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Introduction

Max-stable random fields provide popular and meaningful models for spatial extremes. The reason is that they appear as the only possible non-degenerate limits for normalized pointwise maxima of independent and identically distributed random fields. The one-dimensional marginal distributions of max-stable fields belong to the parametric class of Generalized Extreme Value distributions. Being interested mostly in the dependence structure, we will restrict our attention to max-stable fields with standard unit Fréchet margins. A max-stable random field η = (η(x)) x∈X on X ⊂ R d is then defined by the following properties:

-max-stability:

n -1 n i=1 η i d = η for all n ≥ 1,
where (η i ) 1≤i≤n are i.i.d. copies of η, is the pointwise maximum, and d = denotes the equality of finite-dimensional distributions; -unit Fréchet margins: P[η(x) ≤ u] = exp(-1/u) for all x ∈ X and u > 0.

A fundamental tool in the study of max-stable processes is their spectral representation (see e.g. de Haan [START_REF] De Haan | A spectral representation for max-stable processes[END_REF], Giné et al. [START_REF] Giné | Max-infinitely divisible and max-stable sample continuous processes[END_REF], Penrose [START_REF] Penrose | Semi-min-stable processes[END_REF]): any stochastically continuous max-stable process η can be written in the form

η(x) = i≥1 U i Y i (x), x ∈ X , (1) 
where -(U i ) i≥1 is the decreasing enumeration of the points of a Poisson point process on (0, +∞) with intensity u -2 du, -(Y i ) i≥1 are i.i.d. copies of a non-negative stochastic process Y on X such that E[Y (x)] = 1 for all x ∈ X , -the sequences (U i ) i≥1 and (Y i ) i≥1 are independent.

In this paper, we focus on max-stable random fields defined on X = Z d or R d . In the case X = R d we always assume that η has continuous sample paths. Equivalently, the spectral process Y has continuous sample paths and

E sup x∈K Y (x) < ∞ for every compact set K ⊂ R d . (2) 
Representation (1) has a nice interpretation pointed out by Smith [START_REF] Smith | Max-stable processes and spatial extremes[END_REF] and Schlather [START_REF] Schlather | Models for stationary max-stable random fields[END_REF]. In the context of a rainfall model, we can interpret each index i ≥ 1 as a storm event, where U i stands for the intensity of the storm and Y i stands for its shape; then U i Y i (x) represents the amount of precipitation due to the storm event i at point x ∈ X , and η(x) is the maximal precipitation over all storm events at this point. This interpretation raises a natural question: what is the shape of the region C i ⊂ X where the storm i is extremal? More formally, we define the cell associated to the storm event i ≥ 1 by

C i = {x ∈ X ; U i Y i (x) = η(x)}, i ≥ 1.
It is a (possibly empty) random closed subset of X . Note that each point x ∈ X belongs almost surely to a unique cell (the point process {U i Y i (x)} i≥1 is a Poisson point process with intensity u -2 du so that the maximum η(x) is almost surely attained uniquely). In the discrete setting X = Z d , the cells (C i ) i≥1 are almost surely pairwise disjoint and they cover Z d ; in the continuous setting X = R d , the cells (C i ) i≥1 form a random covering of R d by closed sets with disjoint interiors. We call (C i ) i≥1 the random tessellation of X associated with η. Let us stress that in this paper the terms cell and tessellation are meant in a broader sense than in stochastic geometry where they originated. Here, a cell is a general (not necessarily convex or connected) random closed set and a tessellation is a random covering by closed sets.

A drawback of this approach is that the distribution of the cell C i depends on the specific representation [START_REF] De Haan | A spectral representation for max-stable processes[END_REF] and in particular on the ordering of the points (U i ) i≥1 . For instance, with the convention that the sequence (U i ) i≥1 is decreasing, the cell C 1 is stochastically larger than the other cells. To avoid this, we introduce a canonical way to define the tessellation. The idea is that given a point x ∈ X , there is almost surely a unique storm event giving the maximum precipitation at this point. Then, the cell C(x) is exactly the set of points where this particular storm is maximal. The formal definition is as follows.

Definition 1. For x ∈ X , the cell of x is the random closed subset

C(x) = {y ∈ X ; ∃i ≥ 1, U i Y i (x) = η(x) and U i Y i (y) = η(y)}. (3)
The cell C(x) is non-empty since it contains x. In the case X = Z d , for any two points x 1 , x 2 ∈ Z d , the cells C(x 1 ) and C(x 2 ) are almost surely either equal or disjoint. In the case X = R d , for any two points x 1 , x 2 ∈ R d , the cells C(x 1 ) and C(x 2 ) are almost surely either equal or have disjoint interiors.

The purpose of this paper is to study some properties of the tessellation (C(x)) x∈X . The following lemma provides a first simple but important observation.

Lemma 2. The distribution of the tessellation (C(x)) x∈X depends on the distribution of the max-stable process η only and not on the specific representation [START_REF] De Haan | A spectral representation for max-stable processes[END_REF].

To prove the lemma, introduce the functional point process (which will play a key role in the sequel)

Φ = {φ i , i ≥ 1} where φ i = U i Y i , i ≥ 1.
Note that φ i are elements of F 0 = F(X , [0, +∞)) \ {0}, the set of nonnegative and continuous functions on X excluding the zero function. (We may assume without loss of generality that Y does not vanish identically). The set F 0 is endowed with the σ-algebra generated by the coordinate mappings. It is well known (see, e.g., de Haan and Ferreira [START_REF] De Haan | Extreme value theory. An introduction[END_REF]) that Φ is a Poisson point process on F 0 with intensity measure µ given by

µ(A) = ∞ 0 P[uY ∈ A]u -2 du, A ⊂ F 0 Borel. ( 4 
)
The measure µ is called the exponent measure or max-Lévy measure and is related to the multivariate cumulative distribution functions of η by

P[η(x j ) ≤ z j , j = 1, . . . , n] = exp (-µ({f ∈ F 0 ; f (x j ) > z j for some j = 1, . . . , n}))
for all n ≥ 1, x 1 , . . . , x n ∈ X and z 1 , . . . , z n > 0. In particular, this shows that µ depends on the distribution of η only and does not depend on the specific representation [START_REF] De Haan | A spectral representation for max-stable processes[END_REF]. Now, Lemma 2 follows easily as the tessellation (C(x)) x∈X is a functional of the Poisson point process Φ with intensity µ. The aim of this paper is to study some properties of the tessellation (C(x)) x∈X and to relate them to the properties of the max-stable random field (η(x)) x∈X . The paper is structured as follows. In Section 2, we study the law of the cell C(x) and provide some formulas for the inclusion and coverage probabilities as well as some examples. In Section 3, we focus on the stationary case and establish strong connections between asymptotic properties of C(0) and ergodic properties of the non-singular flow associated with η. Theorem 12 relates the boundedness of the cell to the conservative/dissipative decomposition. Theorem 14 links the asymptotic density of the cell with the positive/null decomposition. We exhibit also strong relationships between the ergodic and mixing properties of η and the geometry of the cell C(0). Proofs are collected in Sections 4 and 5. Some background as well as new results on non-singular flow representations of max-stable processes are postponed to an appendix.

Basic properties and examples

Basic properties

Our first result is a simple characterization of the distribution of the cell C(x).

Theorem 3. Consider a sample continuous max-stable random field η given by representation [START_REF] De Haan | A spectral representation for max-stable processes[END_REF]. For every x ∈ X and every measurable set K ⊂ X ,

P[K ⊂ C(x)] = E inf y∈K∪{x} Y (y) η(y) (5) 
and

P[C(x) ⊂ K] = E Y (x) η(x) -sup y∈K c Y (y) η(y) + . ( 6 
)
where Y is independent of η, K c = X \ K is the complement of the set K, and (z) + = max(z, 0) is the positive part of z.

It is well known that the distribution of a random closed set C ⊂ X is completely determined by its capacity functional

X C (K) = P[C ∩ K = ∅], K ⊂ X compact,
see, e.g., Molchanov [START_REF] Molchanov | Theory of random sets. Probability and its Applications[END_REF]Chapter 1]. Clearly, Theorem 3 implies that the capacity functional of the cell C(x) is given by

X C(x) (K) = 1 -E Y (x) η(x) -sup y∈K Y (y) η(y) + .
Remark 4. It is worth noting that Weintraub [START_REF] Weintraub | Sample and ergodic properties of some minstable processes[END_REF] introduced (with a different terminology) the probability that two points x and y are in the same cell as a measure of dependence between η(x) and η(y). More precisely, he considered

β(x, y) = P[y ∈ C(x)] = E Y (x) η(x) ∧ Y (y) η(y) x, y ∈ X .
Clearly, β(x, y) ∈ [0, 1]. One can prove easily that β(x, y) = 0 holds if and only if η(x) and η(y) are independent, while β(x, y) = 1 if and only if η(x) = η(y) almost surely. Moreover, β(x, y) can be compared to the extremal coefficient θ(x, y) which is another well-known measure of dependence for max-stable processes defined by

θ(x, y) = -log P[η(x) ∨ η(y) ≤ 1] ∈ [1, 2]. (7) 
According to Stoev [21, Proposition 5.1], we have

1 2 (2 -θ(x, y)) ≤ β(x, y) ≤ 2(2 -θ(x, y)). (8) 
As a by-product of Theorem 3, we can provide an explicit expression for the mean volume of the cells. Denote by λ the discrete counting measure when X = Z d or the Lebesgue measure when X = R d . The volume of C(x) is defined by Vol(C(x)) = λ(C(x)). In the discrete case, Vol(C(x)) is the cardinality of C(x).

Corollary 5. The cell C(x) has expected volume

E[Vol(C(x))] = X E Y (x) η(x) ∧ Y (y) η(y) λ(dy).
In particular, Equation [START_REF] Kabluchko | Ergodic properties of max-infinitely divisible processes[END_REF] implies that the cell C(x) has finite expected volume if and only if X (2θ(x, y))λ(dy) < +∞. Another consequence of Theorem 3 is an expression for the probability that the cell C(x) is bounded.

Corollary 6. Let x ∈ X . The cell C(x) is bounded with probability P[C(x) bounded] = E Y (x) η(x) -lim sup y→∞ Y (y) η(y) 
+ .

Furthermore, the following statements are equivalent: i) the cell C(x) is bounded a.s.;

ii) as y → ∞, Y (y) η(y) → 0 a.e. on the event {Y (x) = 0}.

Remark 7. In the case when the max-stable process η is stationary, we will see in Section 3.2 below that condition ii) can be replaced by the following one: Y (y) → 0 a.s. as y → ∞.

Examples

As an illustration and to get some intuition, we provide some simulations of max-stable processes together with the associated tessellations.

Example 8. The isotropic Smith process is defined by

η(x) = i≥1 U i h(x -X i ), x ∈ R d ,
where {(U i , X i ), i ≥ 1} is a Poisson point process on (0, ∞) × R d with intensity u -2 dudx and h(x) = (2π) -d/2 exp(-x 2 /2) is the standard Gaussian d-variate density function. The Smith process is a stationary max-stable process that belongs to the class of moving maximum processes and is hence mixing. Surprisingly, the associated tessellation is exactly the so-called Laguerre tessellation studied in great detail by Lautensack and Zuyev [START_REF] Lautensack | Random Laguerre tessellations[END_REF]. Indeed, the cell C i is given by

C i = {x ∈ R d ; x -X i 2 -2 ln(U i ) ≤ x -X j 2 -2 ln(U j ), j = i}.
The cells are convex bounded polygons as can be seen in the first line of Figure 2.2.

Example 9. The stationary Gaussian extremal process originally introduced by Schlather [START_REF] Schlather | Models for stationary max-stable random fields[END_REF] corresponds to the case when the spectral process Y in representation ( 1) is given by

Y (x) = π 2 max(W (x), 0), x ∈ X ,
where W is a stationary Gaussian process on X with zero mean, unit variance and correlation function ρ(h) = E[W (0)W (h)], h ∈ X . The associated extremal coefficient is given by

θ(h) = 2T 2 2 1 -ρ(h) 2 - 1 -ρ(h) 2 2 ρ(h) , h ∈ X ,
where T 2 is the cumulative distribution function of a Student distribution with 2 degrees of freedom. Typically, ρ(h) → 0 as h → ∞, so that θ(h) → 2T 2 ( √ 2) < 2 and η is neither mixing nor ergodic (see Stoev [START_REF] Stoev | On the ergodicity and mixing of max-stable processes[END_REF] or Kabluchko and Schlather [START_REF] Kabluchko | Ergodic properties of max-infinitely divisible processes[END_REF]). Equation (8) entails that lim inf h→∞ P[h ∈ C(0)] > 0 suggesting that the cells are not bounded which is consistent with the simulation on the second line of Figure 2.2. Note also the very particular shape of the cells which are neither convex nor connected. Still, they have a smooth boundary due to the particular choice of the correlation function ρ(h) = exp(-h 2 /2) that yields smooth Gaussian sample paths.

Example 10. Brown-Resnick processes [START_REF] Kabluchko | Stationary maxstable fields associated to negative definite functions[END_REF] form a flexible class of max-stable processes. They are given by Equation (1) with the spectral process of the form

Y (x) = exp W (x) - 1 2 σ 2 (x) , x ∈ X ,
where W is a stationary increment centered Gaussian process, and σ 2 (x) = Var W (x). Surprisingly, the process η is stationary [START_REF] Kabluchko | Stationary maxstable fields associated to negative definite functions[END_REF]. Its distribution is completely characterized by the variogram

γ(h) = Var(W (x + h) -W (x)).
The extremal coefficient function is given by

θ(h) = 2Φ 1 2 γ(h) , h ∈ X .
Typically, γ(h) → ∞ as h → ∞, so that θ(h) → 2 and η is mixing. Equation (8) entails that

lim h→∞ P[h ∈ C(0)] = 0.
From the asymptotics 1 -Φ(u) ∼ 1/( √ 2πu) e -u 2 /2 , u → +∞, for the normal tail function and from Corollary 5 it follows that that the cell C(0) has finite expected volume provided that the following condition is satisfied:

lim inf h→∞ γ(h) log h > 8d.
We conjecture that the cell C(0) is a.s. bounded if the same condition holds with 4d on the right-hand side and that the constant 4d is sharp. We can see on the third line of Figure 2.2 that the cells have a very rough shape, due to the particular choice of the variogram γ(h) = 2 h that yields rough Gaussian paths.

3 The stationary case: asymptotic properties of cells

Stationary max-stable random fields

In the sequel, we focus on the case when η is a stationary, sample continuous max-stable random field on X = Z d or R d . The structure of stationary max-stable processes was first investigated by de Haan and Pickands [START_REF] De Haan | Stationary min-stable stochastic processes[END_REF]. Recently, further results were obtained by exploiting the analogy between the theory of max-stable and sum-stable processes. Inspired by the works of Rosinski and Samorodnitsky [START_REF] Rosiński | On the structure of stationary stable processes[END_REF][START_REF] Rosiński | Classes of mixing stable processes[END_REF][START_REF] Rosiński | Decomposition of stationary α-stable random fields[END_REF][START_REF] Samorodnitsky | Null flows, positive flows and the structure of stationary symmetric stable processes[END_REF], the representation theory of stationary max-stable random fields via non singular flows was developed independently by Kabluchko [START_REF] Kabluchko | Spectral representations of sum-and max-stable processes[END_REF], Wang and Stoev [START_REF] Wang | On the structure and representations of max-stable processes[END_REF] and Wang et al. [START_REF] Wang | Ergodic properties of sum-and max-stable stationary random fields via null and positive group actions[END_REF]. See also Kabluchko and Stoev [10] for an extension to sum-and max-infinitely divisible processes. In these works, the conservative/dissipative and positive/null decompositions of the non-singular flow play a major role.

To avoid technical details of non-singular ergodic theory, we use a naive approach based on cone decompositions of max-stable processes (see, for example, Wang and Stoev [START_REF] Wang | On the structure and representations of max-stable processes[END_REF]Theorem 5.2]). The links between this approach and the non-singular ergodic theory are explored in the Appendix.

The following simple lemma about the cone decompositions of maxstable processes will be useful. Recall that F 0 = F(X , [0, +∞)) \ {0} denotes the set of continuous, non-negative functions on X excluding the zero function. A measurable subset C ⊂ F 0 is called a cone if for all f ∈ C and u > 0, uf ∈ C. The cone C is said to be shift-invariant if for all f ∈ C and x ∈ X , we have f

(• + x) ∈ C. Lemma 11. Let C 1 and C 2 be two measurable, shift-invariant cones such that F 0 = C 1 ∪ C 2 and C 1 ∩ C 2 = ∅.
Let η be a stationary maxstable process given by representation [START_REF] De Haan | A spectral representation for max-stable processes[END_REF].

Consider the decomposition η = η 1 ∨ η 2 with η 1 (x) = i≥1 U i Y i (x)1 {Y i ∈C 1 } and η 2 (x) = i≥1 U i Y i (x)1 {Y i ∈C 2 } .
Then, η 1 and η 2 are stationary and independent max-stable processes whose distribution depends only on the distribution of η and not on the specific representation (1).

Boundedness of cells

We will prove that the boundedness of the cell C(x) is strongly connected with the conservative/dissipative decomposition of the maxstable process η. Introduce the following shift-invariant cones of functions:

F C = f ∈ F 0 ; lim sup x→∞ f (x) > 0 , (9) 
F D = f ∈ F 0 ; lim x→∞ f (x) = 0 . (10) 
The conservative/dissipative decomposition of η is given by

η C (x) = i≥1 U i Y i (x)1 Y i ∈F C , (11) 
η D (x) = i≥1 U i Y i (x)1 Y i ∈F D . (12) 
According to Lemma 11, the processes η C and η D are independent stationary max-stable processes such that

η(x) = η C (x) ∨ η D (x), x ∈ X .
For an interpretation of η C and η D in terms of the conservative/dissipative decomposition of the non-singular flow generating η, we refer the reader to Appendix A.2. The following theorem relates this conservative/dissipative decomposition to the boundedness of the cell C(x).

Theorem 12. Let x ∈ X . The following events are equal modulo null sets:

{C(x) is unbounded} = {η C (x) > η D (x)}, (13) 
{C(x) is bounded} = {η D (x) > η C (x)}. (14) 
We denote by α C and α D the scale parameters of the 1-Fréchet random variables η C (x) and η D (x) respectively, i.e. for all z > 0,

P[η C (x) ≤ z] = exp(-α C /z), P[η D (x) ≤ z] = exp(-α D /z). ( 15 
)
Note that α D + α C = 1 and that α C and α D do not depend on x ∈ X . We say that η is purely conservative (resp. purely dissipative) if α D = 0 (resp. α C = 0). Corollary 13. Let x ∈ X . We have:

i) P[C(x) is unbounded] = α C , ii) P[C(x) is bounded] = α D , iii) C(x) is unbounded a.s. if and only if η is purely conservative, iv) C(x) is bounded a.s. if and only if η is purely dissipative.

Asymptotic density of cells

Next we consider the decomposition of η into positive and null components and relate it to the asymptotic density of the cell C(x). For this purpose, we introduce a new construction of the positive/null decomposition of max-stable processes which simplifies and extends to the dimension d ≥ 1 the construction from Samorodnitsky [START_REF] Samorodnitsky | Null flows, positive flows and the structure of stationary symmetric stable processes[END_REF] and Wang and Stoev [START_REF] Wang | On the structure and representations of max-stable processes[END_REF]Example 5.4].

For r > 0, we write B r = [-r, r] d ∩ X . We equip X with a measure λ which is either the counting or the Lebesgue measure, when X = Z d or X = R d , respectively. Consider the shift-invariant cones of functions

F P = f ∈ F 0 ; lim r→∞ 1 λ(B r ) Br f (x)λ(dx) > 0 , (16) 
F N = f ∈ F 0 ; lim inf r→∞ 1 λ(B r ) Br f (x)λ(dx) = 0 . (17) 
In the definition of F P , we assume that the limit exists. The stationarity of η implies that Y ∈ F P ∪F N a.s.; see Theorem 36 in Appendix A.3. According to Lemma 11, the corresponding decomposition is

η P (x) = i≥1 U i Y i (x)1 Y i ∈F P , (18) 
η N (x) = i≥1 U i Y i (x)1 Y i ∈F N , (19) 
where the processes η N and η P are independent, stationary, maxstable, and

η(x) = η P (x) ∨ η N (x), x ∈ X .
This is the so-called positive/null decomposition; see Appendix A.3 for more details. Given a measurable subset C ⊂ X , we define its lower and upper asymptotic densities by

δ -(C) = lim inf r→+∞ λ(C ∩ B r ) λ(B r ) , δ + (C) = lim sup r→+∞ λ(C ∩ B r ) λ(B r ) . If δ -(C) = δ + (C)
, the common value is called the asymptotic density of C and denoted by δ(C). The following theorem relates the positive/null decomposition of η to the asymptotic density of the cell C(x).

Theorem 14. Let x ∈ X . The following events are equal modulo null sets:

{δ(C(x)) > 0} = {η P (x) > η N (x)}, (20) 
{δ -(C(x)) = 0} = {η N (x) > η P (x)}, (21) 
where the notation δ(C(x)) > 0 means that the asymptotic density δ(C(x)) exists and is positive.

We denote by α P and α N the scale parameters of the 1-Fréchet random variables η P (x) and η N (x) respectively, i.e. for all z > 0,

P[η P (x) ≤ z] = exp(-α P /z) and P[η N (x) ≤ z] = exp(-α N /z).
Note that α P + α N = 1 and that α P and α N do not depend on x. We say that the max-stable process η is generated by a positive (resp. null) flow if α N = 0 (resp. α P = 0). Corollary 15. Let x ∈ X . We have:

i) P[δ(C(x)) > 0] = α P . ii) P[δ -(C(x)) = 0] = α N .
iii) δ(C(x)) > 0 a.s. if and only if η is generated by a positive flow. iv) δ -(C(x)) = 0 a.s. if and only if η is generated by a null flow.

Connection with ergodic properties

Ergodic and mixing properties of max-stable random fields have been studied intensively by Stoev [START_REF] Stoev | On the ergodicity and mixing of max-stable processes[END_REF][START_REF] Stoev | Max-stable processes: representations, ergodic properties and statistical applications[END_REF], Wang et al. [START_REF] Wang | Ergodic properties of sum-and max-stable stationary random fields via null and positive group actions[END_REF] and Kabluchko and Schlather [START_REF] Kabluchko | Ergodic properties of max-infinitely divisible processes[END_REF]. A major result is that a max-stable process is ergodic if and only if it is generated by a null flow. Also, a simple characterization using the extremal coefficient is known:

-η is ergodic if and only if θ(h) → 2 in Cesàro mean as h → ∞; -η is mixing if and only if θ(h) → 2 as h → ∞.
Interestingly, these results can be reinterpreted in terms of the geometric properties of the tessellation.

Proposition 16. Let η be a stationary, sample continuous max-stable random field on X = Z d or R d .

1. The following statements are equivalent:

(1.a) η is ergodic. (1.b) lim r→+∞ E λ(C(0)∩Br) λ(Br) = 0.

The following statements are equivalent:

(2.a) η is mixing. (2.b) 

lim x→∞ P[x ∈ C(0)] = 0.
Next we focus on strong mixing properties of max-stable processes, see Dombry and Eyi-Minko [START_REF] Dombry | Strong mixing properties of max-infinitely divisible random fields[END_REF]. The β-mixing coefficients of the random process η are defined as follows: for disjoint subsets S 1 , S 2 ⊂ X , we define

β(S 1 , S 2 ) = sup |P S 1 ∪S 2 (C) -(P S 1 ⊗ P S 2 )(C)|; C ∈ B S 1 ∪S 2 , ( 22 
)
where P S is the distribution (on the space R S + ) of the restriction of η to the set S, and B S is the product σ-algebra on the space R S + . For fixed S ⊂ X and r > 0, we write

β r (S) = β(S, S c r ) with S c r = {x ∈ S; d(x, S) ≥ r}. We say that η is β-mixing if for all compact sets S ⊂ X , lim r→+∞ β r (S) = 0. Proposition 17. If η is a stationary max-stable random field such that C(0) is almost surely bounded, then η is β-mixing.
According to Corollary 13, C(0) is a.s. bounded if and only if η is generated by a dissipative flow. So, Propostion 17 states that purely dissipative max-stable processes are β-mixing. We conjecture that the converse implication is also true: Conjecture 18. If η is a β-mixing stationary max-stable random field, then η is generated by a dissipative flow.

We were not able to prove the conjecture, mainly because we lack a lower bound for the β-mixing coefficient β(S 1 , S 2 ) (only an upper bound is given in [START_REF] Dombry | Strong mixing properties of max-infinitely divisible random fields[END_REF]).

4 Proofs related to section 2

Proof of Theorem 3

Proof of Theorem 3. We first prove Equation [START_REF] Dombry | Regular conditional distributions of continuous max-infinitely divisible random fields[END_REF]. For f, g : X → R and K ⊂ X , we use the notation f > K g if and only if f (x) > g(x) for all x ∈ K.

For i ≥ 1, we define the random functions

φ i = U i Y i and m i = j =i φ j . Fix some x ∈ X . Note that x ∈ C i if and only if φ i (x) ≥ m i (x), whence (modulo sets of probability 0) {K ⊂ C(x)} = {∃i ≥ 1, φ i (x) > m i (x) and ∀y ∈ K, φ i (y) > m i (y)} = {∃i ≥ 1, φ i > K∪{x} m i }.
The events {φ i > K∪{x} m i }, i ≥ 1, are pairwise disjoint so that

1 {K⊂C(x)} = i≥1 1 {φ i > K∪{x} m i } a.s.
Hence, we obtain

P[K ⊂ C(x)] = E i≥1 1 {φ i > K∪{x} m i } .
This expectation can be computed thanks to the Slivniak-Mecke formula (see, e.g., Stoyan et al. [START_REF] Stoyan | Stochastic geometry and its applications[END_REF]). Recall that Φ is a Poisson point process with intensity µ and that m i is a functional of Φ \ {φ i }. The Slivniak-Mecke formula implies that

P[K ⊂ C(x)] = F 0 E 1 {f > K∪{x} η} µ(df ).
Using Equation (4), we compute

F 0 E 1 {f > K∪{x} η} µ(df ) = ∞ 0 E 1 {uY > K∪{x} η} u -2 du = E ∞ 0 1 {u>sup K∪{x} η/Y } u -2 du = E inf K∪{x} Y /η .
This proves Equation [START_REF] Dombry | Regular conditional distributions of continuous max-infinitely divisible random fields[END_REF].

The proof of Equation ( 6) relies on the same method and we give only the main ideas. We have (modulo sets of probability 0)

{C(x) ⊂ K} = {∃i ≥ 1, φ i (x) > m i (x) and φ i < K c m i } and P[C(x) ⊂ K] = E i≥1 1 {φ i (x)>m i (x)} 1 {φ i < K c m i } .
Slivniak-Mecke formula and Equation ( 4) entail that

P[C(x) ⊂ K] = F 0 E 1 {f (x)>η(x)} 1 {f < K c η} µ(df ) = ∞ 0 E 1 {uY (x)>η(x)} 1 {uY < K c η} u -2 du.
Integrating with respect to du, we obtain

∞ 0 1 {uY (x)>η(x)} 1 {uY < K c η} u -2 du = ∞ 0 1 {η(x)/Y (x)<u<inf K c η/Y } u -2 du = Y (x)/η(x) -sup K c Y /η + ,
whence Equation ( 6) follows.

Proof of Corollaries 5 and 6

Proof of Corollary 5. By Fubini's Theorem, the expected volume of the cell C(x) is equal to

E[Vol(C(x))] = E X 1 {y∈C(x)} = X P[y ∈ C(x)]λ(dy)
and, according to Theorem 3,

P[y ∈ C(x)] = E Y (x) η(x) ∧ Y (y) η(y) .
Proof of Corollary 6. For n ≥ 1, we use the notation

B n = [-n, n] d ∩ X .
The sequence of events {C(x) ⊂ B n }, n ≥ 1, is non-decreasing and we have

{C(x) bounded} = n≥1 {C(x) ⊂ B n }, whence P[C(x) bounded] = lim n→∞ P[C(x) ⊂ B n ].
Using Equation ( 6), we get

P[C(x) ⊂ B n ] = E Y (x)/η(x) -sup B c n Y /η + .
As n → +∞, the sequence sup B c n Y /η decreases to lim sup ∞ Y /η. The monotone convergence theorem entails that

lim n→∞ E Y (x)/η(x) -sup B c n Y /η + = E Y (x)/η(x) -lim sup ∞ Y /η + , whence we deduce P[C(x) bounded] = E Y (x)/η(x) -lim sup ∞ Y /η + .
In order to prove the equivalence of the statements (i) and (ii), we note that

0 ≤ Y (x)/η(x) -lim sup ∞ Y /η + ≤ Y (x)/η(x)
and E[Y (x)/η(x)] = 1. The latter equality holds because Y (x) is independent of 1/η(x) ∼ Exp [START_REF] De Haan | A spectral representation for max-stable processes[END_REF]. Note also that (ab) + = a (for a, b ≥ 0) if and only if a = 0 or b = 0. Hence, the equality

E Y (x)/η(x) -lim sup ∞ Y /η + = 1
occurs if and only if lim sup ∞ Y /η = 0 a.e. on the event {Y (x) = 0}. This proves the equivalence of (i) and (ii).

Proofs related to section 3

Proof of Lemma 11. By the uniqueness of the max-Lévy measure, the max-stable process η is stationary if and only if its max-Lévy measure µ is stationary. By the properties of Poisson point processes, Φ ∩ C i , i = 1, 2, are independent Poisson point processes with intensity measures dµ i = 1 C i dµ. The max-stable processes η 1 and η 2 are hence independent with exponent measures µ 1 and µ 2 , respectively. Since the cone C i is shift-invariant, so is the measure µ i . Hence, the process η i is stationary. Finally, the distribution of η i is characterized by the max-Lévy measure dµ i = 1 C i dµ and does not depend on the representation (1).

Brown-Resnick stationary processes

The notion of Brown-Resnick stationarity introduced in Kabluchko et al. [START_REF] Kabluchko | Stationary maxstable fields associated to negative definite functions[END_REF] will be useful. For future reference, we record the following by-product of Lemma 11 and its proof. The next two lemmas are related to the conservative/dissipative decomposition of cones. Their proof is postponed to Appendix A.2. We recall that in this paper, in the continuous time case X = R d , we focus on the setting when η and Y have continuous sample paths. Then we have for all compact sets K ⊂ X ,

P sup K η ≤ u = exp - 1 u E sup K Y , u > 0.
with

E sup x∈K Y (x) < ∞. ( 23 
)
Note that in the discrete case X = Z d , Equation ( 23) is trivially fulfilled because compact sets are finite.

Lemma 22. Let Y be a (sample continuous) Brown-Resnick stationary process and let

K = [-1/2, 1/2] d ∩ X . Then, modulo null sets, lim x→∞ Y (x) = 0 = X sup y∈K Y (x + y)λ(dx) < ∞ .
In the case X = Z d , the lemma takes the following simple form:

lim x→∞ Y (x) = 0 =    x∈Z d Y (x) < ∞    modulo null sets.
For the next lemma, we need the notion of localizable cone.

Definition 23. A shift-invariant cone F L is said to be localizable if there exist mappings L 1 : F L → X and L 2 : F L → (0, +∞) such that for all f ∈ F L , x ∈ X and u > 0,

-L 1 (f (• + x)) = L 1 (f ) -x and L 1 (uf ) = L 1 (f ), -L 2 (f (• + x)) = L 2 (f ) and L 2 (uf ) = uL 2 (f ).
A typical example of localizable cone is the cone

F D = f ∈ F 0 ; lim ∞ f = 0 .
In this case, a possible choice for the mappings L 1 and L 2 is

L 1 (f ) = arg max f and L 2 (f ) = max f,
where arg max f is the point x ∈ X achieving the maximum of f (x) (if there are several such points, we take the smallest with respect to the lexicographic order).

Lemma 24. Let Y be a (sample continuous) Brown-Resnick stationary process and let F L be a localizable cone. Then,

{Y ∈ F L } ⊂ {Y ∈ F D } modulo null sets.

Proofs of Theorem 12 and Corollary 13

In the next lemma, we gather some preliminary computations needed for the proof of Theorem 12.

Lemma 25. We have:

i) α C = E[Y (x)1 {Y ∈F C } ] and α D = E[Y (x)1 {Y ∈F D } ]. ii) P[η C (x) > η D (x)] = α C and P[η D (x) > η C (x)] = α D . iii) P[C(x) bounded, η C (x) > η D (x)] = E Y (x) η(x) -lim sup ∞ Y η + 1 {Y ∈F C } . iv) P[C(x) bounded, η D (x) > η C (x)] = E Y (x) η(x) -lim sup ∞ Y η + 1 {Y ∈F D } .
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Proof of Lemma 25. i) Recall that α C and α D were defined in [START_REF] Rosiński | On the structure of stationary stable processes[END_REF]. Using the definition of η C , see [START_REF] Krengel | Ergodic theorems[END_REF], standard computations entail that

P[η C (x) ≤ y] = P[∨ i≥1 U i Y i (x)1 {Y i ∈F C } ≤ y] = exp - ∞ 0 P[uY (x)1 {Y ∈F C } > y]u -2 du = exp(-E[Y (x)1 {Y ∈F C } ]/y), whence we deduce that α C = E[Y (x)1 {Y ∈F C } ].
The formula for α D is obtained in the same way. This proves statement i).

ii) The random variables η C (x) and η D (x) are independent and have Fréchet distribution with parameters α C and α D , respectively. Hence,

P[η C (x) > η D (x)] = E[exp(-α D /η C (x))] = +∞ 0 exp(-α D /u)d(e -α C /u ) = α C .
For the last equality, we use α C + α D = 1. Similarly,

P[η D (x) > η C (x)] = α D and statement ii) is proved.
iii) This statement is a variation of Corollary 6 and we give only the main lines of its proof. We first prove the following version of Equation ( 6): For all compact sets K ⊂ X ,

P[C(x) ⊂ K, η C (x) > η D (x)] = E Y (x) η(x) -sup y∈K c Y (y) η(y) + 1 {Y ∈F C } . (24) 
Indeed, with the same notation as in the proof of Equation ( 6), we have

{C(x) ⊂ K, η C (x) > η D (x)} = {∃i ≥ 1, φ i (x) > m i (x), φ i < K c m i and φ i ∈ F C }
and the Slivnyak-Mecke formula entails that

P[C(x) ⊂ K, η C (x) > η D (x)] = E   i≥1 1 {φ i (x)>m i (x)} 1 {φ i < K c m i } 1 {φ i ∈F C }   = F 0 E 1 {f (x)>η(x)} 1 {f < K c η} 1 {f ∈F C } µ(df ).
With similar computations as in the proof of Equation ( 6), Equation ( 24) is easily deduced. Then statement iii) follows from Equation [START_REF] Wang | Ergodic properties of sum-and max-stable stationary random fields via null and positive group actions[END_REF] exactly in the same way as Corollary 6 follows from Equation [START_REF] Giné | Max-infinitely divisible and max-stable sample continuous processes[END_REF].

iv) The proof of point iv) is similar and is omitted.

Proof of Theorem 12. We first reduce the proof of Theorem 12 to the proof of the following two equations:

P[C(x) bounded, η D (x) > η C (x)] = P[η D (x) > η C (x)] (25) 
and

P[C(x) bounded, η C (x) > η D (x)] = 0. (26) 
Indeed, Equation ( 25) implies the inclusion (modulo null sets)

{η D (x) > η C (x)} ⊂ {C(x) bounded}. Since {η D (x) = η C (x)} is a null set, Equation (26) implies the reverse inclusion {C(x) bounded} ⊂ {η D (x) > η C (x)}.
We deduce that {C(x) bounded} = {η D (x) > η C (x)}, thus proving Equation [START_REF] Penrose | Semi-min-stable processes[END_REF]. Taking the complementary sets, we obtain Equation ( 13) since {η D (x) = η C (x)} is a null set.

Proof of Equation [START_REF] Wang | On the structure and representations of max-stable processes[END_REF] We first reduce the proof of Equation ( 25) to the proof of

lim y→∞ Y (y) η(y) 1 {Y ∈F D } = 0 a.s. ( 27 
)
Indeed, Equation ( 27) and statements i), ii) and iv) of Lemma 25 entail that

P[C(x) bounded, η D (x) > η C (x)] = E Y (x) η(x) -lim sup ∞ Y η + 1 {Y ∈F D } = E Y (x) η(x) 1 {Y ∈F D } = α D = P[η D (x) > η C (x)],
and we get Equation [START_REF] Wang | On the structure and representations of max-stable processes[END_REF] 

compact set K ⊂ X , E X sup y∈K Z(x + y)λ(dx) Y ≤ E X sup y∈K Y (x + y) inf y∈K η(x + y) 1 {Y ∈F D } λ(dx) Y = E sup y∈K η -1 (y) X sup y∈K Y (x + y)1 {Y ∈F D } λ(dx) < ∞ a.s.
In the last equation, we used the independence of Y and η, the stationarity of η and the fact that E sup y∈K η -1 (y) < ∞ (see Dombry and Eyi Minko [4, Theorem 2.2]). As a consequence,

X sup y∈K Z(x + y)λ(dx) < ∞ a.s.
and Lemma 22 implies that lim x→∞ Z(x) = 0 a.s., thus proving Equation (27).

Proof of Equation [START_REF] Weintraub | Sample and ergodic properties of some minstable processes[END_REF] We consider the shift-invariant cone

F L = f ∈ F 0 ; sup X f > lim sup ∞ f .
We will prove that the process Z = Y η 1 {Y ∈F C } is Brown-Resnick stationary and satisfies

P[Z ∈ F L ] = 0. ( 28 
)
After this has been done, Equation ( 26) can be deduced as follows. Equation ( 28) implies that

Y (x) η(x) 1 {Y ∈F C } ≤ sup X Y η 1 {Y ∈F C } ≤ lim sup ∞ Y η 1 {Y ∈F C } a.s., whence Y (x) η(x) -lim sup ∞ Y η + 1 {Y ∈F C } = 0 a.s.
According to Lemma 25, statement iii), we obtain that

P[C(x) bounded, η C (x) > η D (x)] = E Y (x) η(x) -lim sup ∞ Y η + 1 {Y ∈F C } = 0,
and this proves Equation [START_REF] Weintraub | Sample and ergodic properties of some minstable processes[END_REF]. We now consider Equation (28). Clearly, Lemmas 20 and 21 imply that the process Z is Brown-Resnick stationary. Since the cone F L is localizable (take L 1 (f ) = arg max f and L 2 (f ) = max f in Definition 23), Lemma 24 entails that

P[Z ∈ F L ] ≤ P[Z ∈ F D ]. So, it suffices to prove that P[Z ∈ F D ] = 0. Suppose by contradiction that P[Z ∈ F D ] > 0. Recalling that Z = Y η 1 {Y ∈F C } , we see that {Z ∈ F D } = {Y ∈ F C } ∩ {Y /η ∈ F D }. On the set {Y ∈ F C } = {lim sup ∞ Y > 0}, one can construct a σ(Y )- measurable random sequence x n → ∞ such that Y (x n ) ≥ 1 2 lim sup ∞ Y > 0. Then, on {Z ∈ F D } ⊂ {Y /η ∈ F D } = {lim ∞ Y /η = 0}, we have necessarily η(x n ) → +∞.
But η is stationary and independent of Y , so that η(x n ) has a unit Fréchet distribution that does not depend on n. This leads to a contradiction and we must hence have P[Z ∈ F D ] = 0. This concludes the proof of Equation (28).

Proof of Corollary 13. Theorem 12 and Lemma 25-ii) together yield

P[C(x) unbounded] = P[η C (x) > η D (x)] = α C ,
proving statement i). Statement ii) is proved similarly. Furthermore, η is purely dissipative if η C = 0, which is equivalent to α C = 0. We deduce easily that η is purely dissipative if and only if C(x) is bounded a.s. and this proves iii). The proof of iv) is similar.

Proofs of Theorem 14 and Corollary 15

Proof of Theorem 14. It suffices to prove the following two inclusions (modulo null sets):

{η N (x) > η P (x)} ⊂ {δ -(C(x)) = 0} (29) 
and

{η P (x) > η N (x)} ⊂ {δ(C(x)) > 0}. ( 30 
)
Indeed, the events on the left-hand side are complementary, while the events on the right-hand side are disjoint. This implies that both (29) and (30) are, in fact, equalities modulo null sets.

Proof of Equation (29). Let us consider the cell of x with respect to the null component only. It is defined by

C N (x) = {y ∈ X ; ∃i ≥ 1, Y i ∈ F N , U i Y i (x) = η N (x), U i Y i (y) = η N (y)}.
Clearly, η N (x) > η P (x) implies that C(x) ⊂ C N (x). We will prove that δ -(C N (x)) = 0 on {η N (x) > η P (x)} and this implies Equation (29). We can suppose without loss of generality that η = η N is generated by a null flow and prove that the lower asymptotic density of C(x) = C N (x) is equal to zero. Kabluchko [START_REF] Kabluchko | Spectral representations of sum-and max-stable processes[END_REF] and Wang et al. [START_REF] Wang | Ergodic properties of sum-and max-stable stationary random fields via null and positive group actions[END_REF] proved that max-stable processes associated to null flows are ergodic. Hence, η = η N is ergodic. On the other hand, there is an alternative characterization of ergodicity in terms of the extremal coefficient (Stoev [22], Kabluchko and Schlather [START_REF] Kabluchko | Ergodic properties of max-infinitely divisible processes[END_REF]): The process η is ergodic if and only if

lim r→+∞ 1 λ(B r ) Br (2 -θ(0, y))λ(dy) = 0, (31) 
where θ(x, y) is defined in Equation [START_REF] Kabluchko | Spectral representations of sum-and max-stable processes[END_REF]. In view of Equation ( 8), this is equivalent to

lim r→+∞ 1 λ(B r ) Br β(0, y)λ(dy) = 0.
Since β(0, y) = P[y ∈ C(0)], we obtain that

1 λ(B r ) Br β(0, y)λ(dy) = E λ(C(0) ∩ B r ) λ(B r ) ,
whence Equation ( 31) is equivalent to

lim r→+∞ E λ(C(0) ∩ B r ) λ(B r ) = 0.
This implies the convergence in probability

λ(C(0) ∩ B r ) λ(B r ) P -→ 0, as r → +∞
and hence almost sure converge to 0 along a subsequence. We deduce that δ -(C(0)) = 0 almost surely and, by stationarity, the same holds true for C(x), x ∈ X .

Proof of Equation (30). Possibly changing representation (1), we may suppose without loss of generality that the random processes Ỹi = Y i 1 {Y i ∈P } are stationary; see Appendix A.3. We consider the cells Ci = {y ∈ X , U i Ỹi (y) = η(y)}, i ≥ 1.

We will prove below that for every i ≥ 1 with probability one,

either δ( Ci ) > 0 or λ( Ci ) = 0. ( 32 
)
We show that this implies Equation (30). On the event {η P (x) > η N (x)}, there is a random index i(x) such that C(x) = Ci(x) . Furthermore, since x ∈ C(x), we have λ( Ci(x) ) > 0 (this is clear in the discrete case, in the continuous case, C(x) contains a neighborhood of x). According to Equation (32), we must have δ(C i(x) ) = δ(C x ) > 0, proving Equation (30). It remains to prove Equation (32). Recall that the U i 's are arranged in the decreasing order. Fix i ≥ 1 and observe that the distribution of (U i , Ỹi , η) is invariant under the shift

T x (u, f 1 , f 2 ) = (u, f 1 (• + x), f 2 (• + x)), u > 0, f 1 , f 2 ∈ F 0 .
Then we observe that

λ( Ci ∩ B r ) λ(B r ) = 1 λ(B r ) Br 1 {x∈ Ci } λ(dx) = 1 λ(B r ) Br 1 {U i Ỹi (x)=η(x)} λ(dx) = 1 λ(B r ) Br 1 {Tx(U i , Ỹi ,η)∈A} λ(dx) with A = {(u, f 1 , f 2 ); uf 1 (0) = f 2 (0)}.
We can then apply the multiparameter ergodic theorem (see, e.g., [START_REF] Wang | Ergodic properties of sum-and max-stable stationary random fields via null and positive group actions[END_REF]Theorem 2.8]) and conclude that

lim r→+∞ λ( Ci ∩ B r ) λ(B r ) = E[1 A (U i , Ỹi , η) | I] a.s.,
where I denotes the σ-algebra of shift-invariant sets. This shows that Ci has an asymptotic density,

δ( Ci ) = E[1 {0∈ Ci } | I] a.s.
Furthermore, we observe that shift-invariance implies that

E[1 {0∈ Ci } | I] = E[1 {x∈ Ci } | I], x ∈ X .
Using the fact that {δ( Ci ) = 0} ∈ I, we deduce that

E[λ( Ci )1 {δ( Ci )=0} | I] = 1 {δ( Ci )=0} X E[1 {x∈ Ci } | I] λ(dx) = 0.
Taking the expectation, we obtain that

E[λ( Ci )1 {δ( Ci )=0} ] = 0
and we conclude that λ( Ci ) = 0 on the event {δ( Ci ) = 0}, proving Equation (32).

Proof of Corollary 15. For the sake of brevity, we omit the proof which is quite straightforward from Theorem 14 and very similar to the proof of Corollary 13.

Proofs of Propositions 16 and 17

Proof of Proposition 16. The proposition is a reformulation of the criterion for ergodicity/mixing of max-stable processes; see Kabluchko and Schlather [START_REF] Kabluchko | Ergodic properties of max-infinitely divisible processes[END_REF]. Let θ(x, y) be the extremal coefficient defined by Equation [START_REF] Kabluchko | Spectral representations of sum-and max-stable processes[END_REF]. It is known that η is ergodic if and only if

lim r→+∞ 1 λ(B r ) Br (2 -θ(0, y))λ(dy) = 0, (33) 
and that η is mixing if and only if

lim y→∞ (2 -θ(0, y)) = 0. (34) 
Clearly, in view of Equation ( 8), Equation ( 33) is equivalent to

lim r→+∞ 1 λ(B r ) Br P[y ∈ C(0)]λ(dy) = lim r→+∞ E λ(C(0) ∩ B r ) λ(B r ) = 0
and Equation ( 34) is equivalent to

lim y→∞ P[y ∈ C(0)] = 0.
Proof of Proposition 17. We use here an upper bound for the β-mixing coefficient provided by Dombry and Eyi-Minko [4, Theorem 3.1]: The β-mixing coefficient β(S 1 , S 2 ) is defined by Equation ( 22) and satisfies

β(S 1 , S 2 ) ≤ 2P[A(S 1 , S 2 )],
where

A(S 1 , S 2 ) = {∃i ≥ 1, ∃(s 1 , s 2 ) ∈ S 1 × S 2 , U i Y i (s 1 ) = η(s 1 ) and U i Y i (s 1 ) = η(s 1 )}.
Introducing the cells C(s 1 ) with s 1 ∈ S 1 , we have

A(S 1 , S 2 ) = {∃(s 1 , s 2 ) ∈ S 1 × S 2 , s 2 ∈ C(s 1 )} = {∪ s 1 ∈S 1 C(s 1 ) ∩ S 2 = ∅} and β(S 1 , S 2 ) ≤ 2P[∪ s 1 ∈S 1 C(s 1 ) ∩ S 2 = ∅].
For a compact set K ⊂ X ,

β r (K) = β(K, K c r ) ≤ 2P[∃x ∈ X , d(x, K) ≥ r and x ∈ ∪ s∈K C(s)].
We will prove below that if C(0) is bounded a.s., then so is ∪ s∈K C(s), whence the right-hand side in the above inequality converges to 0 (by the monotone convergence theorem), and

lim r→∞ β r (K) = 0.
Suppose now that C(0) is bounded a.s. In the discrete case X = Z d , the compact set K is finite and ∪ s∈K C(s) is a.s. bounded as a finite union of bounded sets. In the continuous case X = R d , K may be infinite but it is known that there are a.s. only finitely many indices i ≥ 1 such that U i Y i (s) = η(s) for some s ∈ K (see Dombry and Eyi-Minko [5, Proposition 1]). Hence, we can extract a finite covering ∪ s∈K C(s) = ∪ k j=1 C(s j ) and ∪ s∈K C(s) is a.s. bounded as a finite union of bounded sets.

A Non-singular flow representation and associated decompositions

In this section we recall some facts on the conservative/dissipative and positive/null decompositions. We also prove some new characterizations of these decompositions. Our approach follows Wang and Stoev [25, section 6] and Wang et al. [START_REF] Wang | Ergodic properties of sum-and max-stable stationary random fields via null and positive group actions[END_REF]. For more details on non-singular ergodic theory, the reader should refer to Krengel [START_REF] Krengel | Ergodic theorems[END_REF].

A.1 Non-singular flow representation

Definition 26. A measurable non-singular flow on a measure space (S, B, µ) is a family of functions φ x : S → S, x ∈ X , satisfying i) (flow property) for all s ∈ S and x 1 , x 2 ∈ X ,

φ 0 (s) = s and φ x 1 +x 2 (s) = φ x 2 (φ x 1 (s)); ii) (measurability) the mapping (x, s) → φ x (s) is measurable from X × S to S;
iii) (non-singularity) for all x ∈ X , the measures µ • φ -1

x and µ are equivalent, i.e. for all A ∈ B, µ(φ -1

x (A)) = 0 if and only if µ(A) = 0.

The non-singularity property ensures that one can define the Radon-Nikodym derivative

ω x (s) = d(µ • φ -1 x ) dµ (s). (35) 
By the measurability property, one may assume that the mapping (x, s) → ω x (s) is jointly measurable on X × S.

According to de Haan and Pickands [START_REF] De Haan | Stationary min-stable stochastic processes[END_REF] and Wang et al. [START_REF] Wang | On the structure and representations of max-stable processes[END_REF], any measurable stationary max-stable random field admits a representation of the form

η(x) = i≥1 U i f x (s i ), x ∈ X , (36) 
where f x (s) = ω x (s)f 0 (φ x (s)) and -(φ x ) x∈X is a measurable non-singular flow on some probability space (S, B, µ), with ω x (s) defined by (35), f 0 ∈ L 1 (S, B, µ) is nonnegative such that S f 0 dµ = 1 and the set {f 0 = 0} contains no (φ x ) x∈X -invariant measurable set B ⊂ S of positive measure, -{(U i , s i )} i≥1 is the enumeration of the points of a Poisson point process on (0, +∞) × S with intensity u -2 duµ(ds).

Representation (36) is sometimes written with an extremal integral rather than with a Poisson point process, but the two approaches coincide. Starting with the non-singular flow representation (36), one easily gets a de Haan representation of the form (1) by considering the i.i.d. stochastic processes

Y i (x) = f x (s i ), i ≥ 1.

A.2 The conservative/dissipative decomposition

Definition 27. Consider a measure space (S, B, µ) and a measurable non-singular map φ : S → S. A measurable set W ⊂ S is said to be wandering if the sets φ -n (W ), n = 0, 1, 2, . . ., are disjoint.

The Hopf decomposition theorem states that there exists a partition of S into two disjoint measurable sets S = C ∪ D, C ∩ D = ∅, such that i) C and D are φ-invariant, ii) there exists no wandering set W ⊂ C with positive measure, iii) there exists a wandering set W 0 ⊂ D such that D = ∪ k∈Z φ k (W 0 ). This decomposition is unique mod µ and is called the Hopf decomposition of S associated to φ; the sets C and D are called the conservative and dissipative components with respect to φ, respectively. Given a one-dimensional measurable non-singular flow (φ x ) x∈X (with X = Z or R), one can consider the Hopf decomposition S = C x ∪ D x with respect to φ x , for each x ∈ X \ {0}. Using measurability, one can show that there exists a decomposition S = C ∪ D, C ∩ D = ∅, such that µ(C x ∆C) = µ(D x ∆D) = 0 for all x ∈ X \ {0} (see Krengel [START_REF] Krengel | Ergodic theorems[END_REF] or Rosinsky [START_REF] Rosiński | On the structure of stationary stable processes[END_REF]). This is the conservative/dissipative decomposition of the flow (φ x ) x∈X . It can be used to define the decomposition η = η C ∨η D of the stationary max-stable process η into its conservative and dissipative components

η C (x) = i≥1 U i ω x (s i )f 0 (φ x (s i ))1 {s i ∈C} , η D (x) = i≥1 U i ω x (s i )f 0 (φ x (s i ))1 {s i ∈D} .
The processes η C and η D are independent and their distribution does not depend on the particular choice of the representation (36). The following simple integral test on the spectral functions allows to retrieve the conservative/dissipative decomposition; see Wang and Stoev [25,Theorem 6.2].

Theorem 28. We have i) X f x (s)λ(dx) = ∞ for µ-almost all s ∈ C, ii) X f x (s)λ(dx) < ∞ for µ-almost all s ∈ D.
At this stage, it is not clear why the above decomposition η = η C ∨ η D based on the conservative/dissipative decomposition S = C ∪ D is related to our alternative approach based on the identity F 0 = F C ∪ F D , where the cones F C and F D were defined in ( 9) and [START_REF] Kabluchko | Minimal spectral representations of infinitely divisible and max-infinitely divisible processes[END_REF]. As we will see, both decompositions do indeed coincide in the sample continuous case so that there is no inconsistency in our notation. The relationship is made through the notion of mixed moving maximum representation defined in the general case d ≥ 1.

Definition 29. A stationary max-stable process η is said to have a mixed moving maximum representation (shortly M3-representation) if

η(x) d = ∞ i=1 V i Z i (x -X i ), x ∈ X , where -{(V i , X i ), i ≥ 1} is a Poisson point process on (0, +∞) × X with intensity u -2 duλ(dx), -(Z i ) i≥1 are i.i.d. copies of a nonnegative measurable stochastic process Z on X satisfying E[ X Z(x)λ(dx)] = 1, -{(V i , X i ), i ≥ 1} and (Z i ) i≥1 are independent.
Remark 30. Note that Definition 29 implies that

P[η(x) ≤ u] = exp - 1 u E X Z(x -y)λ(dy) = exp(-1/u),
so that the margins of η are unit Fréchet. Since η is continuous, we have furthermore for all compact K ⊂ X ,

P max x∈K η(x) ≤ u = exp - 1 u E X sup x∈K Z(x -y)λ(dy) = exp(-θ(K)/u), with θ(K) = E X sup x∈K Z(x -y)λ(dy) < ∞. (37) 
In the case d = 1, it is known that a stationary max-stable process η admits a M3-representation if and only if it is purely dissipative, i.e. µ(C) = 0 and η C = 0; see Wang and Stoev [START_REF] Wang | On the structure and representations of max-stable processes[END_REF]Theorem 6.4]. Unfortunately, the Hopf decomposition does not extend to multiparameter flows with d ≥ 2 (cf. Krengel [11,page 218]). The following theorem extends the criterion for the existence of a M3-representation to the general case d ≥ 1.

Theorem 31. Let η be a stationary max-stable process given by the non-singular flow representation (36). In the case X = R d , assume furthermore that η has continuous sample paths. Then, the following statements are equivalent: i) η has a M3-representation, ii) η is purely dissipative, i.e. η C = 0 with η C given by [START_REF] Krengel | Ergodic theorems[END_REF].

Proof. We prove i) ⇒ ii). Note that X Z(x)λ(dx) < ∞ a.s. because the expectation of this random variable is required to be 1. In the discrete case X = Z d , this immediately implies that lim x→∞ Z(x) = 0 a.s. In the continuous case X = R d , we see from Remark 30 that the continuity of η implies that X sup y∈K Z(x + y)λ(dx) < ∞ a.s., for all compact sets K ⊂ X . Hence, lim x→∞ Z(x) → 0 a.s. (Otherwise, we can find x n → ∞ with Z(x n ) ≥ ε and choosing K = [-1, 1] d , one can see that sup y∈K Z(x + y) ≥ ε for all x ∈ ∪ n≥1 (x n + [-1, 1] d ) so that the integral diverges).

The next step is to go from the mixed moving maximum representation in Definition 29 to the standard de Haan representation (1) by setting

Y (x) = 1 d(X) Z(x -X),
where d : X → (0, ∞) is a positive density function, and X is an Xvalued random variable which has density d and is independent of Z. Indeed, one checks easily that

∞ i=1 V i Z i (x -X i ) x∈X d = ∞ i=1 U i Y i (x) x∈X .
We have seen that lim x→∞ Z(x) = 0 a.s. and this clearly implies that lim x→∞ Y (x) = 0. We deduce that Y ∈ F D a.s. and η C = 0. Hence, η is purely dissipative.

We prove ii) ⇒ i). Consider a measurable max-stable process η with no conservative component, i.e. η has a representation of the form η = ∨ i≥1 U i Y i with Y i ∈ F D almost surely. We want to show that η admits an M3-representation. The proof is very similar to the proof of Theorem 14 in Kabluchko et al. [START_REF] Kabluchko | Stationary maxstable fields associated to negative definite functions[END_REF] and we sketch only the main lines. Thanks to the condition lim x→∞ Y i (x) = 0, we can consider the random variables

X i = arg max x∈X Y (x), Z i (•) = Y i (X i + •) max x∈X Y i (x) , (38) 
V i = U i max x∈X Y i (x),
where the arg max is the point x ∈ X achieving the maximum which is the smallest with respect to the lexicographic order. Clearly, we have

U i Y i (x) = V i Z i (x -X i ) for all x ∈ X so that η(x) = i≥1 V i Z i (x -X i ).
It remains to check that (V i , X i , Z i ) i≥1 has the properties required in Definition 29, i.e. is a Poisson point process with product intensity u -2 duλ(dx)Q(df ), where Q a probability measure on F 0 . Clearly, (V i , X i , Z i ) i≥1 is a Poisson point process as the image of the original point process (U i , Y i ) i≥1 . Its intensity is the image of the intensity of the original point process. With a straightforward transposition of the arguments of [9, Theorem 14], one can check that it has the required form.

Example 32. The assumption that the sample paths of η should be continuous cannot be removed from Theorem 31. To see this, consider the (deterministic) process Z of the following form:

Z(x) = C ∞ n=1 f (n 2 (x -n)), x ∈ R, where f (t) = (1-t 2 )1 |t|≤1 and C is a constant such that R Z(x)dx = 1.
The process Z is non-zero only on the intervals of the form (n- Theorem 31 has an interesting generalization based on the Definition 23 of localizable cone.

Theorem 33. Let η be a measurable max-stable process given by the representation [START_REF] De Haan | A spectral representation for max-stable processes[END_REF]. Assume that there is a localizable cone F L such that P[Y ∈ F L ] = 1. Then η has a M3-representation.

Proof. According to Theorem 31, the result holds in the particular case of the localizable cone F D = {f ∈ F 0 ; lim ∞ f = 0}. The proof in the general case of a localizable cone is exactly the same replacing Equation (38) by

X i = L 1 (Y i ), Z i (•) = Y i (X i + •) L 2 (Y i ) , V i = U i L 2 (Y i ). (39) 
The invariance properties of L 1 and L 2 ensure that the arguments of the proof of [9, Theorem 14] still work.

We conclude this subsection with the proofs of Lemmas 22 and 24.

Proof of Lemma 22. As we have seen in the proof i) ⇒ ii) of Theorem 31, the inclusion This decomposition is unique mod µ and is called the Neveu decomposition of S associated to (φ x ) x∈X ; P and N are called the positive and null components with respect to (φ x ) x∈X , respectively. It can be shown that P is the largest subset of S supporting a finite measure which is equivalent to µ and invariant under the flow (φ x ) x∈X ([24, Lemma 2.2]). Hence, there exists a finite measure which is equivalent to µ and invariant under the flow if and only if N = ∅ mod µ. The corresponding decomposition of η into its positive and null components is given by η = η P ∨ η N with η P (x) = i≥1 U i ω x (s i )f 0 (φ x (s i ))1 {s i ∈P } , η N (x) = i≥1 U i ω x (s i )f 0 (φ x (s i ))1 {s i ∈N } .

Interestingly, η P and η N are independent and their distribution does not depend on the particular choice of the representation (36). The importance of this decomposition comes from the following theorem (see [START_REF] Kabluchko | Spectral representations of sum-and max-stable processes[END_REF]Theorem 8] and [START_REF] Wang | Ergodic properties of sum-and max-stable stationary random fields via null and positive group actions[END_REF]Theorem 5.3]).

Theorem 35. Let η be a stationary max-stable process given by the non-singular flow representation (36). Then, η is ergodic if and only if its positive component is trivial, i.e. η P = 0.

In the one-dimensional case, an alternative characterization of the positive/null decomposition is known (see Samorodnitsky [START_REF] Samorodnitsky | Null flows, positive flows and the structure of stationary symmetric stable processes[END_REF] or Wang and Stoev [START_REF] Wang | On the structure and representations of max-stable processes[END_REF]Theorem 6.3]). It is similar but more involved than Theorem 28 for the conservative/dissipative decomposition. We provide here an alternative result that is simpler and valid in all dimensions d ≥ 1.

Theorem 36. Let η be a stationary max-stable process given by the non-singular flow representation (36). For r > 0, write B r = [-r, r] d ∩ X . We have i) lim r→∞ 1 λ(Br) Br f x (s)λ(dx) exists and is positive for µ-almost all s ∈ P , ii) lim inf r→∞ 1 λ(Br) Br f x (s)λ(dx) = 0 for µ-almost all s ∈ N . Proof. We consider the positive case and the null case separately. Assume first that η is generated by a positive flow. Then, with a possible change of representation, one can assume that µ is a probability measure invariant under the flow. This implies w x (s) ≡ 1 and f x (s) = f 0 (φ x (s)). By the multiparameter Birkhoff Theorem ([24, Theorem 2.8]), we have where I is the σ-algebra of (φ x ) x∈X -invariant measurable sets. The set B = {E µ [f 0 | I] = 0} is measurable and (φ x ) x∈X -invariant and f 0 vanishes on B (recall f 0 is nonnegative). This implies that µ(B) = 0 (see point ii) in representation (36)). In other terms, the function x → f x (s) belongs to the cone F P defined by [START_REF] Rosiński | Decomposition of stationary α-stable random fields[END_REF] almost surely. This must also be true for any equivalent representation (36) and the result follows in the positive case.

We consider now the case when η is generated by a null flow. One can assume without loss of generality that µ is a probability measure. According to the stochastic ergodic theorem for nonsingular actions ([24, Theorem 2.7]), we have This relation implies that the measure f0 (s)µ(ds) is a finite measure which is absolutely continuous with respect to µ and invariant under the flow (φ x ) x∈X . Since the flow has no positive component, this implies that f0 = 0. We deduce that 1 λ(Br) Br f x (•)λ(dx) converges in µ-probability to 0 and hence almost surely to 0 along a subsequence, whence lim inf r→∞ 1 λ(B r ) Br f x (s)λ(dx) = 0 µalmost surely.

Figure 1 :

 1 Figure 1: Realizations of a max-stable random field on X = [-5, 5] 2 (left column) and of the associated tessellation (right column) for various models. Top: the Smith model with Gaussian shape function (Example 8). Middle: the extremal Gaussian model with Gaussian correlation ρ(h) = exp(-h 2 /2) (Example 9). Bottom: the Brown-Resnick model with variogram γ(h) = 2 h (Example 10). To obtain a better contrast, maxstable random fields are plotted with Gumbel margins.

Definition 19 .

 19 We say that the process Y = (Y (x)) x∈X is Brown-Resnick stationary if the associated max-stable process η defined by (1) is stationary. We will use the following lemma due to Kabluchko et al. [9, Corollary 8]. Lemma 20. If Y and Y ′ are independent Brown-Resnick stationary processes, then Y Y ′ is also Brown-Resnick stationary.

Lemma 21 .

 21 Let Y be a Brown-Resnick stationary process and C a shift-invariant cone, then Y 1 {Y ∈C} is Brown-Resnick stationary.
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  (x + y)λ(dx) < ∞ ⊂ lim x→∞ Y (x) = 0 is trivial. For the reverse inclusion, Theorem 31 implies that Y 1 {Y ∈F D } admits an M3-representation so that X sup y∈K Y (x + y)1 {Y ∈F D } λ(dx) < ∞ a.s. This implies that (modulo null sets) (x + y)λ(dx) < ∞ . Proof of Lemma 24. Theorem 33 implies that Y 1 {Y ∈F L } admits an M3-representation. Then, Theorem 31 implies that Y 1 {Y ∈F L } ∈ F D almost surely. The inclusion {Y ∈ F L } ⊂ {Y ∈ F D } modulo null sets follows directly.A.3 The positive/null decompositionDefinition 34. Consider a measure space (S, B, µ) and a measurable non-singular flow (φ x ) x∈X on S. A measurable set W ⊂ S is said to be weakly wandering with respect to (φ x ) x∈X if there exists a sequence{x n } n∈N ⊂ X such that φ -1 xn (W ) ∩ φ -1 xm (W ) = ∅ for all n = m.According to Wang et al.[START_REF] Wang | Ergodic properties of sum-and max-stable stationary random fields via null and positive group actions[END_REF] Theorem 2.4], there exists a partition of S into two disjoint sets S = P ∪ N , P ∩ N = ∅, such that i) P and N are φ x -invariant for all x ∈ X , ii) P has no weakly wandering set of positive measure, iii) N is a union of weakly wandering sets.

  r ) Br f x (s)λ(dx) = E µ [f 0 | I] µalmost surely,

→

  1 λ(B r ) Br f x (•)λ(dx) µ → f0 as r → ∞where µ denotes convergence in µ-probability and f0 ∈ L 1 (S, µ) satisfies ω x (•) f0 • φ x (•) = f0 for all x ∈ X .

  . It remains to prove Equation (27). Note that the process Y 1 {Y ∈F D } is Brown-Resnick stationary. Lemma 22 implies that On the other hand, let us consider the process Z = Y η 1 {Y ∈F D } . Since Y and η are Brown-Resnick stationary and the cone F D is shift invariant, Lemmas 20 and 21 imply that Z = Y η 1 {Y ∈F D } is Brown-Resnick stationary. Furthermore, for any

X sup y∈K Y (x + y)1 {Y ∈F D } λ(dx) < ∞ a.s.