates the

prediction error: (xI)∗ = xI − x̃I . In the sequel, we will call

(xI)∗ the detail signal as it captures the spatial correlation

that might be present in x.

In the second operation, one computes a coarse approxima-

tion of the subsignal x by adding to xJ a linear transformation

U : R
|I| → R

|J| of (xI)∗. We then get the subsignal

(xJ)∗ = xJ + U
(

(xI)∗
)

. Depending on the precise choice

of the operator U , this second operation aims at producing

a coarse approximation (xJ)∗ whose first k moments agree

with those of x.

Globally, a single-step lifting transform corresponds to a

bijective application T : x ∈ R
N → (x)∗ ∈ R

N whose

inverse can be obtained immediately:

xJ = (xJ)∗ − U
(

(xI)∗
)

, xI = (xI)∗ + x̃I . (1)

A multiple-step transform can be obtained by recursively

applying the same principle to the successive detail signals.

B. Lifting on Graphs

1) Notations: We begin by briefly fixing the definitions

and notations we use. A weighted graph is a triple G =
(V (G), E(G), w), where V (G) is a vertex set, E(G) ⊂
V (G) × V (G) the set of edges and w : V (G) →]0,+∞[ is

a weight function. We restrict ourselves in all the rest of this

paper to undirected graphs with no self loops. For i, j ∈ V (G),
we write i ∼ j if there is an edge joining i and j. If V (G) is

fixed and has N vertices, G is characterized by its weighted

adjacency matrix W ∈ R
N×N given by wi,j = w(i, j) if



(i, j) ∈ E and wi,j = 0 otherwise. We denote the set of scalar

signals on V (G) by ℓ2(V (G)). The elements of ℓ2(V (G)) are

written in bold. Finally the vector 1 denotes the vector whose

entries are all equal to one.

2) Algorithm adaption: Consider a graph-signal f ∈
ℓ2(V (G)). In order to apply the lifting scheme to f we need

to specify three components: the partitioning of the vertices

and the prediction and update operators. We begin with the

choice of the operators and assume that we have found two

subsets I and J such that V (G) = I ∪ J , and I ∩ J = ∅.

For the prediction step, we restrict ourselves to linear

operators. In practice, we build the weighted adjacency matrix

from the input data such that the weight associated with two

data instances represents a similarity measure between them.

In other other words, the graphs we consider here are similarity

graphs. It is thus natural to use those weights as prediction

coefficients. Applying a prediction step in this manner amounts

to multiplying by the following prediction matrix P verifying

(∀j ∈ J) (∀l ∈ V (G)) pj,l = δj,l =

{

1 if j = l,

0 otherwise,
(2)

and

(∀i ∈ I) (∀l ∈ V (G)) pi,l =







wi,l∑
j∈J
j∼i

wi,j
if l ∈ J and l ∼ i

0 otherwise.
(3)

Evaluating the prediction error thus amounts to multiplying by

I − P .

In the same manner, the update step can be written with an

update matrix U ∈ R
N×N verifying

(∀i ∈ I) (∀l ∈ V (G)) ui,l = δi,l, (4)

and

(∀j ∈ J) (∀l ∈ V (G)) uj,l 6= 0 =⇒ l ∼ j and l ∈ I. (5)

We will come back to the precise choice the matrix U in the

next section.

A single-step lifting transform is then represented by the

matrix T ∈ R
N×N given by T = (I +U) (I − P ) . Let

us denote g = Tf . The components (gi)i∈I correspond to

detail or wavelet coefficients while the components (gj)j∈J

correspond to scale coefficients.

More generally, many prediction/update steps can be per-

formed, leading to the following single-step transform T =
∏k

m=1 (I +Um) (I − Pm) . If we define a (weighted) adja-

cency relation on J, one can iterate this transform on the detail

signal.

3) Difficulties: We identify at this point a first difficulty

concerning the application of the lifting algorithm on general

graphs. This difficulty concerns the partitioning step, which in

turn covers two aspects. The first aspect concerns the efficient

use the edges of the graph. Indeed, let us note that a single

lifting step does not use edges whose endpoints both belong

to I or J . In the sequel, we will say that such edges are

contentious.

A first partitioning criterion can be obtained by seeking

a partitioning that minimizes the sum of the weights of

contentious edges. This criterion seeks a maximal spanning

bipartite subgraph and is thus equivalent to the maximal cut

problem. Unfortunately, this combinatorial is NP-hard.

In regard to the previous discussion, we adopt a greedy

approach inspired by [8] where a series of elementary lifting

steps are performed. We elaborate on this approach in the next

section.

III. PROPOSED ALGORITHM

The algorithm we propose replaces the global partitioning

step described in the previous section by a greedy approach.

Its is summarized below:

1: Input: A weighted graph G on {1, . . . N}, a signal f ∈
ℓ2(V (G)) and an integer m ≥ 1.

2: Initialization: S0 := V (G),D0 := ∅, c0,i := fi, ∀i ∈ S0.

3: for all r ∈ {1, . . . ,m} do

4: Choose ir ∈ Sr−1.

5: Sr := Sr−1\{ir}.

6: Dr := Dr−1

⋃

{ir}.

7: Prediction:

dr := cr−1,ir −
∑

k∼ir
k∈Sr

αr,kcr−1,k. (6)

8: Update:

(∀k ∈ Sr) cr,k =

{

cr−1,k + βr,kdr if k ∼ ir

cr−1,k otherwise.

(7)

9: end for

We call an iteration of the main loop an elementary lifting

step. At the rth elementary lifting step, we select a vertex ir
and compute a unique detail coefficient dr along with scale

coefficients cr,k. The detail coefficient dr corresponds to a

prediction error as explained in the previous section. Insights

into the precise choice of the coefficients βr,k in (7) can be

gained when examining the effect of each elementary lifting on

the underlying basis. We start by examining each component

of the proposed algorithm.

A. Vertices Selection

We propose one criterion for the selection of detail vertices.

It consists in simply choosing at each step the vertex with

maximum degree among the remaining scale vertices:

ir = argmax
i∈Sr−1

∑

j∈Sr−1

wi,j . (8)

Intuitively, the prediction error should be small when com-

puted at a vertex whose centrality, here measured by its degree,

is high. This choice thus favors the sparsity of the overall

transform.



B. Prediction

As in the previous section, we restrict ourselves to linear

prediction operators whose coefficients are related to edges

weights:

(∀k ∈ Sr, k ∼ ir) αr,k =
wir,k

∑

l∼ir
l∈Sr

wir,l
. (9)

This choice is motivated by the fact that the graphs we

are dealing with are similarity graphs. The choice of the

normalization in (9) seeks to obtain zero detail coefficient for

locally constant signals.

We insist on the fact that, although linear with respect to a

fixed graph, the prediction operator can be globally nonlinear

if the weighted adjacency relation is built from the data at

hand.

C. Effect on the Underlying Basis

The transform that we have just described is linear and

bijective. It thus corresponds to a change of basis. Let

Tr : RN → R
N denote the transform corresponding to the

application of r elementary lifting step:

(∀f ∈ R
N ) (Trf)l =

{

cr,l if l ∈ Sr,

dl if l ∈ Dr.
(10)

Let (φ0,i)1≤i≤N denote the canonical basis of R
N given

by φ0,i(j) = δi,j . At each step r ∈ {1, . . . ,m}, the

components of Trf in the canonical basis correspond to

the components of f in a new multiscale basis denoted

MSBr := {φr,i,ψr,j}i∈Dr,j∈Dr
:

f =
∑

i∈Sr

cr,iφr,i +
∑

i∈Dr

diψr,i. (11)

Due to the linearity of Tr, the basis MSBr is obtained simply

by applying T−1
r to (φ0,i)1≤i≤N :

{

(∀i ∈ Sr) φr,i = T−1
r (φ0,i),

(∀j ∈ Dr) ψr,j = T−1
r (φ0,i).

(12)

It is then possible to relate the elements of two successive

multiscale basis obtained in this way. The relations are the

following

(∀i ∈ Sr) φr,i =

{

φr−1,i + αr,iφr−1,ir if i ∼ ir

φr−1,i otherwise.

(13)

and

(∀i ∈ Dr) ψr,i =







φr−1,ir −
∑

i∼ir
i∈Sr

βr,iφr,i if i = ir,

ψr−1,i otherwise.

(14)

D. Update

Equation (14) allows to clarify the role of the update

step. Let us denote Ir,i = 〈φr,i,1〉, where 〈., .〉 denotes the

standard inner product on R
N . Notice that I0,i = 1 for all

i ∈ {1, . . . , N}. As for traditional wavelet transforms, we seek

wavelet signals with a vanishing moment. In our context, this

requirement is equivalent to Ir−1,ir =
∑

i∼ir
i∈Sr

βr,iIr,i for all

r ∈ {1, . . . ,m}. We choose, as in [8], the minimum Euclidean

norm solution, given by βr,i =
Ir,iIr−1,ir∑

j∼ir
j∈Sr

I2

r,j

.

E. Multilevel Lifting Transform

The number of elementary lifting steps is given by the

integers m. First, this parameter depends on the graph topol-

ogy. Indeed, each elementary lifting operation cancels the

edges incident to the selected detail vertex. Thus depending

on the graph topology, it may happen that a certain number of

elementary lifting steps invalidate all the edges of the graph.

In this case, no further lifting can be performed and we say

that we have performed a single cycle.

Let us remark at this point that the strategy of comput-

ing detail coefficients at vertices with largest degree may

lead to cycles with small m. An alternative strategy can

be obtained by dividing by the number of incident edges:

ir = argmax
i∈Sr−1

∑
j∈Sr−1

wi,j

Card({j∼i,j∈Sr−1})
. We only experimented in the

sequel with the strategy described in (8).

In order to proceed with other cycles, one needs to define a

sensible adjacency relation on the remaining scale coefficients

Sm. We propose to infer this relation by using powers of W .

Thus, two vertices i, j ∈ Sm will be connected by a new edge

if and only if W 2
i,j 6= 0. Let us observe at this point that if

W is binary, then W n
i,j gives the number of paths of length

n connecting i to j.

Proceeding with this approach allows to iterate many lift-

ing cycles. The algorithm can be stopped either when there

remains a single scale coefficient or by fixing, a priori, the

ratio between the overall number of vertices and the number

of detail coefficients.

We now describe the application of the proposed algorithm

to the approximation of digital images, viewed as signals on

weighted graphs.

IV. EXPERIMENTS

We illustrate in this section the capability of the proposed

transform to represent digital images viewed as graph-signals.

Let f ∈ R
N be the vector obtained by concatenating the

columns of grayscale image matrix. We associate with each

pixel of the image a vertex of the graph. We consider three

kind of adjacency relations: unweighted 4-adjacency grid

graphs, 8-adjacency grid graphs, 25 nearest-neighbors graphs

with respect to the photometric distance d(i, j) = |fi − fj |.
We have assigned Gaussian weights to the edges of the second

and third types of graphs: wi,j = e−|fi−fj |
2/2σ2

.

Once a graph is constructed from an image, we consider

the grayscale values as a signal on this graph and apply our



Fig. 1. Reconstruction of “Barbara” image from 1024 (top row) and 256 (bottom row) coefficients. Columns from left to right: Haar, Daubechies 4, CDF(2.2),
lifting on unweighted 4-adjacency graph, lifting on 8-adjacency graph, lifting on 25 nearest-neighbors graph with Gaussian weights.

Fig. 2. M-term nonlinear approximation errors for “Barbara”. Transforms :
lifting on graphs (4 et 8 adjacency, nearest neighbors), Haar, Daubechies 4,
Daubechies 8, CDF(2,2).

algorithm to that signal. In order to evaluate the approximation

property of the algorithm, we compute M-term nonlinear

approximation errors for different values of MFor all the

experiments, the multilevel transform is iterated until there

remains only one scale coefficient.

Figure 2 shows the approximation error on 128x128 stan-

dard “Barbara” image for different values of M . In that

same figure we also show the results obtained with the Haar,

Daubechies 4, Daubechies 8 and CDF(2,2) transforms [4].

We can see that transforms based on 8-adjacency and nearest

neighbors graphs achieve very low approximation errors. This

is confirmed in Figure 1 which shows the approximations

obtained with M = 1024 et M = 256 terms.

V. CONCLUSION

We have proposed an adaption of the lifting scheme to

signals defined on the vertex set of a general weighted graph.

We followed a greedy approach suggested in [8] and proposed

to extend it to a multilevel transform. We have also carefully

examined each step of the proposed algorithm, in particular its

effect on the underlying basis. Finally, we have investigated

the use of the proposed transform to image approximation by

computing M-term nonlinear approximation errors.

The transform we proposed achieves very high approxima-

tion accuracy at the expense of using an adapted weighted

graph data structure. A first line of investigation concerns

the trade off between the sparsity of the adjacency matrix of

the underlying graph and the approximation capability of our

transform. Another line of investigation concerns the use of

our transform as a prior for solving inverse problems involving

graph-signals.
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