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Abstract—In this paper, we propose a nonlocal approach based
on graphs to segment raw point clouds as a particular class
of graph signals. Using the framework of Partial difference
Equations (PdEs), we propose a transcription on graphs of recent
continuous global active contours along with a minimization
algorithm. To apply it on point clouds, we show how to represent
a point cloud as a graph weighted with patches. Experiments
show the benefits of the approach on raw colored point clouds
obtained from real scans1.

I. INTRODUCTION

There is actually much interest in the development of

algorithms that enable to process high-dimensional data that

reside on the vertices or edges of a graph, referred to as

graph signals [1]. With 3D sensors becoming cheaper, more

and more applications in natural and applied sciences involve

the segmentation of raw 3D colored point clouds. With point

clouds, the data to process is not organized on any Cartesian

grid and the neighbors of a point have to be defined. Our

previous works aim at representing point clouds as weighted

graphs to perform nonlocal graph processing [2], [3]. With

such a point of view, raw 3D colored point clouds are

considered as a specific class of graph signals where a color

vector is associated to a point (i.e., a vertex) located in a 3D

Euclidean space. In this paper, we propose a new approach

for the nonlocal segmentation of point clouds represented

by graphs. First, we consider a convex formulation of active

contours on graphs, we use the framework of PdEs to obtain

a formulation on arbitrary weighted graphs, and propose a

minimization strategy. Second, we present a way of associating

a patch-based weighted graph to 3D colored point clouds.

II. WEIGHTED GRAPHS

We recall in this section general definitions and operators

relating to graphs. In particular, we review the PdE framework

introduced in [4].

A. Notations and Preliminaries

A weighted graph G = (V,E, w) consists of a finite set

V = {v1, . . . , vN} of N vertices and a finite set E ⊂ V × V

of weighted edges. We assume G to be undirected, with no

self-loops and no multiple edges. Let (vi, vj) be the edge

of E that connects two vertices vi and vj of V. Its weight,

denoted by w(vi, vj), represents the similarity between its

vertices. Similarities are usually computed by using a positive

1This work was funded under a Ph.D. grant of the regional council of
Lower-Normandy.

symmetric function w : V×V → R
+ satisfying w(vi, vj) = 0

if (vi, vj) /∈ E. The notation vi ∼ vj is also used to denote

two adjacent vertices. The degree of a vertex vi is defined as

δw(vi) =
∑

vj∼vi
w(vi, vj). Let H(V) be the Hilbert space

of real-valued functions defined on the vertices of a graph. A

function f ∈ H(V) assigns a real value f(vi) to each vertex

vi ∈ V. The H(V) space is endowed with the usual inner

product, denoted 〈., .〉H(V) in the sequel.

B. Difference Operators on Weighted Graphs

Let G = (V,E, w) be a weighted graph and w : V×V → R
+

a weight function that depends on the interactions between the

vertices. The difference operator [4], denoted dw : H(V) →
H(E), is defined for all f ∈ H(V) and (vi, vj) ∈ E by:

(dwf)(vi, vj) =
√

w(vi, vj)(f(vj)− f(vi)). (1)

The adjoint of the difference operator, denoted d∗w : H(E) →
H(V), is the unique linear operator satisfying 〈dwf,H〉H(E) =
〈f, d∗wH〉H(V) for all f ∈ H(V) and all H ∈ H(E). Its

expression is given by:

(d∗wH)(vi) =
∑

vj∼vi

√

w(vi, vj)(H(vj , vi)−H(vi, vj)). (2)

The divergence operator, defined by −d∗w, measures the net

outflow of a function of H(E) at each vertex of the graph.

The weighted gradient operator of a function f ∈ H(V), at a

vertex vi ∈ V, is the vector defined by:

(∇wf)(vi) = ((dwf)(vi, vj))
T
vj∈V

. (3)

The ℓp norm of this vector is defined, for p ≥ 1, by:

‖(∇wf)(vi)‖p =





∑

vj∼vi

w(vi, vj)
p/2

∣

∣f(vj)−f(vi)
∣

∣

p





1/p

.

(4)

III. SEGMENTATION OF POINT CLOUDS

In this section, we propose a framework for the segmen-

tation of graph signals (functions defined on the vertices of

graphs). To perform the segmentation, we consider a convex

formulation of active contours on graphs. Starting from a

continuous formulation, we show how to transpose the latter

on weighted graphs using the framework of PdEs along with

a minimization strategy.



A. Convex Segmentation on graphs

The usual drawback of active contours methods is the

existence of local minimizers and hence their sensitivity to

the initial condition. A recent method, introduced by Bresson

and Chan in [5], [6], proposes to redefine the active contour

model into a model which gives global minimizers. In the

continuous setting, where images are viewed as functions on

a continuous domain Ω, this model is given by:

argmin
f(x)∈{0,1}

{∫

Ω

||∇f(x)||1dx + λ

∫

Ω

g(f
0
)(x)f(x)dx

}

. (5)

The function g is a region detector function used to force

region intensity statistics priors. The transposition of (5) on

graphs is obtained using the PdEs framework [4], [7] leading

to:

f̄ ∈ Arg min
f:V→{0,1}







∑

vi∈V

‖(∇wf)(vi)‖
p
p + λ

∑

vi∈V

g(f
0
)(vi)f(vi)







, (6)

where f is a labeling function (±1 for labeled vertices and 0
for unlabeled ones) and f0 the signal on the graph (the color

vectors associated to the vertices). When λ 6= 0, this energy

can be considered as the nonlocal discrete analogue on graphs

of the functional introduced in [6]. We now show how such a

minimization can be solved. Problem (6) is non-convex and, as

shown in [8] for the continuous analogue, can be reformulated

through a convex relaxation. Therefore, a new minimization

problem is considered:

f̂ = argmin
f:V→[0,1]







∑

vi∈V

‖(∇wf)(vi)‖
p
p + λ

∑

vi∈V

g(f
0
)(vi)f(vi)







. (7)

Following the approach in [8], one can show that every level-

set of a minimizer of (7) is solution of the original optimization

problem (6). As a consequence, to obtain a global solution f̄ :
V → {0, 1} to the problem of (6), one thresholds any function

f̂ : V → [0, 1] that is a solution of (7) and f̄(vi) = χS(vi),
where S = {vi ∈ V : f̂(vi) > t} with t ∈ [0, 1] and χ is

the indicator function defined by χ : V → {0, 1}. For a given

vertex, if vi ∈ A, then χA(vi) = 1 and χA(vi) = 0 otherwise.

However, to be able to perform such a minimization approach,

one has to show that both parts of the energy (7) do verify the

co-area formula. This can be easily shown for the second part

of the energy (see [8]). We show now that this is also true for

the first part.

B. Perimeters and co-area on graphs

Now we show that there is a relation, for the case of a sub-

graph, between discrete perimeters on graphs and the co-area

formula on graphs.

1) Perimeters on graphs: Let A be a set of connected

vertices with A ⊂ V. We denote by ∂+A and ∂−A, the

external and internal boundary sets of A, respectively. The

set Ac=V \ A is the complement of A. For a given vertex

vi∈V, one has: ∂+A = {vi∈Ac : ∃vj∈A with (vi, vj)∈E},
∂−A = {vi∈A : ∃vj∈Ac with (vi, vj)∈E}, and ∂A =

{(vi, vj) ∈ E : ∃vi∈∂+A and vj∈∂−A}. Let us consider non-

local regularization functionals based on weighted total vari-

ation on graphs Rw,p : H(V ) → R of a function f ∈ H(V ):
Rw,p(f) =

∑

vi∈V
‖(∇wf)(vi)‖pp with 0 < p < +∞. By

replacing f by the indicator function χA in these regular-

ization functionals, one has [7]: Rw,p(χA) = vol(∂A) =
Perw,p(A) = cut(A,Ac). This expression can be considered

as a nonlocal discrete perimeter of the sub-graph A. Conse-

quently, when λ = 0 in (7), it is the discrete analogue to the

continuous min-cut of [9].

2) Co-area formulae on graphs: In this subsection, we

discuss the co-area formulae on graphs. They are useful

on many contexts such as convex relaxation of variational

methods on graphs. Let (V,E, w) be a weighted graph,

f ∈ H(V). For t ∈ R, let At = {u ∈ V : f(u) > t}.

Then the co-area formula is verified for p = 1 [7] since

Perw,1(A) =
∫∞

−∞
Perw,1(At)dt. The proof is obvious since

|a − b| =
∫ +∞

−∞
|χ{a>t} − χ{b>t}|dt. In the rest of the paper,

we will therefore work exclusively with the case of p = 1
since Rw,1 does verify the co-area formulae.

C. Minimization Algorithm on Weighted Graphs

To solve the optimization problem (7), we propose to use

the Chambolle and Pock algorithm [10] on weighted graphs,

in a similar manner as in [11]. Let us consider the following

general optimization problem:

min
x∈X

F (Kx) +G(x), (8)

where X and Y , are two general finite-dimensional vector

spaces, and F ∈ Γ0(Y ), G ∈ Γ0(X) and K : X → Y
a linear operator. The set of all proper convex and lower

semicontinuous functions from H to ] −∞,+∞] is denoted

by Γ0(H). Recently, Chambolle and Pock have proposed the

following iterative algorithm [10] to solve efficiently (8):



















x0 = x̄0 = f, y0 = 0

yn+1 = proxσF∗(yn + σKx̄n),

xn+1 = proxτG(x
n − τK∗yn+1),

x̄n+1 = xn+1 + θ(xn+1 − xn),

(9)

where F ∗ is the conjugate of F [12], K∗ is the adjoint operator

of K, and prox the proximity operator defined as:

proxf (x) = argmin
y∈Y

{

f(y) +
1

2
||y − x||2

}

. (10)

The convergence of algorithm (9) is guaranteed if θ = 1 and

0 < τσL2 < 1 where L = ||K|| = max||x||≤1 ||Kx||. The

segmentation problem of (7) is formulated with F = ||.||1,

K = ∇w and G = λ〈., g(f0)〉, with 〈., .〉 the dot product

operator. By replacing F , K and G, in (9), we can simplify

the algorithm. For y ∈ Y , as shown in [11], we have:

proxσF∗(y) = proxσiB (y) = projB(y) = ỹ,



where ỹij = M(yij) =
yij

max(1,
√

∑

vj∼vi
y2
ij
)

and

iC =

{

0 for x ∈ C

+∞ otherwise,
(11)

and B is the unitary ||.||∞,2 ball.

For x ∈ X , we can show that:

proxτG(x) = argmin
y∈Y

{

τλ〈y, g(f0)〉+ 1

2
||y − x||2

}

= x− τλg(f0).

(12)

Thus the algorithm to solve the segmentation problem (7) is

reduced to:


















x0 = x̄0 = f, y0 = 0

yn+1
ij = M(ynij + σ(dwx̄

n)(vi, vj))

xn+1
i = xn

i − τ(d∗wy
n+1)(vi)− τλg(f0)(vi)

x̄n+1
i = xn+1

i + θ(xn+1
i − xn

i ).

(13)

This algorithm is parametrized by the structure of the graph

(topology and weight function w), the functions f , f0 and

g(f0), and several parameters (λ, τ , θ and σ). On has to note

that it is the first time that such a solution is proposed to solve

(7) on general weighted graphs.

IV. CONSTRUCTION OF A WEIGHTED GRAPH FROM A

POINT CLOUD

In this section, we explain how a weighted graph based on

patches can be associated with a point cloud. This relies on

three steps that we detail in the sequel.

A. Graph Creation from Data Points

First step consists in defining the sets V and E from a given

point cloud. Let us consider a point cloud P as a set of

data points {p1, . . . ,pn} ∈ R
3. To each data point we first

associate a vertex of a proximity graph G to define a set of

vertices V = {v1, v2, . . . , vn}. Then, determining the edge set

E of the proximity graph G requires defining the neighbors

of each vertex vi according to its embedding pi using the

Euclidean distance. We will denote as D(vi, vj) = ‖pi−pj‖2
the Euclidean distance between vertices. We consider the k
Nearest Neighbors Graph (k-NNG): vj ∼ vi if the distance

between pi and pj is among the k-th smallest distances from

pi to all the other data points. To conclude, the first step

consists in associating a k-NNG to the 3D point cloud. The

value of k will be denoted kG for the graph G associated

with the point cloud. To speed up the knn algorithm, a

kD-tree is used. Once the graph has been created, it has

to be weighted. If one does not want to take care of the

vertices similarities, the weight function w can be set to

w = 1. A better one can be obtained using patches [13].

For images, a patch P(vi) centered at a vertex vi ∈ V is

a vector of values (e.g., coordinates, intensities, ...) defined

by P(vi) =
(

f0(vj) : vj ∈ B(vi, n)
)T

where B(vi, n) is a

square of size n2 centered at vi. Using patches, w : V×V → R

is defined by w(vi, vj) = exp
(

− ||P(vi)−P(vj)||
2
2

σ2

)

.

B. Patch Orientation

Patches enable to compute a similarity between two nodes

of the graph. It is extensively used with images for inpainting,

and restoration. For point clouds, the patch orientation is

usually estimated from principal directions computed on a

smoothed point cloud [3]. Unfortunately, the obtained orienta-

tions of patches are unstable. Because the obtained orientation

depends highly on the most predominant axis, one can find dif-

ferent patches orientations for similar points repartitions, and

conversely. Recently we have proposed another strategy (see

[2]). We have proposed to estimate the patch orientation from

the normals. Indeed, this will produce the same orientations

for points that have similar normals. The proposed algorithm is

therefore to first deduce a tangent vector t(vi) from the normal

vector n(vi). Let x, y, z be the three axis of a 3D space, the

tangent vector t(vi) is computed with:











t(vi) = z× n(vi) if (x · n(vi)) > (z · n(vi)),
t(vi) = z× n(vi) if (y · n(vi)) > (z · n(vi)),
t(vi) = x× n(vi) otherwise,

(14)

with × the cross product operator, and · the dot product op-

erator. Then a bitangent vector b(vi) is computed by b(vi) =
n(vi) × t(vi). The orientations vectors o0(vi), o1(vi), o2(vi)
are then respectively assigned to t(vi),b(vi),n(vi).

C. Patch Construction

Final step consists in constructing the patches. Given a point

pi, defining a patch for this point comes to construct a square

grid around pi on its tangent plane. We fix the patch length l
manually. Let n be the number of cells on a row of the patch. A

square lattice of n2 cells is constructed around pi with respect

to the basis obtained from orientation computation. Each cell

has a side length of l/n. A local graph is then considered that

connects the vertex vi to all the vertices vj contained in a

sphere of diameter l
√
2. Then, all the neighbors vj of vi are

projected on the tangent plane of pi giving rise to projected

points p′i. To fill the patch with values, these projected points

p′i are associated to the cells the center of which is the closest.

The value of the cell is then deduced from a weighted average

of the values f0(vj) associated with the vertices vj that where

affected to the patch cell. This value is a spectral value (the

points’ colors). The set of values inside the patch of the vertex

vi are denoted as P(vi). Let Ck(vi) denotes the kth cell of

the constructed patch around vi with k ∈ [1, n2]. With the

proposed patch construction process, one can define the set

Vk(vi) = {vj | p′j ∈ Ck(vi)} as the set of vertices vj that

were affected to the kth patch cell of vi. Then, the patch vector

is defined as P(vi) =





∑

vj∈Vk(vi)

w(ck,pj)f
0(vj)

|Vk(vi)|





T

k∈[1,n2]

, with

w(ck,pi) = exp(− ||ck−p′i||
2
2

σ2 ) and ck is the coordinates’ vector

of the kth patch cell center. This weighting enables to take

into account the repartition of the points in the cells’ patch to

compute their mean feature vectors.



Fig. 1: Segmentation of body parts of a real scanned person

(37,161 points) with kG = 1000 and n2 = 9. From left to

right respectively: colored raw point cloud, the initial labels,

the final labeling.

V. EXPERIMENTS

This section shows some segmentation results of colored 3D

point clouds in two classes using the algorithm presented in

(13). The raw data consist in sets of 3D points pi (i.e., vertices

vi) that are associated with CIELAB colors vectors (f0 : V →
R

3). In all our experiments, the parameters are θ = 1, τ = 1,

σ = 0.25/(wmax × τ) with wmax = maxvi∈V δw(vi). The

shown results are raw 3D colored point clouds and not meshes,

thus some holes can appear in the rendering. Figures 1 and 2

show segmentation results on real and artificial examples with

g(f0(vi)) = (c̄1− f0(vi))
2− (c̄2− f0(vi))

2, where c̄1 and c̄2
are respectively the average colors of both extracted regions.

This corresponds to the Chan-Vese model on graphs. The

initial partition function f is initialized from seeds provided

by the user. Fig. 3 shows a segmentation of the T-shirt of real

scanned person. This latter result was obtained by observing

that the T-shirt is a heterogenous region, so we used the

variance of patches to compute a heterogenous term. We set

g(f0(vi)) = (V ar1 − f0(vi))
2 − (V ar2 − f0(vi))

2 where

f0 : V → R
3 represents the variance of P(vi) for each color

channel, and V ar1, V ar2 are respectively the average variance

of patches of extracted regions for each color channel.

VI. CONCLUSION

In this paper, we have proposed a nonlocal approach based

on weighted graphs to segment raw point clouds. We used the

framework of PdEs to adapt PDEs on graphs, next we solved

the optimization problem of segmentation with the Chambolle

and Pock iterative algorithm. We have presented results that

show the benefits of the approach on real scanned people and

artificial points clouds.
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