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Nonlocal Segmentation of Point Clouds with Graphs

In this paper, we propose a nonlocal approach based on graphs to segment raw point clouds as a particular class of graph signals. Using the framework of Partial difference Equations (PdEs), we propose a transcription on graphs of recent continuous global active contours along with a minimization algorithm. To apply it on point clouds, we show how to represent a point cloud as a graph weighted with patches. Experiments show the benefits of the approach on raw colored point clouds obtained from real scans 1 .

I. INTRODUCTION

There is actually much interest in the development of algorithms that enable to process high-dimensional data that reside on the vertices or edges of a graph, referred to as graph signals [START_REF] Shuman | The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[END_REF]. With 3D sensors becoming cheaper, more and more applications in natural and applied sciences involve the segmentation of raw 3D colored point clouds. With point clouds, the data to process is not organized on any Cartesian grid and the neighbors of a point have to be defined. Our previous works aim at representing point clouds as weighted graphs to perform nonlocal graph processing [START_REF] Lozes | Morphological PDEs on graphs for filtering and inpainting of point clouds[END_REF], [START_REF] Lozes | Nonlocal processing of 3d colored point clouds[END_REF]. With such a point of view, raw 3D colored point clouds are considered as a specific class of graph signals where a color vector is associated to a point (i.e., a vertex) located in a 3D Euclidean space. In this paper, we propose a new approach for the nonlocal segmentation of point clouds represented by graphs. First, we consider a convex formulation of active contours on graphs, we use the framework of PdEs to obtain a formulation on arbitrary weighted graphs, and propose a minimization strategy. Second, we present a way of associating a patch-based weighted graph to 3D colored point clouds.

II. WEIGHTED GRAPHS

We recall in this section general definitions and operators relating to graphs. In particular, we review the PdE framework introduced in [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing[END_REF].

A. Notations and Preliminaries

A weighted graph G = (V, E, w) consists of a finite set V = {v 1 , . . . , v N } of N vertices and a finite set E ⊂ V × V of weighted edges. We assume G to be undirected, with no self-loops and no multiple edges. Let (v i , v j ) be the edge of E that connects two vertices v i and v j of V. Its weight, denoted by w(v i , v j ), represents the similarity between its vertices. Similarities are usually computed by using a positive symmetric function w :

V×V → R + satisfying w(v i , v j ) = 0 if (v i , v j ) / ∈ E.
The notation v i ∼ v j is also used to denote two adjacent vertices. The degree of a vertex v i is defined as

δ w (v i ) = vj ∼vi w(v i , v j ).
Let H(V) be the Hilbert space of real-valued functions defined on the vertices of a graph. A function f ∈ H(V) assigns a real value f (v i ) to each vertex v i ∈ V. The H(V) space is endowed with the usual inner product, denoted ., . H(V) in the sequel.

B. Difference Operators on Weighted Graphs

Let G = (V, E, w) be a weighted graph and w : V×V → R + a weight function that depends on the interactions between the vertices. The difference operator [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing[END_REF], denoted d w : H(V) → H(E), is defined for all f ∈ H(V) and (v i , v j ) ∈ E by:

(d w f )(v i , v j ) = w(v i , v j )(f (v j ) -f (v i )). (1) 
The adjoint of the difference operator, denoted d * w :

H(E) → H(V), is the unique linear operator satisfying d w f, H H(E) = f, d * w H H(V)
for all f ∈ H(V) and all H ∈ H(E). Its expression is given by:

(d * w H)(v i ) = vj ∼vi w(v i , v j )(H(v j , v i ) -H(v i , v j )). (2) 
The divergence operator, defined by -d * w , measures the net outflow of a function of H(E) at each vertex of the graph. The weighted gradient operator of a function f ∈ H(V), at a vertex v i ∈ V, is the vector defined by:

(∇ w f )(v i ) = ((d w f )(v i , v j )) T vj ∈V . (3) 
The ℓ p norm of this vector is defined, for p ≥ 1, by:

(∇ w f )(v i ) p =   vj ∼vi w(v i , v j ) p/2 f (v j )-f (v i ) p   1/p . (4) 

III. SEGMENTATION OF POINT CLOUDS

In this section, we propose a framework for the segmentation of graph signals (functions defined on the vertices of graphs). To perform the segmentation, we consider a convex formulation of active contours on graphs. Starting from a continuous formulation, we show how to transpose the latter on weighted graphs using the framework of PdEs along with a minimization strategy.

A. Convex Segmentation on graphs

The usual drawback of active contours methods is the existence of local minimizers and hence their sensitivity to the initial condition. A recent method, introduced by Bresson and Chan in [START_REF] Bresson | Fast global minimization of the active contour/snake model[END_REF], [START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF], proposes to redefine the active contour model into a model which gives global minimizers. In the continuous setting, where images are viewed as functions on a continuous domain Ω, this model is given by:

arg min f (x)∈{0,1} Ω ||∇f (x)||1dx + λ Ω g(f 0 )(x)f (x)dx . (5) 
The function g is a region detector function used to force region intensity statistics priors. The transposition of (5) on graphs is obtained using the PdEs framework [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing[END_REF], [START_REF] Lézoray | Nonlocal pdes on graphs for active contours models with applications to image segmentation and data clustering[END_REF] leading to:

f ∈ Arg min f :V→{0,1}    v i ∈V (∇wf )(vi) p p + λ v i ∈V g(f 0 )(vi)f (vi)    , (6) 
where f is a labeling function (±1 for labeled vertices and 0 for unlabeled ones) and f 0 the signal on the graph (the color vectors associated to the vertices). When λ = 0, this energy can be considered as the nonlocal discrete analogue on graphs of the functional introduced in [START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF]. We now show how such a minimization can be solved. Problem ( 6) is non-convex and, as shown in [START_REF] Chan | Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models[END_REF] for the continuous analogue, can be reformulated through a convex relaxation. Therefore, a new minimization problem is considered:

f = min f :V→[0,1]    v i ∈V (∇wf )(vi) p p + λ v i ∈V g(f 0 )(vi)f (vi)    . (7) 
Following the approach in [START_REF] Chan | Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models[END_REF], one can show that every levelset of a minimizer of ( 7) is solution of the original optimization problem [START_REF] Bresson | Non-local unsupervised variational image segmentation models[END_REF]. As a consequence, to obtain a global solution f : V → {0, 1} to the problem of ( 6), one thresholds any function

f : V → [0, 1] that is a solution of (7) and f (v i ) = χ S (v i ),
where

S = {v i ∈ V : f (v i ) > t} with t ∈ [0, 1] and χ is the indicator function defined by χ : V → {0, 1}. For a given vertex, if v i ∈ A, then χ A (v i ) = 1 and χ A (v i ) = 0 otherwise.
However, to be able to perform such a minimization approach, one has to show that both parts of the energy (7) do verify the co-area formula. This can be easily shown for the second part of the energy (see [START_REF] Chan | Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models[END_REF]). We show now that this is also true for the first part.

B. Perimeters and co-area on graphs

Now we show that there is a relation, for the case of a subgraph, between discrete perimeters on graphs and the co-area formula on graphs.

1) Perimeters on graphs: Let A be a set of connected vertices with A ⊂ V. We denote by ∂ + A and ∂ -A, the external and internal boundary sets of A, respectively. The set A c =V \ A is the complement of A. For a given vertex v i ∈V, one has:

∂ + A = {v i ∈A c : ∃v j ∈A with (v i , v j )∈E}, ∂ -A = {v i ∈A : ∃v j ∈A c with (v i , v j )∈E}, and ∂A = {(v i , v j ) ∈ E : ∃v i ∈∂ + A and v j ∈∂ -A}.
Let us consider nonlocal regularization functionals based on weighted total variation on graphs R w,p :

H(V ) → R of a function f ∈ H(V ): R w,p (f ) = vi∈V (∇ w f )(v i ) p p with 0 < p < +∞.
By replacing f by the indicator function χ A in these regularization functionals, one has [START_REF] Lézoray | Nonlocal pdes on graphs for active contours models with applications to image segmentation and data clustering[END_REF]: R w,p (χ A ) = vol(∂A) = P er w,p (A) = cut(A, A c ). This expression can be considered as a nonlocal discrete perimeter of the sub-graph A. Consequently, when λ = 0 in [START_REF] Lézoray | Nonlocal pdes on graphs for active contours models with applications to image segmentation and data clustering[END_REF], it is the discrete analogue to the continuous min-cut of [START_REF] Houhou | Semisupervised segmentation based on non-local continuous min-cut[END_REF].

2) Co-area formulae on graphs: In this subsection, we discuss the co-area formulae on graphs. They are useful on many contexts such as convex relaxation of variational methods on graphs. Let (V, E, w) be a weighted graph,

f ∈ H(V). For t ∈ R, let A t = {u ∈ V : f (u) > t}.
Then the co-area formula is verified for p = 1 [START_REF] Lézoray | Nonlocal pdes on graphs for active contours models with applications to image segmentation and data clustering[END_REF] since

P er w,1 (A) = ∞ -∞ P er w,1 (A t )dt. The proof is obvious since |a -b| = +∞ -∞ |χ {a>t} -χ {b>t} |dt.
In the rest of the paper, we will therefore work exclusively with the case of p = 1 since R w,1 does verify the co-area formulae.

C. Minimization Algorithm on Weighted Graphs

To solve the optimization problem [START_REF] Lézoray | Nonlocal pdes on graphs for active contours models with applications to image segmentation and data clustering[END_REF], we propose to use the Chambolle and Pock algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] on weighted graphs, in a similar manner as in [START_REF] Hidane | Nonlinear Multilayered Representation of Graph-Signals[END_REF]. Let us consider the following general optimization problem:

min x∈X F (Kx) + G(x), (8) 
where X and Y , are two general finite-dimensional vector spaces, and F ∈ Γ 0 (Y ), G ∈ Γ 0 (X) and K : X → Y a linear operator. The set of all proper convex and lower semicontinuous functions from H to ] -∞, +∞] is denoted by Γ 0 (H). Recently, Chambolle and Pock have proposed the following iterative algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] to solve efficiently (8):

         x 0 = x0 = f, y 0 = 0 y n+1 = prox σF * (y n + σK xn ), x n+1 = prox τ G (x n -τ K * y n+1 ), xn+1 = x n+1 + θ(x n+1 -x n ), (9) 
where F * is the conjugate of F [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF], K * is the adjoint operator of K, and prox the proximity operator defined as:

prox f (x) = arg min y∈Y f (y) + 1 2 ||y -x|| 2 . ( 10 
)
The convergence of algorithm ( 9) is guaranteed if θ = 1 and 0 < τ σL 2 < 1 where L = ||K|| = max ||x||≤1 ||Kx||. The segmentation problem of ( 7) is formulated with F = ||.|| 1 , K = ∇ w and G = λ ., g(f 0 ) , with ., . the dot product operator. By replacing F , K and G, in (9), we can simplify the algorithm. For y ∈ Y , as shown in [START_REF] Hidane | Nonlinear Multilayered Representation of Graph-Signals[END_REF], we have:

prox σF * (y) = prox σi B (y) = proj B (y) = ỹ, where ỹij = M (y ij ) = yij max(1, v j ∼v i y 2 ij )
and

i C = 0 for x ∈ C +∞ otherwise, ( 11 
)
and B is the unitary ||.|| ∞,2 ball. For x ∈ X, we can show that:

prox τ G (x) = arg min y∈Y τ λ y, g(f 0 ) + 1 2 ||y -x|| 2 = x -τ λg(f 0 ). (12) 
Thus the algorithm to solve the segmentation problem ( 7) is reduced to:

         x 0 = x0 = f, y 0 = 0 y n+1 ij = M (y n ij + σ(d w xn )(v i , v j )) x n+1 i = x n i -τ (d * w y n+1 )(v i ) -τ λg(f 0 )(v i ) xn+1 i = x n+1 i + θ(x n+1 i -x n i ). ( 13 
)
This algorithm is parametrized by the structure of the graph (topology and weight function w), the functions f , f 0 and g(f 0 ), and several parameters (λ, τ , θ and σ). On has to note that it is the first time that such a solution is proposed to solve (7) on general weighted graphs.

IV. CONSTRUCTION OF A WEIGHTED GRAPH FROM A POINT CLOUD

In this section, we explain how a weighted graph based on patches can be associated with a point cloud. This relies on three steps that we detail in the sequel.

A. Graph Creation from Data Points

First step consists in defining the sets V and E from a given point cloud. Let us consider a point cloud P as a set of data points {p 1 , . . . , p n } ∈ R 3 . To each data point we first associate a vertex of a proximity graph G to define a set of vertices V = {v 1 , v 2 , . . . , v n }. Then, determining the edge set E of the proximity graph G requires defining the neighbors of each vertex v i according to its embedding p i using the Euclidean distance. We will denote as D(v i , v j ) = p ip j 2 the Euclidean distance between vertices. We consider the k Nearest Neighbors Graph (k-NNG): v j ∼ v i if the distance between p i and p j is among the k-th smallest distances from p i to all the other data points. To conclude, the first step consists in associating a k-NNG to the 3D point cloud. The value of k will be denoted k G for the graph G associated with the point cloud. To speed up the knn algorithm, a kD-tree is used. Once the graph has been created, it has to be weighted. If one does not want to take care of the vertices similarities, the weight function w can be set to w = 1. A better one can be obtained using patches [START_REF] Buades | Image denoising methods. a new nonlocal principle[END_REF]. For images, a patch P(v i ) centered at a vertex v i ∈ V is a vector of values (e.g., coordinates, intensities, ...) defined by

P(v i ) = f 0 (v j ) : v j ∈ B(v i , n) T where B(v i , n) is a square of size n 2 centered at v i . Using patches, w : V×V → R is defined by w(v i , v j ) = exp - ||P(vi)-P(vj )|| 2 2 σ 2
.

B. Patch Orientation

Patches enable to compute a similarity between two nodes of the graph. It is extensively used with images for inpainting, and restoration. For point clouds, the patch orientation is usually estimated from principal directions computed on a smoothed point cloud [START_REF] Lozes | Nonlocal processing of 3d colored point clouds[END_REF]. Unfortunately, the obtained orientations of patches are unstable. Because the obtained orientation depends highly on the most predominant axis, one can find different patches orientations for similar points repartitions, and conversely. Recently we have proposed another strategy (see [START_REF] Lozes | Morphological PDEs on graphs for filtering and inpainting of point clouds[END_REF]). We have proposed to estimate the patch orientation from the normals. Indeed, this will produce the same orientations for points that have similar normals. The proposed algorithm is therefore to first deduce a tangent vector t(v i ) from the normal vector n(v i ). Let x, y, z be the three axis of a 3D space, the tangent vector t(v i ) is computed with:

     t(v i ) = z × n(v i ) if (x • n(v i )) > (z • n(v i )), t(v i ) = z × n(v i ) if (y • n(v i )) > (z • n(v i )), t(v i ) = x × n(v i ) otherwise, (14) 
with × the cross product operator, and • the dot product operator. Then a bitangent vector b(

v i ) is computed by b(v i ) = n(v i ) × t(v i ). The orientations vectors o 0 (v i ), o 1 (v i ), o 2 (v i ) are then respectively assigned to t(v i ), b(v i ), n(v i ).

C. Patch Construction

Final step consists in constructing the patches. Given a point p i , defining a patch for this point comes to construct a square grid around p i on its tangent plane. We fix the patch length l manually. Let n be the number of cells on a row of the patch. A square lattice of n 2 cells is constructed around p i with respect to the basis obtained from orientation computation. Each cell has a side length of l/n. A local graph is then considered that connects the vertex v i to all the vertices v j contained in a sphere of diameter l √ 2. Then, all the neighbors v j of v i are projected on the tangent plane of p i giving rise to projected points p ′ i . To fill the patch with values, these projected points p ′ i are associated to the cells the center of which is the closest. The value of the cell is then deduced from a weighted average of the values f 0 (v j ) associated with the vertices v j that where affected to the patch cell. This value is a spectral value (the points' colors). The set of values inside the patch of the vertex v i are denoted as P(v i ). Let C k (v i ) denotes the kth cell of the constructed patch around v i with k ∈ [1, n 2 ]. With the proposed patch construction process, one can define the set

V k (v i ) = {v j | p ′ j ∈ C k (v i )}
as the set of vertices v j that were affected to the kth patch cell of v i . Then, the patch vector is defined as

P(v i ) =   v j ∈V k (v i ) w(c k ,p j )f 0 (vj ) |V k (vi)|   T k∈[1,n 2 ] , with w(c k , p i ) = exp(- ||c k -p ′ i || 2 2 σ 2
) and c k is the coordinates' vector of the kth patch cell center. This weighting enables to take into account the repartition of the points in the cells' patch to compute their mean feature vectors. 

V. EXPERIMENTS

This section shows some segmentation results of colored 3D point clouds in two classes using the algorithm presented in [START_REF] Buades | Image denoising methods. a new nonlocal principle[END_REF]. The raw data consist in sets of 3D points p i (i.e., vertices v i ) that are associated with CIELAB colors vectors (f 0 : V → R 3 ). In all our experiments, the parameters are θ = 1, τ = 1, σ = 0.25/(w max × τ ) with w max = max vi∈V δ w (v i ). The shown results are raw 3D colored point clouds and not meshes, thus some holes can appear in the rendering. Figures 1 and2 show segmentation results on real and artificial examples with 2 , where c1 and c2 are respectively the average colors of both extracted regions. This corresponds to the Chan-Vese model on graphs. The initial partition function f is initialized from seeds provided by the user. Fig. 3 shows a segmentation of the T-shirt of real scanned person. This latter result was obtained by observing that the T-shirt is a heterogenous region, so we used the variance of patches to compute a heterogenous term. We set g(f 0 (v i )) = (V ar 1 -f 0 (v i )) 2 -(V ar 2 -f 0 (v i )) 2 where f 0 : V → R 3 represents the variance of P(v i ) for each color channel, and V ar 1 , V ar 2 are respectively the average variance of patches of extracted regions for each color channel.

g(f 0 (v i )) = (c 1 -f 0 (v i )) 2 -(c 2 -f 0 (v i ))

VI. CONCLUSION

In this paper, we have proposed a nonlocal approach based on weighted graphs to segment raw point clouds. We used the framework of PdEs to adapt PDEs on graphs, next we solved the optimization problem of segmentation with the Chambolle and Pock iterative algorithm. We have presented results that show the benefits of the approach on real scanned people and artificial points clouds. 

Fig. 1 :

 1 Fig. 1: Segmentation of body parts of a real scanned person (37,161 points) with k G = 1000 and n 2 = 9. From left to right respectively: colored raw point cloud, the initial labels, the final labeling.

Fig. 2 :

 2 Fig. 2: Segmentation of an artificial point cloud textured with the cameraman image (42,987 points) with k G = 1000 and n 2 = 9. From left to right respectively: the cameraman image on a pig point cloud, the initial labels, the final labeling.

Fig. 3 :

 3 Fig. 3: Segmentation of the heterogenous parts of a real scanned person (76,731 points) with k G = 1000 and n 2 = 25. From left to right respectively: colored raw point cloud, person with inital labels, the initial labels, the final labeling.
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