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Abstract

We are interested in the question of stability in the field of shape optimization. We focus on the strategy
using second order shape derivative: more precisely, we identify structural hypotheses on the hessian of the
considered shape functions, so that critical stable domains (i.e. such that the first order derivative vanishes
and the second order one is positive) are local minima for smooth perturbations. These conditions are quite
general and are satisfied by a lot of classical functionals, involving the perimeter, the Dirichlet energy or
the first Laplace-Dirichlet eigenvalue. We also explain how we can easily deal with a volume constraint
and/or translation invariance of the functionals. As an application, we retrieve or improve previous results
from the existing literature, and provide new local stability results. We finally test the sharpness of our
hypotheses by giving counterexamples of critical stable domains that are not local minima.

2000MSC : 49K20, 49Q10.
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1 Introduction

In this paper, we are interested in the question of stability in the field of shape optimization. More precisely,

given J : A → R defined on A ⊂ {Ω smooth enough open sets in Rd}, we consider the optimization problem

min {J(Ω), Ω ∈ A} , (1)

and we ask the following question:
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if Ω∗ ∈ A is a critical domain satisfying a stability condition (that is to say a strict second order optimality

condition), can we conclude that Ω∗ is a strict local minimum for (1) in the sense that

J(Ω)− J(Ω∗) ≥ cd1(Ω,Ω∗)2, for every Ω ∈ V(Ω∗) (2)

where c ∈ (0,∞), d1 is a distance among sets, and V(Ω∗) = {Ω ∈ A, d2(Ω,Ω∗) < η} is a neighborhood of Ω∗,

relying on a (possibly different) distance d2?

(Note that the word distance is used here and in the rest of the paper as an intuitive notion here, asserting

that Ω is far or close from the fixed shape Ω∗, and do not refer in general to the formal mathematical notion

of distance).

Origin of the question:

For example in [42], the following terminology is used: given a function f : X → R where X is a Banach

space, the property that a critical point x ∈ X has a positive second order derivative is called linear-stability,

and implies that t 7→ f(x+ty) has a local minimum at t = 0 for every y ∈ X, while nonlinear-stability requires

that f(x) is less that f(z) for any z close to x. It is classical that, when dealing with infinitely dimensional

parameters, these two notions do not coincide in general.

In the framework of shapes, this question has been raised in different settings, and its answer has sometimes

been mistakenly considered as easily valid: for example, in the context of stable constant mean curvature sur-

faces, literature has focused for a while on giving sufficient conditions so that linear-stability would occur,

without proving that it actually implied local minimality. This point was raised by Finn in [20], and some

answers followed quickly, see [28, 42, 43], though in the particular case of the ball and the isoperimetric prob-

lem, the difficulty was already handled by Fuglede in [21]. In the context of shape functionals involving PDE,

the issue was raised by Descloux in [17] and a first solution was given in [14, 12].

Quantitative isoperimetric inequalities: different strategies

During the last decade, starting with [23], this type of question gained interest in the community of isoperi-

metric inequalities and shape optimization, in particular three main methods were developed in a quite

extensive literature, in order to get a stability result of the form (2) for the most classical problems (1):

• Symmetrization technique,

• Mass transportation approach,

• Second order shape derivative approach.

As an example, we quote the L1-stability result for the perimeter: for every V0 ∈ (0,∞), there exists

c ∈ (0,∞) such that

P (Ω)− P (B) ≥ cdF (Ω, B)2, for every (measurable set) Ω such that |Ω| = V0, (3)

where P denotes the perimeter (in the sense of geometric measure theory), | · | is the volume, B is any ball of

volume V0, and

dF (Ω, B) = inf
τ∈Rd

|(Ω− τ)∆B|
|B|

is known as the Fraenkel asymmetry (which can be seen as the L1-distance to the ball, up to translations).

For this specific example, all of these three strategies have been successfully applied, see [23, 19, 11].

Note in particular that the result is global: in that case a local result (in an L1-neighborhood) implies a

non-local one as it is shown in [23, Lemma 5.1 and Lemma 2.3].

In this paper, we focus on the third strategy, which recently receveid even more attention as in some

examples, the other techniques could not be applied, or provided non-optimal results: as an example we quote

the L1-stability for the Faber-Krahn inequality, which was solved with symmetrization technique in [24], but

provided a higher (and less strong) exponent in (2), and has been improved to an optimal exponent recently

in [8] using the third strategy (see also [25]).
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One specific difficulty for this strategy is to define a framework of differential calculus within shapes. This

can be done for example with the notion of shape derivatives, but one main drawback is that this is available

only for reasonably smooth deformations of the initial shape, or in other words, for a rather strong distance d2

(otherwise it is clear that classical functionals are not differentiable for non-smooth perturbations). However,

as it is shown for example in [2], the strategy can also provide results for very weak distances (as the Fraenkel

asymmetry), and can be decomposed in two main steps:

• first, with the help of the differential setting and the fact that Ω∗ satisfies a strict second order optimality

condition, prove a stability result for small and smooth perturbations of Ω∗; in other words, prove that

(2) is valid where d2 is a strong distance (and d1 is limited by the properties of J , and is in general

different from d2, see below),

• second, deduce from this first step that (2) is valid where d1 = d2 is a weak distance (for example the

Fraenkel asymmetry).

For the perimeter functional, the first step goes back to [21], and the second step is inspired by results in

[44, 33], though the complete result was achieved in [11]. These two steps rely on very different arguments: in

particular, the second step usually requires to adapt the regularity theory related to the optimization prob-

lem (1), namely the notion of quasi-minimizer of the perimeter when the functional J contains a perimeter

term, or the regularity of free boundaries when J involves an energy related to a PDE functional (see [2, 8]

respectively), so it strongly relies on specific properties of the functional J under study. However, as we aim

to show in this paper, the first step has a very large range of applications, and is valid under rather weak

assumptions on the functionals.

The aim of this paper is to describe a general framework so that the first step of the above strategy ap-

plies: while this has been done in a few places in the literature, every time specifically for the functional that

was under study, we aim at giving some general statements, and then show that these statements both apply

to the examples already handled in the literature, and also to new examples. Despite getting a wider degree

of generality, we also simplify many proofs and strategies found in the previous literature, as we describe below.

Neighborhood of shapes

In order to describe the details of the strategy, we briefly introduce two classical ways to parametrize shapes

in a neighborhood of a fixed one:

• Diffeomorphism and shape derivatives: we consider a shape to be a neighbor of Ω if it is a

deformation of Ω by a diffeomorphism which is close to the identity. More precisely, Θ being a Banach

space such that C∞(Rd,Rd) ⊂ Θ ⊂ W 1,∞(Rd,Rd), we consider shapes of the form Ωθ := (Id + θ)(Ω)

where ‖θ‖Θ is small.

In this framework, we can consider the distance introduced by Micheletti :

dΘ(Ω1,Ω2) := inf
{
‖θ‖Θ + ‖(Id+ θ)−1 − I‖Θ, θ ∈ Θ diffeomorphism such that (Id+ θ)(Ω1) = Ω2

}
.

Morover, this leads to the notion of shape derivatives, first introduced by Hadamard, then developed by

Murat-Simon and Delfour-Zolesio. One defines the function JΩ on a neighborhood of 0 in Θ by

∀θ ∈ Θ, JΩ(θ) = J [(Id+ θ)(Ω)].

One then uses (in the whole paper) the usual notion of Fréchet-differentiability: shape derivatives of J

at Ω are the successive derivatives of JΩ at 0, when they exist. In particular, the first shape derivative

is J ′(Ω) := J ′Ω(0), a continuous linear form on Θ (the shape gradient), and the second order shape

derivative is J ′′(Ω) := J ′′Ω(0), a continuous symmetric bilinear form on Θ (the shape hessian).

• Normal graphs:

On the other hand, assuming that Ω is C1 (and n = n∂Ω is its outer unit normal vector) we can consider
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“normal graph” on ∂Ω, that is Ωh (there should be no confusion between Ωθ, Ωh (and later Ωt with

t ∈ R) as θ and h live in different spaces) such that

∂Ωh = {x+ h(x)n(x), x ∈ ∂Ω}, (4)

where h ∈ X, and X is a Banach space of scalar functions such that C∞(∂Ω) ⊂ X ⊂W 1,∞(∂Ω).

Then one can see

d̃X(Ωh,Ω) := ‖h‖X (5)

as a measure of the distance between Ωh and Ω (though it is not formally a distance), and one can also

define derivatives in this framework, as jΩ(h) := J(Ωh) is defined on a Banach space. Notice that given

Ω1 and Ω2, there is at most one function h defined on ∂Ω1 such that ∂Ω2 = (∂Ω1)h as defined in (4), so

we can denote this function h = hΩ1,Ω2 if it exists, and therefore definition (5) is valid.

Let us emphasize that even if the second method seems more restrictive, the two methods are equivalent

in a neighborhood of Ω (if Ω is smooth enough) in the sense that one describes as many shapes with each

methods (for suitable Θ and X): first, a normal graph Ωh is a deformation of Ω for any ξh which is an

extension to Rd of hn (and then jΩ(h) = JΩ(ξh)), see the introduction of Section 4. Second, if we consider

diffeomorphims that are close to the identity, the boundaries of the perturbed domains are graphs over the

boundary of the initial domain: in other words, for any domain Ωθ = (Id+ θ)(Ω) with θ ∈ Θ close to 0, there

is a unique real-valued function h = hΩ,Ωθ ∈ X defined on ∂Ω such that (4), see for example Lemma 3.1 in

[36].

However, it is not clear a priori that computing derivatives for normal graphs (derivatives of jΩ : h 7→ J(Ωh))

is enough to describe shape derivatives (derivatives of JΩ : θ 7→ J(Ωθ)): this issue is handled in the first point

below. Also, it may be of interest to focus on paths t ∈ R 7→ Ωt (as we will need below), and in that case

Ωt+s is not in general a normal graph over Ωt; it is therefore important to understand the framework of

diffeomorphisms.

We may also be interested in having distances taking into account some invariance with translation. For

example, we define

d̄X(Ω2,Ω1) = inf
τ∈Rd

‖hΩ1,Ω2+τ‖X (6)

where the infimum is taken over τ such that ∂Ω2 + τ is a normal graph on ∂Ω1.

Main contributions of the paper:

We are now in position to describe the main steps of the strategy to obtain a stability inequality of the form

(2) for a strong distance d2: we describe here these steps, and insist on the contributions of the present paper

in each step.

• Structure of derivatives: The way of differentiating shape functionals with diffeomorphism described

just above is very convenient as most classical shape functionals are easily proven to be smooth in this

setting (usually not using any regularity on the initial shape Ω∗, see more details in [29] for example), and

as noticed before, it is clear that computing derivatives in the sense of normal graphs is just a particular

case (while the opposite seems not clear). Nevertheless, one main drawback for our purpose is that as

we are dealing with shapes, there is a lot of invariance for JΩ: any non-trivial diffeomorphisms that

leaves Ω invariant (at first, second order) must lead to vanishing derivatives. It is therefore unreasonable

to expect that the stability condition for optimal shapes writes J ′′(Ω∗).(ξ, ξ) > 0 for ξ ∈ Θ \ {0}. For

first order shape derivatives, this difficulty is well-known since Hadamard, who observed (in particular

examples) that the shape gradient is a distribution supported on the boundary of the domain, acting

only on the normal component of the deformation. In other words, for any smooth domain Ω, there is

a linear form `1 = `1[J ](Ω) acting on scalar functions defined on ∂Ω, such that

∀ξ ∈ C∞(Rd,Rd), J ′(Ω) · ξ = `1(ξ|∂Ω · n), (7)

see classical monographs, or [32] in a non-smooth setting. A similar observation can be made about

second order shape derivatives, though the situation is more involved. Let us first describe a simple case,
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which happens to be particularly relevant for our purpose here: if Ω∗ is a critical domain for J , that

is a domain such that the shape gradient of J vanishes, then the shape hessian reduces to a symmetric

bilinear form `2 = `2[J ](Ω∗), also acting only on normal components of diffeomorphisms. When we do

not assume that Ω∗ is a critical domain, contrary to the first order one, the second order shape derivative

may involve the tangential component of the deformation. However, as it has been proven in [36], there

is a general structure, involving a quadratic form acting only on normal components (as in the critical

case) and another term involving the first order derivative: more precisely, for any smooth domain Ω,

there exists `2 = `2[J ](Ω) acting on normal components such that

∀ξ ∈ C∞(Rd,Rd), J ′′(Ω).(ξ, ξ) = `2(ξ · n, ξ · n) + `1(Zξ) (8)

where

Zξ = B(ξτ , ξτ )− 2∇τ (ξ · n) · ξτ ,

ξτ is the tangential component of ξ, and B = Dτn is the tangential differential of n, also known as the

second fondamental form of ∂Ω. This structure is often observed in the literature on specific examples

and after lengthy computations, while it can be used a priori to simplify the computations: indeed, once

we know the shape functional is smooth (which can be shown without computations), this result implies

that the computation of shape derivatives for purely normal deformations is sufficient to describe the

second order derivative for any deformation (see also Remark 2.6). In particular, using the framework

of normal graphs, we get j′′Ω(0)(h, h) = `2[J ](Ω)(h, h).

The first contribution of this paper is to give a new proof of the structure (8), see Theorem 2.1. Though

the strategy in [36] is quite natural as it shows that any small deformation of a shape can be seen (in

a smooth way) as a normal deformation defined on the boundary, up to a change of parametrization of

the boundary, we believe this new proof is less technical, and also quite natural as it only relies on the

invariance properties mentioned before, and is therefore closer to the usual proof for the structure of first

order shape derivatives.

Even if it may seem that for our purpose this result in only helpful in the particular case where Ω∗ is

a critical shape, as we will notice in the following items, we actually need to deal with second order

shape derivatives at non-critical shapes as well. See also [4] for recent use of these structure results and

application to numerical methods.

• Coercivity assumption: As noticed earlier, we are dealing with infinite dimensional differential calcu-

lus, and it is well-known that usual sufficient conditions for getting optimality is that the second order

derivative is coercive rather than just assuming that it is positive. In particular, we need to wonder for

which norm the coercivity might be valid, with view of applications. We will see that in most examples

we are dealing with, the quadratic form `2[J ](Ω) (normal part of the hessian of J at Ω) satisfies a

structural property emphasizing a particular norm, that will restrict the choice of d1 for applications:

for s2 ∈ (0, 1], we say that the bilinear form ` acting on C∞(∂Ω) satisfies condition (CHs2 ) if (and by

extension we say that J satisfies the condition at Ω∗ if `2[J ](Ω∗) does):

(CHs2 ) there exists s1 ∈ [0, s2) and c1 > 0 such that ` = `m + `r with
`m is lower semi-continuous in Hs2(∂Ω)

`m(ϕ,ϕ) ≥ c1|ϕ|2Hs2 (∂Ω), ∀ϕ ∈ C∞(∂Ω),

`r continuous in Hs1(∂Ω).

where | · |Hs2 (∂Ω) denote the Hs2(∂Ω) semi-norm. In that case, ` is naturally extended (by a density

argument) to the space Hs2(∂Ω), and we prove that under this assumption

` > 0 on Hs2(∂Ω) \ {0} ⇔ ∃λ > 0, ∀ϕ ∈ Hs2(∂Ω), `(ϕ,ϕ) ≥ λ‖ϕ‖2Hs2 (∂Ω), (9)

(here ` is a quadratic form, so ` > 0 on X \{0} means `(ϕ,ϕ) > 0 for any ϕ ∈ X \{0}). Notice also that

this statement holds for general bilinear forms on Sobolev spaces and is not restricted to shape hessians.
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The proof of this fact is rather simple, and similar arguments can be found in [28, 2]. Our contribution

principally lies in the fact that we explicitly formulate the underlying assumption so that positivity implies

coercivity, see Lemma 3.3 in Section 3.1.

Note in particular that the value of s2 is determined by the shape functional J (in practice s2 usually

does not depend on Ω): the choice of the distance d1 in (2) is therefore limited by this coercivity property.

In other words, we can not expect (2) to be valid for any distance d1 stronger than d̃Hs2 (see also [21]

where an upper bound of the isoperimetric deficit is given, in a smooth neighborhood). As we will notice

through computations, when J contains a perimeter term, s2 = 1, while for PDE functionals we are

dealing with here (see below when we describe examples), s2 = 1/2. For an interesting result about the

choice of d1 in a non-smooth setting, see [22] where the authors obtain an improved version of (3) with

d1 being a stronger distance than the Fraenkel asymmetry (see also [34] for the anisotropic case).

• Norm discrepancy: With the help of the previous items, we are able to properly state the stability

question: if Ω∗ is such that

`1 = 0, and `2 > 0 on Hs2(∂Ω∗) \ {0}

where `1, `2 are associated to J ′(Ω∗) and J ′′(Ω∗) respectively, through the structure of shape derivatives

(7), (8), can we conclude to a nonlinear-stability inequality of the form (2), for every small and smooth

deformation Ω = (Id+ θ)(Ω∗) of the set Ω∗?

From the Taylor formula, we can write:

J((Id+ θ)(Ω∗))− J(Ω∗) =
1

2
`2(θ · n, θ · n) + O(‖θ‖2Θ).

which leads to two issues:

– first, the remainder depends a priori on the full norm of θ, while the second order term is only

controlled with the norm of θ · n,

– the norm of differentiability Θ is in most cases stronger than the norm of coercivity given in the

previous item, namely Hs2 ,

so it is a priori not possible to control the sign of the term 1
2 `2(θ · n, θ · n) + O(‖θ‖2Θ). To solve the

first issue, one could only work with normal deformation (which is enough to describe every small and

smooth deformation of Ω∗), but this is in some cases a restriction (for example when trying to make

volume preserving deformations, see [12, 2], though we solve this issue in a different (and easier) way,

see below). The second issue is more serious. In the literature, this phenomenon was first observed when

minimizing the perimeter as it is naturally differentiable in W1,∞ while the coercivity may only happen

for the H1-norm. This issue has been observed and solved in two places in the literature:

– Fuglede in [21] proved a local stability result for the classical isoperimetric problem whose solution

is the ball (see the next step to explain how we handle the translation invariance of the functional

and the volume constraint). To that end, he considers nearly spherical domains Bu = {(r, ω) ∈
[0,∞)×Sd−1, r < 1 +u(ω)} (which is equivalent to a normal graph in this case) with u preserving

the barycenter and the volume (at the second order), and proved that

P (Bu)− P (B) ≥ α‖u‖2H1(Sd−1) if ‖u‖W1,∞ ≤ η.

where α, η > 0 are explicit;

– for stable constant mean curvature surfaces, a specific differentiability statement for the surface

area is quoted in [28, Proof of Theorem 6], [7, Equation 3.23], [44, Equation (1)], and this result is

not restricted to the ball. See also [42, 43] for similar observations with a different parametrization.

This difficulty is well-known in the literature on second order optimality conditions in infinite dimension.

We may think that we could change the space of differentiability for the functional (choosing for example

the space for which there is coercivity), unfortunately in most examples, the shape functional is not
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differentiable in the space for which there is coercivity, which is weaker than W1,∞. Various geometric

examples have been handled in the literature since these first examples, see [15, 18, 6, 34].

With the previous remarks, it is natural to define the following property: given Ω∗, s ∈ [0, 1] and

X ⊂W 1,∞(∂Ω∗) a Banach space, and assuming that jΩ∗ is C2 in a neighborhood of 0 in X, we say that

J satisfies condition (ITHs,X) (for “improved Taylor” expansion) at Ω∗ if:

(ITHs,X) there exist η > 0 and a modulus of continuity ω such that for every domain Ω∗h with
‖h‖X ≤ η, ∣∣∣∣J(Ω∗h)− J(Ω∗)− `1(h)− 1

2
`2(h, h)

∣∣∣∣ ≤ ω(‖h‖X)‖h‖2Hs ,

where `1 = `1[J ](Ω∗) = j′Ω∗(0), `2 = `2[J ](Ω∗) = j′′Ω∗(0).

Again, the main contribution in this step is to identify explicitely the proper assumption needed to obtain

non-linear stability. We will provide many examples.

• PDE functionals: In the specific context of shape optimization involving PDE, the stability question

was raised in the work of Descloux [17], and was overcome in [14, 12]. More recently a very similar

approach can be found in [2], see also Section 5.1. The situation is much more involved than for

geometric functionals, as it is much harder to write the remainder term in order to show condition

(ITHs,X) for suitable spaces.

In this case, we define a slightly different condition: given Ω∗, s ∈ [0, 1] and X ⊂W 1,∞(∂Ω∗) a Banach

space, assuming that jΩ∗ is C2 in a neighborhood of 0 in X, we say that J satisfies condition (ICHs,X)

(for “improved continuity” in h) at Ω∗ if:

(ICHs,X) there exist η > 0 and a modulus of continuity ω such that for every domain Ω∗h with
‖h‖X ≤ η, and all t ∈ [0, 1]:∣∣j′′(t)− j′′(0)

∣∣ ≤ ω(‖h‖X)‖h‖2Hs ,

where j : t ∈ [0, 1] 7→ J(Ωt) for the path (Ωt)t∈[0,1] connecting Ω∗ to Ω∗h, and defined through its

boundary

∂Ωt = {x+ th(x)n(x), x ∈ ∂Ω∗}. (10)

Using the Taylor formula with integral remainder:

J(Ω∗h)− J(Ω∗) = `1(h) +
1

2
`2(h, h) +

∫ 1

0
[j′′(t)− j′′(0)](1− t)dt,

it is easy to see that condition (ICHs,X) implies (ITHs,X).

Our main contribution about this step is to insist on the list of examples of functionals satisfying this

condition, and also on possible choices of spaces X, depending on the functionals.

In [14, 12] the authors chose Hölder-spaces of the form C2,α, while in [2] the authors prefer Sobolev

spaces, namely W2,p for p large enough, which is a better result as it leads to a larger neighborhood in

the stability result (2).

We prove that for the PDE functionals from [14, 12], which seems less smooth than the functional from

[2] (see also Section 5.1), condition (ICHs,X) is also valid for X = W2,p, for p large enough, therefore

improving the stability properties proven in [14, 12]. Finally we also provide new examples, as the first

eigenvalue for the Dirichlet Laplacian, see Proposition 4.7. Note that thanks to the next item, it is

enough to focus on the path (10) for which computations are simplier.

Note that this improvement about spaces is not just a technical issue, as in [2] the choice of W2,p rather

than C2,α is relevant for the second step of the strategy (described page 3) when proving stability in an

L1-neighborhood ([2, Section 4]): indeed their regularization procedure needs to allow discontinuities of

the mean curvature, see equation (4.9) in the proof of [2, Theorem 4.3]. This difficulty is handled in

another way in [8] for the quantitative Faber-Krahn inequality as a stability in C2,α is enough to make

the regularization procedure work.
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• Stability result: We are now in position to state the main stability result in the framework of shape

optimization. For a similar statement for problems with volume constraint and translation invariant

functionals, which is very useful in practice, see the next item and Theorem 3.2:

Theorem 1.1 Let Ω∗ be a domain of class C3, and J a shape functional, twice Fréchet differentiable

on a neighborhood of Ω∗ for dW1,∞. We denote `1 = `1[J ](Ω∗) and `2 = `2[J ](Ω∗) (given by Theorem

2.1), and assume that J satisfies (CHs2 ) and (ITHs2 ,X) at Ω∗ for some s2 ∈ (0, 1] and X a Banach

space such that C∞(Rd) ⊂ X ⊂W1,∞(Rd).
Then if Ω∗ is a critical and strictly stable shape for J , that is to say

`1 = 0, and `2 > 0 on Hs2(∂Ω,R) \ {0}, (11)

then Ω∗ is an Hs2-stable local minimum of J in a X-neighborhood, that is to say there exists

η > 0 and c = c(η) > 0 such that

∀ Ω such that d̃X(Ω,Ω∗) ≤ η, J(Ω) ≥ J(Ω∗) + cd̃Hs2 (Ω,Ω∗)2

where d̃Hs2 is defined in (5).

With the help of the previous steps, the proof of this result is rather easy, and its main interest lies in

the fact that its hypotheses are valid in practice for many examples, as we show in Section 5, see also

the end of this introduction.

• Constraints and invariance: as in the isoperimetric problem, whose quantitative version is recalled

in (3), we have to handle two extra difficulties: first, the functional is translation invariant, and second,

there is a volume constraint in the optimization problem. Therefore one cannot expect (11) to be

satisfied, and it should be replaced by

`1[J ](Ω∗) = µ`1[Vol](Ω∗), and `2[J ](Ω∗)− µ`2[Vol](Ω∗) > 0 on T (∂Ω∗) \ {0}

where T (∂Ω∗) :=

{
ϕ ∈ Hs2(∂Ω∗),

∫
∂Ω∗

ϕ = 0 and

∫
∂Ω∗

ϕ−→x =
−→
0

}
. (12)

Here µ ∈ R is the Lagrange multiplier, handling the notion of criticality when there is a volume con-

straint, and T (∂Ω∗) can be seen as the tangent space to the constraint (
∫
∂Ω∗ ϕ being the first order

derivative of the volume) and to the invariance (
∫
∂Ω∗ ϕ

−→x being the first order derivative of the barycen-

ter functional). In [14, 12], the authors carefully handle the volume constraint by building a path

preserving the volume and being almost normal, and prove that an estimate like (ICHs2 ,X) is valid for

this more involved path. In [2], a very similar approach (adapted to W2,p-spaces) is given, and they also

handle the translation-invariance (which is not there in the example of [14, 12]) which implies a lot a

technicalities.

Inspired by the strategy of [28] who deals with the volume constraint for area minimizing surfaces, we

drastically simplify the presentation of [14, 12, 2] by using an exact penalization method. More pre-

cisely (see Theorem 3.2), we prove that under the assumptions (CHs2 ) for `2[J ](Ω∗), the constrained

optimality conditions (12) implies the unconstrained conditions (11) when J is replaced by

Jµ,C = J − µVol + C (Vol− V0)2 + C ‖Bar− Bar(Ω∗)‖2 ,

where µ is the Lagrange multiplier, C ∈ (0,∞) is large enough, and Bar is the barycenter functional.

We can therefore apply Theorem 1.1 to Jµ,C , see the proof of Theorem 3.2, and this clearly implies the

constrained local minimality. It is clear, looking at the proofs of our results, that the situation we aim

to describe in this paper is quite general and can be applied to many other constraints or invariance;

in particular if there is a volume constraint but no translation invariance (or the opposite), the same

strategy applies.
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Old and new applications:

In order to justify the interest of our general statements, we provide several examples of functionals for

which Theorems 1.1 or 3.2 apply. We give here a short list of them, see Section 5 for more details.

• First, we want to show that our Theorem allows to retrieve classical statements already existing in the

literature. Mainly relying on the computation of the first and second derivatives of the functionals (see

Section 2), and the fact that they satisfy conditions (CHs2 ) and (ITHs2 ,X) (for suitable s2 and X), we

believe that despite the degree of generality of our approach, the proofs are sometimes less technical

and more straightforward than the existing literature. This includes the examples of [14, 12, 2, 8], see

Section 5.1 for a more detailed description.

• Second, we noticed ealier that if we were only interested in linear stability, namely that for every smooth

path t 7→ Ωt, there exists t0 small enough and c such that J(Ωt)−J(Ω) ≥ ct2 for every t ∈]− t0, t0[, then

most of the work relies only on the computation of derivatives, and proving the positivity of the second

order derivative d2

dt2
J(Ωt)|t=0. In other words, most of the previous difficulties we described earlier do

not need to be handled. But it is in general much more satisfying (for example in view of the second

step of the global strategy described page 3) to obtain uniformity in (t0, c) as we require in (2). On a

couple of examples, the contribution of this paper is to get uniform stability results, while only directional

results have been obtained in the literature. This includes the result in [35] (see Proposition 5.1).

• We also provide new examples, which comes with minor cost thanks to our results. One example we

have in mind is the following generic example: if Ω∗ is a ball of volume V0 ∈ (0,∞), P (Ω) = Hd−1(∂Ω)

denotes the perimeter of Ω (for reasonably smooth sets), and E is the Dirichlet energy:

E(Ω) = min

{
1

2

∫
Ω
|∇u|2 −

∫
Ω
u, u ∈ H1

0(Ω)

}
, (13)

then the conditions of Theorem 3.2 (version of Theorem 1.1 taking into account the translation invariance

and the volume constraint) are fulfilled for the functional J = P + γE when γ ≥ γ0 and γ0 ∈ (−∞, 0)

(whose optimal value can be explicitly computed), and we can conclude from our strategy that the ball is

a local minimizer (in a smooth neighborhood, say C2,α or even W2,p for p large enough) of the following

optimization problem

min {P (Ω) + γE(Ω), |Ω| = V0} . (14)

In other words, (2) is valid for J = P + γE, d1 is the H1-distance, and d2 = d̄W2,p (see (6)) with p large

enough.

For γ ≥ 0 this result is not surprising, since the ball minimizes both the perimeter and the Dirichlet

energy, so a stability version is a direct consequence of [21]. But this result is new and surprising when

γ is nonpositive (even considering c = 0 only, which means that B is a local minimum for J in a

smooth neighborhood): indeed there is a competition between minimizing the perimeter and maximizing

the Dirichlet energy. Another way to state the result is to say that

P (Ω)− P (B)

E(Ω)− E(B)
≥ |γ0|, ∀Ω ∈ V(B), (15)

where V(B) = {Ω, |Ω| = |B| and d̄W2,p(Ω, B) < η}, for some η > 0.

For a problem related to (14) when γ < 0, see also [27]. It is also interesting to notice that local

optimality of the ball is no longer valid when one consider a neighborhood of Ω∗ for a weak norm, for

example the L1-norm. A counterexample is given in Section 6. Especially it means that the second step

of the strategy described page 3 does not apply to (14) if γ < 0, despite the fact that sets are minimizing

the perimeter. This shows in what way these two steps have different degree of generality.

In addition to this example, we obtain several new local isoperimetric inequalities, see Proposition 5.1

in Section 5.2.
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Going deeper in the computations, it is possible, as it is done in [35] who obtains a directional version of

(15) when replacing E with λ1 (the first eigenvalue of the Dirichlet-Laplacian), to compute the optimal

value of the constant γ0 such that the ball is a smooth local minimizer for (14) (or equivalently compute

the optimal γ0 in (15) when η goes to 0), see Proposition 5.5.

In Section 2, we start with a new proof of the Structure Theorem for second order shape derivatives. We

also recall the classical examples of second order shape derivatives, noticing in particular in which norms they

are continuous (which leads to the value of s2 from assumption (CHs2 )), and focus on the case of the ball for

which we diagonalize the shape hessians (which leads to the classical stability properties of the ball for these

functionals). In Section 3 we state the version of Theorem 1.1 adapted to the constrained/invariant case, we

discuss the coercivity assumptions proving (9) (Lemma 3.3), and we prove Theorems 1.1 and 3.2. In Section

4 we discuss assumption (ITHs2 ,X), in particular we recall and improve existing results, and provide a new

one, namely the first eigenvalue of the Dirichlet Laplacian for which it seems this condition was not proven

in the existing literature. In Section 5, we explain how our general results allow to retrieve known results,

and then prove some local isoperimetric inequalities, some of which are new, see Proposition 5.1. All these

applications are simple corollaries of our main results, combined with the computations reminded in Section

2. In the last Section, we show that similar results in non-smooth neighborhoods cannot be achieved with the

same degree of generality.

2 On Second order shape derivatives.

In this section, we recall classical facts on second order shape derivatives, and give a new proof of their

structure. As for all the examples of this paper, we assume J is a shape functional such that θ ∈ Θ 7→
J((Id + θ)(Ω)) is of class C2 in a neighborhood of 0 in Θ = W1,∞(Rd,Rd). This simplifies the presentation,

though similar proofs can be adapted to other functional spaces, see Remark 2.4.

2.1 Structure theorem

It is well-known since Hadamard’s work that the shape gradient is a distribution supported on the moving

boundary and acting on the normal component of the deformation field. The second order shape derivative

also has a specific structure as stated by A. Novruzi and M. Pierre in [36]. We quote their result, and provide

a new proof:

Theorem 2.1 (Structure Theorem of first and second shape derivatives) Let Θ = W1,∞(Rd,Rd), Ω

an open bounded domain of Rd and J a real-valued shape function defined on V(Ω) = {(Id+ θ)(Ω), ‖θ‖Θ < 1}.
Let us define the function JΩ on {θ ∈ Θ, ‖θ‖Θ < 1} by

JΩ(θ) = J [(Id+ θ)(Ω)].

(i) If JΩ is differentiable at 0 and Ω is C2, then there exists a continuous linear form `1 on C1(∂Ω) such that

J ′Ω(0)ξ = `1(ξ|∂Ω · n) for all ξ ∈ C∞(Rd,Rd), where n denotes the unit exterior normal vector on ∂Ω.

(ii) If moreover JΩ is twice differentiable at 0 and Ω is C3, then there exists a continuous symmetric bilinear

form `2 on C2(∂Ω)× C2(∂Ω) such that for all (ξ, ζ) ∈ C∞(Rd,Rd)2

J ′′Ω(0)(ξ, ζ) = `2(ξ · n, ζ · n) + `1(B(ζτ , ξτ )−∇τ (ζ · n) · ξτ −∇τ (ξ · n) · ζτ ),

where ∇τ is the tangential gradient, ξτ and ζτ stands for the tangential components of ξ and ζ, and B

is the second fondamental form of ∂Ω.

With respect to this work, it is important to notice that at a critical domain for J , the shape hessian is

reduced to `2 and hence does not see the tangential components of the deformations fields.

Remark 2.2 The requirement that Ω is bounded is made only to simplify the presentation: the result remains

valid replacing C1(∂Ω) with C1
c(∂Ω) and localizing the test functions.
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Remark 2.3 As noticed in [29, p. 225], with this degree of generality, the regularity assumption on Ω are

sharp. We could indeed wonder if `1 can be extended as a continuous linear form on C0(∂Ω); this is not true

in general if Ω is only assumed to be C1, as the example of the perimeter shows (it would mean that the

mean curvature is a Radon measure, which is not true for a C1 domain). Moreover, our strategy provides

`2 being continuous for the C2(∂Ω)-norm, while [36] gives a better result with `2 being continuous for the

C1(∂Ω)-norm. However, if we assume that `1 can be extended as a continuous linear form on C0(∂Ω), then

point (ii) is valid assuming Ω of class C2 only, and `2 is then continuous for the C1-norm; it is easy to see

how the proof adapts to this case, and we retrieve then an optimal result, see also [36, Remark 2.8, Corollary

2.9], .

Remark 2.4 Compare to the result in [36], we restricted ourself to the space Θ = W1,∞ (or similarly

C1,∞ := W1,∞ ∩ C1, see the proof below), as all the functional of this paper are differentiable in this space.

Of course, the same proof can be adapted to spaces like Wk,∞ for k ≥ 2, which is important to handle higher

order geometric or PDE functional, but we do not handle such examples in this paper.

Remark 2.5 When ξ = ζ, we get

J ′′Ω(0).(ξ, ξ) = `2(ξ · n, ξ · n) + `1(Zξ), where Zξ = B(ξτ , ξτ )− 2∇τ (ξ · n) · ξτ .

As noticed in [2, Equation (7.5)], the term Zξ can have be written in a different way:

Zξ = (ξ · n)div(ξ)− divτ (ξτ (ξ · n))−H(ξ.n)2.

The advantage of Zξ is usually that it clearly vanishes when ξτ = 0, but this second formulation can also

have advantages, especially when ξ has a vanishing divergence (as it is the case in [2]) or when there are

simplifications as it is the case for the volume (see Lemma 2.7 for the first equality):

Vol′′(Ω).(ξ, ξ) =

∫
∂Ω
H(ξ · n)2 +

∫
∂Ω
Zξ =

∫
∂Ω

(ξ · n)div(ξ). (16)

In that case, the last formula is indeed more common.

Remark 2.6 It is sometimes considered that first and second order derivatives described in the previous

theorem cannot handle the differentiation of t 7→ J(Tt(Ω)) where T ∈ C2([0, α[,Θ) is not of the form Tt =

Id + tξ. This is not true, as the chain rule formula easily gives (and is allowed when we have proven the

Fréchet-differentiability of the functionals, which is valid for all the functionals of this paper):

d2

dt2
J(Tt(Ω)) = J ′′Ω(Tt − Id).

(
d

dt
Tt,

d

dt
Tt

)
+ J ′Ω(Tt − Id).

(
d2

dt2
Tt

)
and the structure result can then be applied. For example, if Tt is the flow of the vector field ξ as it is usually

done in the speed method, we obtain:

d2

dt2
J(Tt(Ω))|t=0 = J ′′Ω(0). (ξ, ξ) + J ′Ω(0). ((Dξ) · ξ) .

Another interesting case is that if Ω is a critical shape for J , namely J ′Ω(0) ≡ 0, and if Tt = Id+tξ+ t2

2 η+o(t2)

where o(t2) has to be understood with the norm ‖ · ‖Θ, then we always have

d2

dt2
J(Tt(Ω))|t=0 = `2(ξ · n, ξ · n).

This fact is often observed through computations, but it is always true, when functionals and shapes are

smooth enough.

Proof. We only focus on the second order derivative, as the first order one is classical (see for example

[29, 16, 32]). For k ∈ N, we define Ck,∞ := Ck ∩Wk,∞(Rd,Rd) equipped with the same norm as Wk,∞, which
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is also a Banach space and is more adapted to approximation by smooth functions. Let ξ, ζ ∈ C∞ compactly

supported , and denote γ, δ their respective flow, namely{
d
dtγt(x) = ξ(γt(x))
γ0(x) = x

{
d
dtδt(x) = ζ(δt(x))
δ0(x) = x

Thanks to our assumption on ξ, we easily check that the function T ∈ Θ 7→ ξ ◦(T +Id) ∈ Θ is locally Lipschitz

and C2, and therefore these ODE admits solutions defined on (−t0, t0) and such that [t 7→ γt− Id, t 7→ δt− Id]

are in C2((−t0, t0),Θ). As a consequence, (t, s) 7→ γs ◦ δt − Id ∈ Θ is well-defined in a neighborhood of (0, 0)

and C2.

Let now assume that ζ · n = 0. Then from classical criterion of invariance of sets with the flow, we have

δt(Ω) = Ω for every t small enough, so J(γs ◦ δt(Ω)) = JΩ(γs ◦ δt − Id) is independent of t. Differentiating

successively with respect to t and s at (0, 0), we obtain:

J ′′Ω(0).(ξ, ζ) + J ′Ω(0).(Dξ · ζ) = 0, ∀ξ ∈ C∞c , ∀ζ ∈ K ∩ C∞c ,

where K = Ker(Φ) and Φ : ξ ∈ Θ 7→ ξ|∂Ω · n.

We define b : (ξ, ζ) ∈ C2,∞×C1,∞ 7→ J ′′Ω(0).(ξ, ζ) +J ′Ω(0).(Dξ · ζ) which is a continuous bilinear functional

that vanishes for ζ ∈ K, for any fixed ξ. Therefore we can write, using quotient properties, b(ξ, ζ) = b̃(ξ, ζ|∂Ω·n)

where b̃ : C2,∞ × C1(∂Ω) → R is continuous (a priori we only get that b̃ is separately continuous but with

Banach-Steinhaus Theorem, it implies continuity), as Φ induces an isomorphism between Θ/K and Φ(Θ) =

C1(∂Ω) equipped with the C1 norm (using that Ω is of class C2). Moreover by construction we have:

J ′′Ω(0).(ξ, ζ) + J ′Ω(0).(Dξ · ζ) = b̃(ξ, ζ|∂Ω · n), ∀ ξ, ζ ∈ C2,∞ × C1,∞.

Using the symmetry of J ′′Ω(0), we can write, for every (ξ, ζ) ∈ C2,∞:

b̃(ζ, ξ|∂Ω · n)− b̃(ξ, ζ|∂Ω · n) = J ′Ω(0).(Dζ · ξ −Dξ · ζ) (17)

Our goal is now to apply this formula to ζn the normal component of ζ, which needs to be extended as a

vector field on Rd. To that end, we introduce P∂Ω the projection on ∂Ω, which is well-defined and C2 in a

neighborhood of ∂Ω, as Ω is assumed to be C3 (see for example [16]). Then if ϕ is defined on ∂Ω, we set

ϕ̃(x) = ϕ(P∂Ωx)χ(x) where χ is a smooth function with χ = 1 in a neighborhood of ∂Ω, and χ = 0 outside

a compact set (in other words, ϕ is extended so that it is constant in the normal direction). This operator

ϕ 7→ ϕ̃ is continuous from C2(∂Ω) to C2,∞. Let us define then ζn := ˜(ζ · n)n the extension of the normal

component of ζ. Defining the bilinear form `0(ϕ1, ϕ2) = b̃(ϕ̃1n, ϕ2), continuous on C2(∂Ω) × C1(∂Ω) (and a

priori non symmetric), we obtain

J ′′Ω(0).(ξ, ζ) = b̃(ξ, ζ · n)− J ′Ω(0).(Dξ · ζ)

= b̃(ζn, ξ · n)− J ′Ω(0).(Dζn · ξ −Dξ · ζn)− J ′Ω(0).(Dξ · ζ) (using (17))
= `0(ζ · n, ξ · n)− J ′Ω(0).(Dζn · ξ −Dξ · ζn +Dξ · ζ)
= `0(ζ · n, ξ · n)− J ′Ω(0).(Dζn · ξ +Dξ · ζτ )

where ζτ = ζ − ζn. We now use Dζn = Dτζn, because thanks to our choice of extension operator, ζn is

constant in the direction n (by definition, Dτa = Da − (Da · n)n), and therefore Dζn · ξ = Dτζn · ξτ .

Moreover, Dξ · ζτ = Dτξ · ζτ .

Using a symmetrization of the previous formula, we obtain

J ′′Ω(0).(ξ, ζ) = 1
2

[
`0(ζ · n, ξ · n) + `0(ξ · n, ζ · n)− J ′Ω(0).(Dτζn · ξτ +Dτξ · ζτ +Dτξn · ζτ +Dτζ · ξτ )

]
= `2(ξ · n, ζ · n)− 1

2J
′
Ω(0) ·

(
2Dτζ · ξτ + 2Dτξ · ζτ −Dτξτ · ζτ −Dτζτ · ξτ

)
where we defined `2(ξ · n, ζ · n) = 1

2(`0(ζ · n, ξ · n) + `0(ξ · n, ζ · n)), which is a continuous bilinear form on

C2(∂Ω)2.

From the structure of the first order derivative, and using the formula

tDτξτ · n+ tDτn · ξτ = 0
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(obtained by tangentially differentiating ξτ · n = 0), we finally obtain (using the C3 regularity of ∂Ω so that

Dτn belongs to the space of definition of `1)

J ′′Ω(0).(ξ, ζ) = `2(ξ · n, ζ · n)− 1
2`1

(
(2Dτζ · ξτ + 2Dτξ · ζτ ) · n− ζτ · (tDτξτ · n)− ξτ · (tDτζτ · n)

)
= `2(ξ · n, ζ · n) + `1

(
(Dτn · ζτ ) · ξτ −∇τ (ζ · n) · ξτ −∇τ (ξ · n) · ζτ

)
(where we used that Dτn is symmetric), which concludes the proof (a priori, `0 depends on the extension

operator that has been chosen, but as in the final formula the extension only appears in `2 which does not

depend of the extension operator). �

2.2 Examples of shapes derivatives on general domains.

For an open bounded (smooth enough) set Ω ⊂ Rd, we consider in this section (and in the rest of the paper)

its volume |Ω|, its perimeter P (Ω) = Hd−1(∂Ω), its Dirichlet energy E(Ω) defined in (13)) and λ1 the first

eigenvalue of the Dirichlet Laplace operator. The existence and computations of the shape derivatives of these

functionals are well known, see for example [29, Chapter 5]; we just recall here the results. Recall that the

mean curvature (understood as the sum of the principal curvatures of ∂Ω) is denoted by H, B = Dτn is the

second fundamental form of ∂Ω, and ‖B‖2 is the sum of the squares of the principal curvatures of ∂Ω.

Lemma 2.7 (Expression of shape derivatives) If Ω is C2, one has, for any ϕ ∈ C∞(∂Ω),

• `1[Vol](Ω).ϕ =

∫
∂Ω
ϕ, `2[Vol](Ω).(ϕ,ϕ) =

∫
∂Ω
Hϕ2.

• `1[P ](Ω).ϕ =

∫
∂Ω
Hϕ, `2[P ](Ω).(ϕ,ϕ) =

∫
∂Ω
|∇τϕ|2 +

∫
∂Ω

[
H2 − ‖B‖2

]
ϕ2

• `1[E](Ω).ϕ = −
1

2

∫
∂Ω

(∂nu)2ϕ, `2[E](Ω).(ϕ,ϕ) = 〈∂nu ϕ,Λ(∂nu ϕ)〉H1/2×H−1/2 +

∫
∂Ω

[
∂nu+

1

2
H(∂nu)2

]
ϕ2

where u ∈ H1
0(Ω) is the unique solution to −∆u = 1, Λ : H1/2(∂Ω) → H−1/2(∂Ω) is the Dirichlet-to-

Neumann map defined as Λ(ψ) = ∂nH(ψ) where H is the harmonic extension operator from H1/2(∂Ω)

into H1(Ω):

−∆H(ψ) = 0 in Ω, H(ψ) = ψ on ∂Ω,

• `1[λ1](Ω).ϕ = −
∫
∂Ω

(∂nv)2ϕ, `2[λ1](Ω).(ϕ,ϕ) =

∫
∂Ω

2w(ϕ) ∂nw(ϕ) +H(∂nv)2ϕ2

where v is the normalized eigenfunction (solution in H1
0(Ω) of −∆v = λ1v with v ≥ 0 in Ω and ‖v‖L2(Ω) =

1) and w(ϕ) is the solution of
−∆w(ϕ) = λ1w(ϕ)− v

∫
∂Ω

(∂nv)2ϕ in Ω,

w(ϕ) = −ϕ∂nv on ∂Ω,∫
Ω
v w(ϕ) = 0.

(18)

A fundamental fact for this work appears here in the expression of the shape hessians. Even if they are

derived for regular perturbations, they are naturally defined and continuous on different Sobolev spaces on

∂Ω:

Lemma 2.8 (Continuity of shape Hessians) If Ω is C2, there is a constant C > 0 such that

|`2[P ](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2H1(∂Ω), |`2[Vol](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2L2(∂Ω),

|`2[E](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2
H1/2(∂Ω),

|`2[λ1](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2
H1/2(∂Ω)

.

Therefore, from this Lemma, it is natural to consider the extension of these bilinear forms to their space of

continuity. Note that the C2 assumption on Ω is sufficient here, see also Remark 2.3.
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2.3 The case of balls

When proving the second order optimality condition, one needs to explicit the shape derivatives of these

functionals on the ball B1 of radius 1. For the Dirichlet energy E, we remark that u(x) = (1− |x|2)/2d solves

−∆u = 1 in H1
0(B1) and satisfies ∂nu = −1

d on ∂B1. For λ1, we recall that the eigenvalue and eigenfunction

are

λ1(B1) = j2
d/2−1 associated to v(x) = αd |x|1−d/2 Jd/2−1

(
jd/2−1 |x|

)
,

where jd/2−1 is the first zero of Bessel’s function Jd/2−1 and the normalization constant is defined as

αd =

[
|∂B1|

∫ 1

0
rJ2

d/2−1

(
jd/2−1

R
r

)
dr

]−1/2

.

Moreove, from [30, p. 35], the eigenfunction satisfies

∂nv =

√
2

P (B1)
jd/2−1 := γd, so that γ2

d =
2λ1(B1)

P (B1)
. (19)

We obtain the shape gradients:

`1[Vol](B1).ϕ =

∫
∂B1

ϕ, `1[P ](B1).ϕ = (d− 1)

∫
∂B1

ϕ,

`1[E](B1).ϕ = −
1

2d2

∫
∂B1

ϕ, `1[λ1](B1).ϕ = − γ2
d

∫
∂B1

ϕ.

Let us notice that these four shape gradients at balls are colinear. As a consequence, the balls are critical

domains for the perimeter, the Dirichlet energy and λ1 (or any sum of these functionals) under a volume

constraint, and these formula easily provide the value of the Lagrange-multiplier.

Let us turn our attention to the hessians. The value of `2[λ1] is a bit more involved, so we deal with it in

the next lemma. For the other functionals, it is known from Lemma 2.7 that:

`2[Vol](B1).(ϕ,ϕ) = (d− 1)

∫
∂B1

ϕ2,

`2[P ](B1).(ϕ,ϕ) =

∫
∂B1

|∇τϕ|2 + (d− 1)(d− 2)

∫
∂B1

ϕ2,

`2[E](B1).(ϕ,ϕ) =
1

d2
〈ϕ,Λϕ〉H1/2×H−1/2 −

d+ 1

2d2

∫
∂B1

ϕ2.

In order to see that the quadratic forms associated to the Lagrangian are coercive on their natural spaces,

it is useful to study the diagonalized form of these Hessians. To that end, we use spherical harmonics defined

as the restriction to the unit sphere of harmonic polynomials. We recall here facts from [41, pages 139-141].

We let Hk denote the space of spherical harmonics of degree k (that is, the restriction to ∂B1 of homogeneous

polynomials in Rd, of degree k). It is also the eigenspace of the Laplace-Beltrami operator on the unit sphere

associated with the eigenvalue −k(k+ d− 2). Let (Y k,l)1≤l≤dk be an orthonormal basis of Hk with respect to

the L2(∂B1) scalar product. The family (Y k,l)k∈N,1≤l≤dk is a Hilbert basis of L2(∂B1). Hence, any function ϕ

in L2(∂B1) can be decomposed:

ϕ(x) =
∞∑
k=0

dk∑
l=1

αk,l(ϕ)Y k,l(x), for |x| = 1. (21)

Then, by construction, the function h defined by

h(x) =

∞∑
k=0

|x|k
dk∑
l=1

αk,l(ϕ)Y k,l

(
x

|x|

)
, for |x| ≤ 1, (22)

is harmonic in B1 and satisfies h = ϕ on ∂B1. Moreover, the sequence of coefficients αk,l characterizes the

Sobolev regularity of ϕ: indeed ϕ ∈ Hs(∂B1) if and only if the sum
∑

k(1 + k2)s
∑

l |αk,l|2 converges. We can

now state the following lemma expressing the previous shape hessians are diagonal on this basis.
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Lemma 2.9 Using the decomposition (21), we have (γd is the constant defined in (19))

`2[Vol](B1).(ϕ,ϕ) =
∞∑
k=0

dk∑
l=1

(d− 1) αk,l(ϕ)2,

`2[E](B1).(ϕ,ϕ) =

∞∑
k=0

dk∑
l=1

[
1

d2
k − d+ 1

2d2

]
αk,l(ϕ)2,

`2[P ](B1).(ϕ,ϕ) =
∞∑
k=0

dk∑
l=1

[
k2 + (d− 2)k + (d− 1)(d− 2)

]
αk,l(ϕ)2,

`2[λ1](B1)(ϕ,ϕ) = γ2
d

(
3α2

0,1(ϕ) +
∞∑
k=1

dk∑
l=1

2

[
k +

d− 1

2
− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ)

)
.

This result is very useful to look for the sign of `2[J − µVol](B1) where J is the functional we minimize and

µ is a Lagrange multiplier, see Section 5.

Proof. First we check that ∫
∂B1

ϕ2 =
∞∑
k=0

dk∑
l=1

αk,l(ϕ)2.

∫
∂B1

|∇τϕ|2 = −
∫
∂B1

ϕ ∆τϕ =

∞∑
k=0

k(k + d− 2)

dk∑
l=1

αk,l(ϕ)2.

Then, we precise the term involving the Dirichlet-to-Neumann map that appears in the shape hessian of the

Dirichlet energy. Using h defined in (22) and Green formula, we have:

〈ϕ,Λϕ〉H1/2×H−1/2 =

∫
∂B1

ϕ∂nh =

∫
B1

|∇h|2

=

∫ 1

0

(∫
∂Br

(
(∂nh)2 + |∇τh|2

)
dσ

)
dr =

∫ 1

0

(∫
∂Br

(
(∂nh)2 − h∆τh

)
dσ

)
dr

=

∞∑
k=0

dk∑
l=1

∫ 1

0
rd−1

[
k2r2(k−1) +

k(k + d− 2)

r2
r2k

]
dr αk,l(ϕ)2

=

∞∑
k=0

dk∑
l=1

[
k2

2k + d− 2
+
k(k + d− 2)

2k + d− 2

]
αk,l(ϕ)2 =

∞∑
k=0

dk∑
l=1

k αk,l(ϕ)2.

We obtain `2[Vol], `2[P ] and `2[E] by gathering these elementary terms.

Let us now consider the case of the first eigenvalue. We apply [30, p. 35] (see also [38] and [40]): for a

second order volume preserving path, that is t 7→ Tt such that |Tt(Ω)| = |Ω|+ o(t2) for small t, we have(
d2

dt2
λ1(Tt(B1))

)
|t=0

=
∞∑
k=1

dk∑
l=1

2γ2
d

[
k + d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ)

where ϕ = ( ddtTt)|t=0·n and we have used the recursive formula for Bessel function J ′ν(z) = (ν/z)Jν(z)−Jν+1(z)

to adapt his expression to our notations ([1, 9.1.27, p 361]). To deduce `2[λ1] from this computation, we

introduce θ a smooth vector field which is normal on ∂B1 and denote ϕ = θ · n. We assume that
∫
∂B1

ϕ =

α0,1(ϕ) = 0. It is then clear that there exists ξ such that Tt := Id+ tθ+ t2

2 ξ is volume preserving at the second

order, that is to say

`2[Vol](B1)(ϕ,ϕ) + `1[Vol](B1)(ψ) = 0,

where ψ = ξ · n. Then we observe that for a smooth shape functional J and for such t 7→ Tt,(
d2

dt2
J(Tt(B1))

)
|t=0

= `2[J ](B1)(ϕ,ϕ) + `1[J ](B1)(ψ),
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and therefore, denoting µ the Lagrange multiplier such that `1[λ1 − µVol](B1) = 0, we obtain(
d2

dt2
λ1(Tt(B1))

)
|t=0

= `2[λ1](B1)(ϕ,ϕ) + `1[λ1](B1)(ψ) = `2[λ1](B1)(ϕ,ϕ) + µ`1[Vol](B1)(ψ)

= `2[λ1](B1)(ϕ,ϕ)− µ`2[Vol](B1)(ϕ,ϕ)

Then, we get, as here µ = −γ2
d :

`2[λ1](ϕ,ϕ) =

(
d2

dt2
λ1(Tt(B1))

)
|t=0

+ µ`2[Vol](B1)(ϕ,ϕ),

=
∞∑
k=1

dk∑
l=1

2γ2
d

[
k + d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ)− γ2

d

∞∑
k=0

dk∑
l=1

(d− 1)a2
k,l(ϕ),

=

∞∑
k=1

dk∑
l=1

2γ2
d

[
k +

d− 1

2
− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ).

It remains to compute the coefficient associated to the mode k = 0. It suffices to consider the deformations

as Tt(x) = x + tx mapping the ball B1 onto the ball B1+t. Here ϕ = 1 and α0,1(ϕ) = P (B1)1/2. Since

λ1 is homogeneous of degree −2, we get λ(t) := λ1(Tt(B1)) = (1 + t)−2λ1(B1) so that λ′′(0) = 6λ1(B1) =

6λ1(B1)
P (B1) α0,1(ϕ)2. �

3 Main Theorem

In the introduction, we gave the unconstrained version of the main result of this paper, see Theorem 1.1. As

in most applications we need to deal with a volume constraint and a translation invariance of the functional,

we describe here the corresponding statement. In the rest of the section, we discuss condition (CHs2 ) and

prove (9) about coercivity and we prove Theorems 1.1 and 3.2.

We start with the suitable definitions of critical and stable domains for problems with volume constraint

and translation invariant functionals:

Definition 3.1 Let Ω∗ be a shape (smooth enough so that Theorem 2.1 applies) and J a shape functional

defined and twice shape differentiable in a neighborhood of Ω∗ for dW1,∞.

• We say that Ω∗ is a critical domain for J under volume constraint if

∀ϕ ∈ C∞(∂Ω∗) such that `1[Vol](Ω∗).ϕ =

∫
∂Ω∗

ϕ = 0, `1[J ](Ω∗).(ϕ) = 0.

It is equivalent to the existence of µ ∈ R such that (`1[J ]− µ`1[Vol])(Ω∗) = 0, µ is called a Lagrange

multiplier.

• When Ω∗ is a critical domain for J under volume constraint, we say that Ω∗ is a strictly stable shape

for J under volume constraint and up to translations if

∀ϕ ∈ T (∂Ω) \ {0}, (`2[J ]− µ`2[Vol])(Ω).(ϕ,ϕ) > 0 (23)

where

T (∂Ω) :=

{
ϕ ∈ Hs(∂Ω),

∫
∂Ω
ϕ = 0,

∫
∂Ω
ϕ−→x =

−→
0

}
, (24)

µ is the Lagrange multiplier associated and s ≥ 0 is the lowest index so that `2[J ](Ω) is continuous on

Hs(∂Ω) (see Lemma 2.8).

Here is the main result of this paper:

Theorem 3.2 Let Ω∗ of class C3, and J a shape functional, translation invariant and twice Fréchet differ-

entiable on a neighborhood of Ω∗ for dW1,∞. We assume:
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• Structural hypotheses: there exists s2 ∈ (0, 1] and X a Banach space with C∞(Rd) ⊂ X ⊂W1,∞(Rd)
such that J satisfies (CHs2 ) and (ITHs2 ,X) at Ω∗,

• Necessary optimality conditions:

– Ω∗ is a critical shape under volume constraint for J ,

– Ω∗ is a strictly stable shape for J under volume constraint and up to translations.

Then Ω∗ is an Hs2-stable local minimum of J in a X-neighborhood under volume constraint, that

is to say there exists η > 0 and c = c(η) > 0 such that:

∀ Ω such that d̄X(Ω,Ω∗) ≤ η and |Ω| = |Ω∗|, J(Ω) ≥ J(Ω∗) + cd̄Hs2 (Ω,Ω∗)2.

where d̄X , d̄Hs2 are defined in (6).

3.1 About coercivity and condition (CHs)

Usually the coercivity property for the second order derivative (of the functional or of the Lagrangian) has

to be proven by hand on each specific example by studying the lower bound of the spectrum of the bilinear

form `2 defined in Theorem 2.1, typically thanks to Lemma 2.9. Nevertheless, when `2 enjoys some structural

property, coercivity can be more easily checked as a consequence of the following general lemma.

Lemma 3.3 Let M be a Lipschitz manifold, s2 ∈ [0, 1], and V a vectorial subspace of Hs2(M), closed for the

weak convergence in Hs2(M). If `, a quadratic form defined on Hs2(M) satisfies condition (CHs2 ), namely

(CHs2 ) there exists 0 ≤ s1 < s2 and c1 > 0 such that ` = `m + `r with{
`m is lower semi-continuous in Hs2(M) and `m(ϕ,ϕ) ≥ c1|ϕ|2Hs2 , ∀ϕ ∈ C∞(M),

`r continuous in Hs1(M).

then the following propositions are equivalent:

(i) `(ϕ,ϕ) > 0 for any ϕ ∈ V \ {0}.

(ii) ∃λ > 0, `(ϕ,ϕ) ≥ λ‖ϕ‖2Hs1 for any ϕ ∈ V .

(iii) ∃λ > 0, `(ϕ,ϕ) ≥ λ‖ϕ‖2Hs2 for any ϕ ∈ V .

Remark 3.4 In practice, we apply this lemma to the spaces Hs(∂Ω) where ∂Ω is smooth enough, and V is

either Hs2(∂Ω) or T (∂Ω) defined in (24).

Proof. Since the implications (iii) =⇒ (ii) and (ii) =⇒ (i) are trivial, it suffices to prove (i) =⇒ (iii).

To that end, let (ϕk)k a minimizing sequence for the problem

inf {`(ϕ,ϕ), ϕ ∈ V, ‖ϕ‖Hs2 = 1} .

Up to a subsequence, ϕk weakly converges in Hs2(M) to some ϕ∞ ∈ V . By the compactness of the embedding

of Hs2(M) into Hs1(M), ϕk → ϕ∞ in Hs1(M) so that `r(ϕk, ϕk) → `r(ϕ∞, ϕ∞). We distinguish two cases:

if ϕ∞ 6= 0, lim infk `m(ϕk, ϕk) ≥ `m(ϕ∞, ϕ∞) by the lower semi continuity of `m, so that lim infk `(ϕk, ϕk) ≥
`(ϕ∞, ϕ∞) > 0 by assumption (i). Now, if ϕ∞ = 0, then as the norm ‖ · ‖Hs2 is equivalent to the norm

‖ · ‖Hs1 + | · |Hs2 , we know that |ϕk|Hs2 is bounded from below by a positive constant, and using (CHs2 ),

lim inf
k

`(ϕk, ϕk) = lim inf
k

`m(ϕk, ϕk) ≥ c1 lim inf
k
|ϕk|2Hs2 > 0.

�

Remark 3.5 The equivalence between coercivity in L2 and H1 was already known in the context of stable

minimal surface it appears in the work [28] of Grosse-Brauckmann. Also in [2], the previous lemma is proven

in the particular case of the functional under study (see also Section 5.1).
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Remark 3.6 When one applies this lemma to a shape hessian, assumption (i) may seem unnatural. Indeed,

shape derivatives are usually defined for regular perturbations that are dense subsets of Hs(∂Ω) and one could

expect to assume only `(ϕ,ϕ) > 0 for ϕ ∈ V \ {0} smooth enough. But, in that case, the proof (nor the

result) is not valid since ϕ∞ may not be smooth and therefore not admissible to test the positivity property.

Therefore, the shape hessian ` has to be extended by continuity to the whole Hs(∂Ω) (see assumption (11)

in Theorem 1.1 and (23) for Theorem 3.2). Notice that this extension is for free once the expression of the

shape derivative has been computed as illustrated by Lemma 2.7.

We conclude this section noticing that the shape hessians of the model functionals from Section 2 satisfies

(CHs2 ):

• The perimeter satisfies (CH1) with

`m[P ](ϕ,ϕ) =

∫
∂Ω
|∇τϕ|2 and `r[P ](ϕ,ϕ) =

∫
∂Ω

[
H2 − ‖B‖2

]
ϕ2 (here we can choose s1 = 0).

• The Dirichlet energy and λ1 satisfy (CH1/2) (again s1 = 0):

`m[E](ϕ,ϕ) = 〈∂nuϕ,Λ(∂nuϕ)〉H1/2×H−1/2 and `r[E](ϕ,ϕ) =

∫
∂Ω

[
∂nu+

1

2
H(∂nu)2

]
ϕ2,

`m[λ1](Ω).(ϕ,ϕ) =

∫
∂Ω

2w(ϕ) ∂nw(ϕ) and `r[λ1](ϕ,ϕ) =

∫
∂Ω
H(∂nv)2ϕ2.

Remark 3.7 Let us emphasize that condition (CHs) may not be valid in some interesting examples. Shape

functionals used for domain reconstruction from boundary measurements provide in general non-coercive

Hessians. With the examples treated in [3], [5] one can find critical shape whose hessian is positive but is not

coercive (for any Hs-norm).

More precisely, for a reconstruction function J related to this kind of inverse problem (for example the least

square fitting to data), the Riesz operator corresponding to the shape Hessian `2[J ] at a critical domain is

compact. This means, that one cannot expect an estimate of the kind J(Ωt) − J(Ω0) ≥ ct2 with a constant

c uniform in the deformation direction. This explains also why regularization is required in the numerical

treatment of this type of problem. This fact is well-known in the inverse problem community.

There are also situations where the objective is flat up to fourth order (see [13]).

3.2 Proof of Theorem 1.1

Let Ω∗ be a domain satisfying the assumption of Theorem 1.1. Let η > 0 and let Ω be such that d̃X(Ω,Ω∗) < η.

Then, there exists h ∈ X such that the boundary of Ω is the set {x+h(x)n(x), x ∈ ∂Ω∗}. Then from (ITHs,X)

we have

J(Ω)− J(Ω∗) = `1[J ](Ω∗)(h)︸ ︷︷ ︸
=0

+
1

2
`2[J ](Ω∗)(h, h) + ω(‖h‖X)‖h‖2Hs

Using (CHs2 ), we can apply Lemma 3.3 and there is a constant λ > 0 such that

`2[J ](Ω∗).(h, h) ≥ λ‖h‖2Hs2 .

Therefore there exists η small enough such that if ‖h‖X ≤ η, then ω(‖h‖X) ≤ λ
4 and then

J(Ω)− J(Ω∗) ≥
λ

4
‖h‖2Hs2 .

�
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3.3 Proof of Theorem 3.2

We denote µ the Lagrange multiplier associated to J . Therefore we consider Jµ = J − µVol and Ω∗ satisfies

J ′µ(Ω∗) = 0.

Step 1: Stability under volume and barycenter constraint: Under the structural hypotheses on

`2[J ](Ω∗) = `m + `r and the fact that `2[Vol](Ω∗) is continuous in the L2-norm, we can applied Lemma 3.3 to

`2[Jµ](Ω∗), so there are constants c1, c2, c3 and c4 > 0 such that

∀ϕ ∈ Hs2(∂Ω∗), |`m(ϕ,ϕ)| ≥ c1|ϕ|2Hs1 |`r(ϕ,ϕ)| ≤ c2‖ϕ‖2Hs1 , |`2[Vol](Ω∗).(ϕ,ϕ)| ≤ c3‖ϕ‖2L2 , (25)

∀ϕ ∈ T (∂Ω∗), `2[J − µVol](Ω∗).(ϕ,ϕ) ≥ c4‖ϕ‖2Hs2 . (26)

Step 2: Stability without constraint: In order to deal with the volume constraint and the invariance

with respect to translations, we use an idea of [44, 28] by considering

Jµ,C = J − µVol + C (Vol− V0)2 + C ‖Bar− Bar(Ω∗)‖2 ,

where Bar(Ω) :=
∫

Ω x and ‖ · ‖ is the euclidean norm in Rd. The shape Ω∗ still satisfies J ′µ,C(Ω∗) = 0. We

claim that Ω∗ is a strictly stable shape for Jµ,C on the entire space Hs2(∂Ω∗) when C is big enough, that is

to say for all ϕ in Hs2 \ {0},
`2[Jµ,C ](Ω∗).(ϕ,ϕ) > 0. (27)

Indeed, if it was not the case, we would have the existence of ϕn ∈ Hs2(∂Ω∗) \ {0} such that

`2[Jµ,n](Ω∗).(ϕn, ϕn) ≤ 0.

Using (25), this leads to

c1|ϕn|2Hs2 − c2‖ϕn‖2Hs1 − |µ|c3‖ϕn‖2L2 + 2n

(∫
∂Ω∗

ϕn

)2

+ 2n

∥∥∥∥∫
∂Ω∗

ϕnx

∥∥∥∥2

≤ 0. (28)

Assuming by homogeneity that ‖ϕn‖Hs1 = 1 for every n, (28) implies that (ϕn)n is bounded in Hs2 and using

the compactness of Hs2(∂Ω∗) in Hs1(∂Ω∗), we have, up to a subsequence, that ϕn converges to ϕ, weakly in

Hs2 and strongly in Hs1 and L2. Therefore, (28) implies first that 2n[Vol′(ϕn)2 + Bar′(ϕn)2] is bounded, then

that ϕ ∈ T (∂Ω∗), that is to say ∫
∂Ω∗

ϕ = 0 and

∫
∂Ω∗

ϕx = 0,

and then the semi-lower continuity assumption in (CHs2 ) implies

`2[Jµ](Ω∗).(ϕ,ϕ) ≤ 0, with ‖ϕ‖Hs1 = 1

which contradicts (26), since ϕ 6= 0.

Step 3: Stability: It is now easy to see that Jµ,C satisfies both (CHs2 ) and (ITHs2 ,X) at Ω∗ (using that

Vol and Bar satisfy (ITH0,W1,∞), see Section 4.1), and for C large enough we have (27), so applying Theorem

1.1, there exists c > 0 and η > 0 such that for every Ω = Ωh with d̃X(Ω,Ω∗) < η,

Jµ,C(Ω)− Jµ,C(Ω∗) ≥ c‖h‖2Hs2 ,

Writing this inequality in particular for shapes Ω having the same volume and barycenter as Ω∗,

J(Ω)− J(Ω∗) ≥ c‖h‖2Hs2 .

We conclude using the invariance of J with translations that this estimate is valid for any Ω having the same

volume as Ω∗ and such that d̄X(Ω,Ω∗) < η. �
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4 About Condition (ITHs,X)

In this section, we show that our main examples satisfy condition (ITHs,X) where s is given in Section 3.1,

and X is hoped to be as large as possible.

Given Ω an open set and h : ∂Ω→ R, we recall that Ωh is defined so that

∂Ωh = {x+ h(x)n(x), x ∈ ∂Ω}.

It may be useful to see Ωh as a deformation with a vector field. To that end, we assume Ω of class C2 so

that the projection π∂Ω on ∂Ω is well-defined and C1 in a neighborhood of ∂Ω, and we define

h(x) = h(π∂Ω(x)) and n(x) = n(π∂Ω(x)),

in order to extend h and n in a neighborhood of ∂Ω and so that it is constant in the direction given by n.

Then we define ξh(x) = h(x)n(x) in this neighborhood and we have divξh = div(n)h. We then extend

it smoothly to Rd, so that ξh ∈ W1,∞(Rd,Rd). Denoting Th = Id + ξh, we have Ωh = Th(Ω), and j(h) =

JΩ(ξh) = J(Ωh) (where J is the shape functional under study). In this section, the notation ŵh stands for

wh ◦ Th where wh is defined on Ωh or ∂Ωh.

When studying condition (ICHs,X) (which implies (ITHs,X)), we focus on the path Ωt defined in (10), and

we have Ωt = (Id + tξh)(Ω) and j′′(t) = J ′′Ω(tξh).(ξh, ξh) for all t ∈ [0, 1], where j(t) = J(Ωt). Note that in

this case we will notify the dependence of quantities with respect to t, but there is also a dependence in h

that we will not recall in order to simplify the notations : for example nh will denote the exterior normal

vector to Ωh and nt the normal vector to Ωt while we should use nth. Also, as we chose a vector field that is

constant along the normal vector in a neighborhood of ∂Ω, we have

j′′(t) = J ′′(Ωt) · (ξh, ξh) = J ′′Ωt(0)(ξh, ξh) (29)

if ‖h‖∞ is small enough, which allows to use the results in Section 2.

4.1 Geometric quantities

• The volume:

Proposition 4.1 If Ω is C2, then Vol satisfies (ICL2,W1,∞) condition at Ω.

Remark 4.2 More generally (with a similar proof), we have that Ω 7→
∫

Ω f also satisfies (ICL2,W1,∞) if

f ∈ C1(Rd). This is true in particular for the barycenter functional.

Before proving this result, we give a geometric Lemma, inspired by the results in [12]. We recall that

J∂Ω(h) := detDTh|(tDT−1
h )n| is the surface jacobian, appearing when changing variables between ∂Ωh and

∂Ω.

Lemma 4.3 We have the following Taylor expensions, where O denote a domination uniform in x ∈ ∂Ω,

• J∂Ω(h)(x) = 1 + `J1 (h(x),∇h(x)) + 1
2`
J
2 (h(x),∇h(x)) +O

(
‖h‖W1,∞(∂Ω)

(
|h(x)|2 + |∇h(x)|2

))
,

• n̂h(x) = n(x) + `n1 (h(x),∇h(x)) + 1
2`

n
2 (h(x),∇h(x)) +O

(
‖h‖W1,∞(∂Ω)

(
|h(x)|2 + |∇h(x)|2

))
.

where (`J1 , (`
n
1 )i∈J1,dK), (`J2 , (`

n
2 )i∈J1,dK) are respectively linear and quadratic forms on Rd+1.

Proof of Lemma 4.3: The first part follows simply from the fact that A ∈ Md(R) 7→ det(A)
∣∣(tA−1)n

∣∣ is

smooth in a neighborhood of Id, and the fact that Dξh = h(Dn) +∇h⊗ n.

For the second part, we use a level-set parametrization: there exists φ of class C2 such that Ω = {φ < 0} and

∇φ does not vanish in a neighborhood of ∂Ω, and then Ω = {φ ◦ T−1
h < 0}. Therefore

n̂h − n =
∇(φ ◦ T−1

h )

|∇(φ ◦ T−1
h )|

◦ Th −
∇φ
|∇φ|

=
tDT−1

h .∇φ
|tDT−1

h .∇φ|
− ∇φ
|∇φ|

,

and we conclude using the smoothness of A 7→ tA−1 and w ∈ Rd 7→ w
|w| in the neighborhood of Id and ∇φ

respectively. �
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Proof of Proposition 4.1: We denote H = div(n) the mean curvature of ∂Ω, extended to Rd and constant

in the normal direction of ∂Ω. We use (16), and the fact that div(ξh) = hdiv(n) (as h is constant in the

direction of n). Therefore if v(t) = Vol(Ωt), we have (see (16) and (29)):

v′′(t) =

∫
∂Ωt

ξh · ntdiv(ξh) =

∫
∂Ωt

div(n)(n · nt)h2 =

∫
∂Ω
H(n · n̂t)h2J∂Ω(t).

With Lemma 4.3, we easily obtain

|v′′(t)− v′′(0)| ≤ Ct‖h‖W1,∞‖h‖2L2 ≤ C‖h‖W1,∞‖h‖2L2 .

�

Remark 4.4 We could try a direct proof estimating

|Ωh| − |Ω| =
∫

Ω
(det(Id+Dξh)− 1) ,

but a priori this only leads to the fact that the volume satisfies (ITH1,W1,∞). In the spirit of [34, Lemma 4.1],

we could also try:

|Ω| = 1

d

∫
∂Ω
x · nh =

1

d

∫
∂Ω

(x+ h(x)n(x)) · n̂hJ∂Ω(h)

but this leads to the same issue (see also Remark 4.6).

• The perimeter:

Proposition 4.5 If Ω is C2, then P satisfies (ITH1,W1,∞) condition at Ω.

Proof. We follow exactly the second proof suggested in Remark 4.4:

P (Ωh) =

∫
∂Ωh

1 =

∫
∂Ω
J∂Ω(h) = P (Ω) + `1[P ](Ω)(h) +

1

2
`2[P ](Ω)(h, h) +O(‖h‖W1,∞‖h‖2H1),

where we used Lemma 4.3. �

Remark 4.6 It is interesting to compare the two strategies used for the volume and for the perimeter: indeed,

for the volume we prefered to use condition (IC), while a similar strategy for the perimeter, as it is done

in [12] or in [2, Proof of Theorem 3.9] (but for a different path of shapes) lead to weaker results, namely

(ICH1,C2,α) and (ICH1,W2,p) respectively).

4.2 PDE energy

For PDE energies, a condition of the type (ICHs,X) was studied first in [14] where it is proven that in dimension

two the Dirichlet energy satisfy (ICH1/2,C2,α) (for a volume preserving path instead of a normal path), then

a similar result is proven for general PDE functionals in any dimension in [12], either for the path (10) or a

volume preserving path. More recently in [2], it was proven that the functional described in (??) involving

the sum of the perimeter and a PDE functional (of a different kind than in [12]) satisfies (ICH1,W2,p) for p

large enough, also for a volume preserving path, see also Section 5.1. Finally, condition (ICH1/2,C2,α) is also

established for the drag in a Stokes flow in [9]. Thanks to our method to handle the volume constraint (see

Section 3.2), we only need to deal with the normal path (10).

In this section, we prove the following result, which includes the case of λ1 (which seemed not to be handled

in the literature), and we improve the space X compare to [12]:

Proposition 4.7 Let Ω be a bounded C3 domain. Then E and λ1 satisfy (ICH1/2,W2,p) for p > d.
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We give 4 preliminary steps to prove this result. We only give the details for λ1; the case of E is easier and

the reader can follow [12] or [8, Appendix] and use the ideas below where we explain how to get X to be W2,p

instead of C2,α.

• Step 1: Computing the second derivative along the path.

Denoting vt the first normalized eigenfunction on Ωt and applying the structure Theorem to λ1 (Lemma

2.7) and (29), we get

λ′′1(Ωt).(ξh, ξh) = 2

∫
∂Ωt

v′t∂ntv
′
t +

∫
∂Ωt

(∂ntvt)
2
[
Ht(ξh · nt)2 −Bt((ξh)τt , (ξh)τt) + 2∇τt(ξh · nt)(ξh)τt

]
= 2

∫
∂Ωt

v′t∂ntv
′
t︸ ︷︷ ︸

T1(t)

+

∫
∂Ωt

(∂ntvt)
2
[
Htα

2
t −Bt(βt, βt)− 2∇τt(αt) · βt

]
h2︸ ︷︷ ︸

T2(t)

−2

∫
∂Ωt

(∂ntvt)
2αt (βt · ∇τth)h︸ ︷︷ ︸
T3(t)

where

αt = nt · n, βt = αtnt − n.

• Step 2: Geometric estimates:

Similarly to Section 4.1, we denote ŵh = wh ◦ (Id + ξh) where wh is defined on Ωh of ∂Ωh. The following

Lemma follows easily from Lemma 4.3 (see [12] for more details).

Lemma 4.8 There is a constant C > 0 depending on Ω such that for all h in a neighborhood of 0 in W2,p(∂Ω),

• ‖Ĵ∂Ω(h)− 1‖L∞(∂Ω) ≤ C‖h‖W1,∞(∂Ω), ‖Ĵ∂Ω(h)− 1‖W1,p(∂Ω) ≤ C‖h‖W2,p(∂Ω),

• ‖Ĥh −H‖Lp(∂Ω) ≤ C‖h‖W2,p(∂Ω), ‖B̂h −B‖Lp(∂Ω) ≤ C‖h‖W2,p(∂Ω),

• ‖α̂h − 1‖L∞(∂Ω) ≤ C‖h‖W1,∞(∂Ω), ‖∇̂τhαh‖Lp(∂Ω) ≤ C‖h‖W2,p(∂Ω),

• ‖β̂h‖L∞(∂Ω) ≤ C‖h‖W1,∞(∂Ω), ‖β̂h‖W1,p(∂Ω) ≤ C‖h‖W2,p(∂Ω).

• Step 3: Estimate of ‖v̂θ − v‖W2,p The statement in this step is not specific to our chosen deformations

ξh hence we present it for general deformations θ ∈ W1,∞(Rd,Rd), that is Ωθ = (Id + θ)(Ω), vθ is the first

Dirichlet eigenfunction on Ωθ. Precisely, we prove

Lemma 4.9 Let Ω be a bounded C3 domain in Rd. If p > d, the map θ 7→ v̂θ from W2,p(Rd,Rd) with values in

W2,p(Ω) is analytic around 0. As a consequence, there is a neighborhood of 0 in W2,p(Rd,Rd) and C depending

on Ω only so that

‖v̂θ − v0‖W2,p(Ω) ≤ C‖θ − Id‖W2,p .

Proof. We use the same strategy as in [29, Proof of Theorem 5.7.4] and [30] but with different functional

spaces: precisely, we will apply the implicit function theorem to F : X × Y × R→ Z × R defined by

F(θ, v, λ) =

(
−divA(θ)∇v − λJ(θ)v,

∫
Ω
v2J(θ)− 1

)
where

{
J(θ) = det(Id+Dθ),

A(θ) = J(θ)(Id+Dθ)−1(Id+ tDθ)−1,

for suitable spaces X,Y, Z.

By Neumann series expansion and using that W1,p is an algebra for p > d, the maps J and A are analytic

around 0 from W2,p(Rd,Rd) into W1,p(Rd,Rd). As a consequence, by Sobolev’s injection, the map F is analytic

around (0, v0, λ0) from W2,p(Rd,Rd)×W2,p(Ω) ∩H1
0 (Ω)×R into Lp(Ω) (here we denoted λ0 := λ1(Ω)). One

checks that F(0, v0, λ0) = (0, 0) and that the differential

∂w,λF(0, v0, λ0).[w, λ] =

(
(−∆− λ0)w − λv0, 2

∫
Ω
v0w

)
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is an isomorphism from W2,p(Ω) ∩ H1
0 (Ω) × R into Lp(Ω) × R (see [29, Lemma 5.7.3] for details) and the

conclusion follows from the implicit function theorem. �

• Step 4: estimation of the variation of the shape derivative of the eigenfunction:

The objective of this step is to prove the following estimate:

Lemma 4.10 There is C, η depending only on Ω such that, if ‖h‖W2,p(∂Ω) ≤ η, then

‖v̂′t − v′0‖H1(Ω) ≤ C‖h‖H1/2(∂Ω) ‖h‖W2,p(∂Ω). (31)

This step is the most involved one when dealing with λ1 instead of the Dirichlet Energy: the latter reduces

indeed to the second step in the following proof.

Proof.

We recall (see (18)) that 
−∆v′t = λ1(t)v′t + λ′1(t)vt in Ωt,

v′t = −(∂ntvt)ξh · nt on ∂Ωt,∫
Ω
v′tvt = 0.

1. Splitting. We introduce Ht the harmonic extension on Ωt of (∂ntvt)ξh · nt. Noticing that

λ′1(t) = −
∫
∂Ωt

(∂ntvt)
2ξh · nt = λ1(t)〈vt,Ht〉

where 〈·, ·〉 is the scalar product in L2(Ωt), we decompose

v′t = −πtHt + wt

where πt is the orthogonal projection on E(t) := {vt}⊥, and wt solves
(−∆− λ1(t))wt = −λ1(t)πtHt in Ωt,

wt = 0 on ∂Ωt,∫
Ωt

vtwt = 0.

We will now prove that each term of the splitting satisfies estimates like (31). 2. Estimate of the harmonic

extension. Let us define Lt = div(At∇·) where At = Jt.(Id+ tDξh)−1(Id+ ttDξh)−1 and Jt = det(Id+ tDξh),

so that Ltf̂t = ∆̂ft if ft is defined on Ωt. Then as ∆(Ĥt − H0) = −div((At − Id)∇Ĥt), from classical elliptic

estimate (see [26, Corollary 8.7]), we obtain:

‖Ĥt − H0‖H1(Ω) ≤ C‖(At − Id)∇Ĥt‖L2(Ω) + C‖Ĥt − H0‖H1/2(∂Ω)

≤ C‖At − Id‖L∞(Ω)‖∇Ĥt‖L2(Ω) + C
∥∥∥((∂̂ntvt)α̂t − ∂nv0

)
h
∥∥∥

H1/2(∂Ω)

≤ C‖h‖W1,∞(∂Ω)

(
‖∇Ĥt −∇H0‖L2(Ω) + ‖∇H0‖L2(Ω)

)
+C‖(̂∂ntvt)α̂t − ∂nv0‖W1−1/p,p(∂Ω)‖h‖H1/2(∂Ω)

≤ C‖h‖W2,p(∂Ω)

(
‖Ĥt − H0‖H1(Ω) + ‖h‖H1/2(∂Ω)

)
.

Here we used that ‖∇H0‖L2(Ω) = ‖H0‖H1/2(∂Ω) ≤ C‖h‖H1/2(∂Ω), Lemmas 4.8 and 4.9, and also an estimate

of a product norm in H1/2. More precisely, from [39, Th 2 p 177], there exists C such that for every functions

u, v : Rn → R:

‖uv‖H1/2(Rn) ≤ C‖u‖Ws,p(Rn)‖v‖H1/2(Rn) (34)

if s > n/p. Using smooth enough maps between ∂Ω and Rd−1 we obtain that these inequalities are valid

(when s > (d− 1)/p) for Sobolev spaces on ∂Ω if in addition s ≤ 1. We apply it here to s = 1− 1/p which is

valid as p > d.
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Equation (33) leads to the first estimate

‖Ĥt − H0‖H1(Ω) ≤ C‖h‖W2,p(∂Ω)‖h‖H1/2(∂Ω)

as soon as ‖h‖W2,p ≤ 1/(2C).

3. Estimates on the variation of wt. We look at the PDE satisfied by ŵt − w0:
(−∆− λ1(0))(ŵt − w0) =

[
(−∆− λ1(0))− (−Lt − λ1(t))

]
(ŵt)− λ1(t)π̂tHt + λ1(0)π0H0 in Ω,

ŵt − w0 = 0 on ∂Ω,

and we know that (−∆− λ1(0)) is an isomorphism on {v0}⊥. Therefore

‖ŵt − w0 − γtv0‖H1(Ω) ≤ C‖(At − Id)∇ŵt‖L2(Ω) + |λ1(t)− λ1(0)|‖ŵt‖L2(Ω) + ‖λ1(t)π̂tHt − λ1(0)π0H0‖L2(Ω)

where γt is chosen so that ŵt − w0 − γtv0 ∈ {v0}⊥. From there and using the previous step, we obtain

‖ŵt − w0 − γtv0‖H1(Ω) ≤ C‖h‖W2,p(∂Ω)

(
‖ŵt‖H1 + ‖h‖H1/2(∂Ω)

)
.

But we have:

|γt| =
∣∣∣∣∫

Ω
(ŵt − w0)v0

∣∣∣∣ =

∣∣∣∣∫
Ω
ŵt
[
v̂tJt − v0

]∣∣∣∣ ≤ C‖h‖W2,p‖ŵt‖L2(Ω),

leading to

‖ŵt−w0‖H1(Ω) ≤ C‖h‖W2,p(∂Ω)

(
‖ŵt‖H1 + ‖h‖H1/2(∂Ω)

)
≤ C‖h‖W2,p(∂Ω)

(
‖ŵt − w0‖H1 + ‖w0‖H1 + ‖h‖H1/2(∂Ω)

)
.

Using now ‖w0‖H1 ≤ C‖H0‖L2 ≤ C‖h‖H1/2 and again that ‖h‖W2,p is small enough, this leads to

‖ŵt − w0‖H1(Ω) ≤ C‖h‖W2,p(∂Ω)‖h‖H1/2(∂Ω)

and concludes the proof of this lemma. �

Proof of Proposition 4.7: We deal separately with the terms of the decomposition (30):

Estimate of T1(t)− T1(0). We first observe that

T1(t) =

∫
Ωt

|∇v′t|2 − λ1(t)

∫
Ωt

v2
t ,

and also that ‖v′0‖H1(Ω) ≤ ‖w0‖H1(Ω) + ‖H0‖H1(Ω) ≤ C‖h‖H1/2(∂Ω). Therefore using Lemma 4.10, we get∣∣∣∣∫
Ωt

|∇v′t|2 −
∫

Ω0

|∇v′0|2
∣∣∣∣ =

∣∣∣∣∫
Ω

(At − Id)|∇v̂′t|2 +∇(v̂′t − v′0) · ∇(v̂′t + v′0)

∣∣∣∣
≤ C‖h‖W2,p(∂Ω)‖h‖2H1/2(∂Ω)

.

and∣∣∣∣λ1(t)

∫
Ωt

|v′t|2 − λ1(0)

∫
Ω0

|v′0|2
∣∣∣∣ =

∣∣∣∣(λ1(t)− λ1(0))

∫
Ωt

|v′t|2 + λ1(0)

∫
Ω0

(Jt − 1)|v̂′t|2 + (v̂′t − v′0)(v̂′t + v′0)

∣∣∣∣
≤ C‖h‖W2,p(∂Ω)‖h‖2H1/2(∂Ω)

.

Estimate of T2(t)− T2(0). After change of variable, we have T2(t) =
∫
∂Ω σth

2 where

σt = (∂̂ntvt)
2
[
Ĥtα̂t

2 − B̂t(β̂t, β̂t)− 2∇̂τt(αt) · β̂t
]
J∂Ω(t)

and from Lemmas 4.8 and 4.9, we easily get

‖σt − σ0‖Lp(∂Ω) ≤ C‖h‖W2,p(∂Ω).
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Notice that the control holds only in Lp and not in L∞ as in [12] or [8, Appendix], hence we do not obtain

a control with the L2 norm of h. However, by Hölder inequality, it comes |T2(t)− T2(0)| ≤ ‖σt − σ0‖Lp‖h‖2Lp̃
for any p̃ ≥ 2p/(p− 1). Since ‖h‖Lp̃ ≤ C‖h‖H1/2 when p̃ < 2d/(d− 1) by Sobolev’s injection, such a p̃ can be

chosen provided p > d. Then, it holds

|T2(t)− T2(0)| ≤ ‖σt − σ0‖Lp‖h‖2H1/2 ≤ C‖h‖W2,p‖h‖2H1/2 .

Estimate of T3(t)− T3(0). After change of variable, we have T3(t) =
∫
∂Ω ρt · (∇τ̂th)h where

ρt = (∂̂ntvt)
2α̂tβ̂tJ∂Ω(t), and ∇τ̂th = ∇h− (∇h · n̂t)n̂t

and we obtain (recall that ∇h · n = 0):

|T3(t)− T3(0)| ≤
∣∣∣∣∫
∂Ω
ρt · (∇τ̂th−∇τh)h

∣∣∣∣+

∣∣∣∣∫
∂Ω

(ρt − ρ0) · ∇τh)h

∣∣∣∣
≤ ‖∇τ̂th−∇τh‖H−1/2‖ρth‖H1/2 + ‖(ρt − ρ0)h‖H1/2‖∇τh‖H−1/2

≤ ‖∇h · (n̂t − n)‖H−1/2‖ρth‖H1/2 + ‖(ρt − ρ0)h‖H1/2‖h‖H1/2

In addition to (34), we also have from [39, Th 2 p 173]:

‖uv‖H−1/2(∂Ω) ≤ C‖u‖Ws,p(∂Ω)‖v‖H−1/2(∂Ω) (38)

if max{1/2, (d− 1)/p} < s ≤ 1. Using again Lemmas 4.3, 4.8 and 4.9, we get

‖ρt − ρ0‖W1−1/p,p(∂Ω) ≤ C‖h‖W2,p(∂Ω), ‖n̂t − n0‖W1,p(∂Ω) ≤ C‖h‖W2,p(∂Ω),

which combined with (37), (34) and (38), concludes the estimate of this term and hence the proof. �

5 Applications

5.1 Retrieving some examples from the literature

We review here some results from the literature for particular functionals, and explain how our main result

Theorem 3.2 applies in these cases.

Isoperimetric inequalities

According to the previous sections, the perimeter satisfy conditions (CH1) and (ITH1,W1,∞) at any smooth

enough set, and in particular for the ball. Moreover, as shows Section 2.3, we have

`1[P ](B1) = (d− 1)`1[Vol](B1), and `2[P − (d− 1)Vol](B1)(ϕ,ϕ) =
∞∑
k=0

dk∑
l=1

(k − 1)(k + d− 1) αk,l(ϕ)2.

Moreover, ϕ ∈ T (∂B1) if and only if α0,1(ϕ) = α1,i(ϕ) = 0 for i ∈ {1, . . . , d}. Therefore B1 is a critical and

strictly stable shape for P under volume constraint, and up to translations: Theorem 3.2 applies, and we

retrieve Fuglede’s result from [21] about nearly spherical domains.

Recently in [34], different improved versions (even with a better distance than the Fraenkel asymmetry for

d1 in (2)) of the quantitative isoperimetric inequality has been achieved for the anisotropic perimeter

Pf (Ω) =

∫
∂Ω
f(n∂Ω)

where f : Rd → R+ is a convex positively 1-homogeneous function, whose minimizer under volume constraint

is an homothetic version of the Wulff shape K = {f∗ < 1} where f∗ is the gauge function of f . In particular

in [34, Theorem 1.3 and Section 4], focused on the case where K is assumed to be C2 and uniformly convex,

a strategy based on the second variation is used: the author proves in [34, Lemma 4.1] that Pf satisfies
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conditions (CH1) and (ITH1,W1,∞). Therefore, this falls into the hypothesis of our Theorem 3.2, so if we

prove that K is critical and stricly stable (in the sense of (23)), then we obtain a Fuglede type result, see

[34, Proposition 1.9] (we assumed the shape to be C3, but here this can be reduced to C2, as noticed in

Remark 2.3). It is interesting to notice though that in order to show that K is strictly stable in the sense that

`2[Pf − µVol](K) > 0 on T (∂K) \ {0}, the author in [34] needs to use the quantitative Wulff isoperimetric

inequality from [19] (obtained with optimal transport method). They apply then the regularization proce-

dure mentioned in the introduction. Therefore, up to our knowledge, there is no proof “from scratch” of the

quantitative anisotropic isoperimetric inequality using a result similar to Theorem 3.2.

The Ohta-Kawasaki model

In the paper [2], both steps of the strategy described in the introduction are achieved in order to deal with

the following functional, formulated in the periodic sense, and which includes a non-local term:

J(Ω) = PTN (Ω) + γG(Ω) where G(Ω) =

∫
TN
|∇wΩ|2dx

and wΩ solves


−∆wΩ = 1Ω − 1Ωc −m in TN∫
TN

wΩdx = 0

where TN is the N -dimensional flat torus of unit volume, and m = |Ω| − |Ωc| ∈ (−1, 1) is fixed. Again, there

is an invariance with translation and a volume constraint.

In order to handle the first step of the strategy, the authors in [2] prove a stability result for the W2,p-

topology, for p large enough. The strategy is very similar to [12], but in the framework of W2,p-spaces rather

than C2,α-spaces. Note that this difference in the choice of spaces is not just a detail as it is relevant for the

second step of the strategy when proving stability in an L1-neighborhood as it is done in [2, Section 4]: their

regularization procedure needs to allow discontinuity of the mean curvature, see equation (4.9) in the proof

of [2, Theorem 4.3]. From the computations of [10], we obtain

`1[G](Ω)(ϕ) = 4

∫
∂Ω
wΩϕ,

`2[G](Ω)(ϕ,ϕ) = 8

∫
TN
|∇zϕ|2dx+ 4

∫
∂Ω

(∂nwΩ +H)ϕ2, where −∆zϕ = ϕHN−1b∂Ω

therefore G satisfies (CH1/2) and J satisfies (CH1), the dominant term being contained in the perimeter term.

As we have seen that the perimeter satisfies (ITH1,W1,∞) condition, it just remains to handle functional G,

which is proven to satisfy (ICH1,W2,p) for p > d in [2]. Therefore Theorem 3.2 applies, and we retrieve [2,

Theorem 3.9], as d̄H1(Ω∗,Ω) easily dominates the Fraenkel asymmetry.

The Faber-Krahn inequality

In [8] (see also [25]) a quantitative version of the Faber-Krahn inequality is achieved, using again the two

steps mentioned in the introduction: in order to achieve the first step, they use the Kohler-Jobin inequality

([31]), which implies that the Faber-Krahn deficit is controlled by the deficit of the Dirichlet energy E.

However, as we show here, it is possible to achieve this step without this “trick”. Indeed, we have seen that

λ1 satisfies (CH1/2) and (ICH1/2,W2,p) for p > d, and for any ϕ ∈ C∞(∂B1) such that
∫
∂B1

ϕ = 0, we have

`1[λ1](B1) = −γ2
d`1[Vol](B1), and `2[λ1 + γ2

dVol](B1)(ϕ,ϕ) = 2γ2
d

∞∑
k=0

dk∑
l=1

Qk αk,l(ϕ)2.

where (using [1, 9.1.27, p 361])

Qk = jd/2−1

J ′k+d/2−1(jd/2−1)

Jk+d/2−1(jd/2−1)
+
d

2
= k + d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk+d/2−1(jd/2−1)
= jd/2−1

Jk+d/2−2(jd/2−1)

Jk+d/2−1(jd/2−1)
− k + 1.

26



With the last formula, we easily notice that Q1 = 0. The sign of Qk can be obtained using the argument of

[37, 6.5 page 133] (done when d = 2, but as noticed in [30], valid for any d): indeed, their computations imply

jd/2−1

J ′k+d/2−1(jd/2−1)

Jk+d/2−1(jd/2−1)
≥ k − d/2− 1,∀n ∈ N∗,

which leads to

∀k ≥ 2, Qk ≥ k − 1.

Therefore Theorem 3.2 applies, and we retrieve a Faber-Krahn quantitative inequality for the d̄H1/2 distance

in a W2,p-neighborhood of the ball.

5.2 Examples with competition

In this section, B is a ball, X = W2,p(∂B) for p > d and we denote for η > 0 :

Vη = {Ω, d̄X(Ω, B) ≤ η and |Ω| = |B|}.

Combining Theorem 3.2 to the computations from Section 2.1, we easily obtain the following result:

Proposition 5.1 There exists γ0 ∈ (0,∞) such that for every γ ∈ [−γ0,∞), there exists η = η(γ) > 0 and

c = c(γ) > 0 such that for every Ω ∈ Vη,

(P + γE)(Ω) ≥ (P + γE)(B) + cd̄H1(Ω, B)2, (P + γλ1)(Ω) ≥ (P + γλ1)(B) + cd̄H1(Ω, B)2

(E + γλ1)(Ω) ≥ (E + γλ1)(B) + cd̄H1/2(Ω, B)2, (λ1 + γE)(Ω) ≥ (λ1 + γE)(B) + cd̄H1/2(Ω, B)2.

Proof of Proposition 5.1: It suffices to prove that Theorem 3.2 can be applied to Ω∗ = B and

J ∈ {P + γE, P + γλ1, E + γλ1, λ1 + γE)}.

It is shown in Sections 3.1 and 4 that (P,E, λ1) satisfy (CHs2 ) and (ITHs2 ,X) for suitable values of s2, and

with Lemmata 2.9 and 2.8 we easily check that the ball is a critical and strictly stable domain for J under

volume constraint and up to translations, either if γ ≥ 0 or if γ < 0 is small enough. �

Corollary 5.2 With the same notations as in Proposition 5.1, we have, with η0 = η(γ0):

∀Ω ∈ Vη0 ,
P (Ω)− P (B)

E(Ω)− E(B)
≥ γ0,

P (Ω)− P (B)

λ1(Ω)− λ1(B)
≥ γ0

γ0 ≤
λ1(Ω)− λ1(B)

E(Ω)− E(B)
≤ γ−1

0 .

Remark 5.3 In [35], the second inequality in Corollary 5.2 is also investigated, but we provide here a uniform

neighborhood so that this estimate applies. We also refer to [37] for some result of this kind.

Remark 5.4 To the contrary to the last two-sided inequality, it is not possible to bound the first two ratio

from above. Indeed, for every γ ∈ (0,∞), there exists Ωγ = (Id+ θγ)(B) of class C∞ such that

|Ωγ | = |B|, ‖θγ‖W2,p(Rd) ≤ γ−1 and
P (Ω)− P (B)

E(Ω)− E(B)
> γ.

This is due to the fact that the functionals P and (E, λ1) satisfy conditions (CHs2 ) for different values of s2.

Explicit constants

We want to go further and compute explicit numbers γ such that the inequalities of Proposition 5.1 holds.

To simplify the expressions, we restrict ourselves to the case of the unit ball. In the first two cases, we find

the optimal constant, see Remark 5.6 about the other cases.
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Proposition 5.5 Using notations of Proposition 5.1 and γd defined in (19),

(i) if γ > −(d+ 1)d2, then B1 is a local strict minimizer of P + γE: there exists η = η(γ) > 0 such that

∀Ω ∈ Vη, (P + γE)(Ω) ≥ (P + γE)(B).

Moreover, when γ = −(d+ 1)d2, the second derivative of the Lagrangian cancels in some directions and

when γ < −(d+ 1)d2, the ball is a saddle shape for P + γE.

(ii) if γ > −
d(d+ 1)

2γ2
d(d+ j2

d/2−1)
, then B1 is a local strict minimizer of P + γλ1: there exists η = η(γ) > 0 such

that

∀Ω ∈ Vη, (P + γλ1)(Ω) ≥ (P + γλ1)(B);

Moreover, when γ = −
d(d+ 1)

2γ2
d(d+ j2

d/2−1)
, the second derivative of the Lagrangian cancels in some directions

and when γ < −
d(d+ 1)

2γ2
d(d+ j2

d/2−1)
, the ball is a saddle shape for P + γλ1.

(iii) if γ > −
1

d2(d+ 1)γ2
d

, then B1 is a local strict minimizer of E + γλ1: there exists η = η(γ) > 0 such that

∀Ω ∈ Vη, (E + γλ1)(Ω) ≥ (E + γλ1)(B);

(iv) if γ > −γ2
dd

2, then B1 is a local strict minimizer of λ1 + γE: there exists η = η(γ) > 0 such that

∀Ω ∈ Vη, (λ1 + γE)(Ω) ≥ (λ1 + γE)(B).

Remark 5.6 In the cases (iii) and (iv), the constants we compute are not optimal, in particular we do not

claim the ball is a saddle point once we go beyond the computed value. Nevertheless computing the optimal

value only requires to compute supk≥2 τ
′
k and supk≥2 τ

′′
k (see the notations in the proof below) as it is done in

the cases (i) and (ii). As it is seen in the second case handled by Nitsch in [35], these computations can be

rather technical.

Proof of Proposition 5.5:

(i) We first compute the Lagrange multiplier µ(t) associated to the volume constraint at B1: it is defined as

`1[P + tE) + µ(t)Vol] = 0 that is from the expression of the shape gradients of Vol, P and E:

µ(t) =
1

2d2
t − (d− 1).

Let us now turn our attention to hessian of the function P + tE + µ(t)Vol on the balls B1. As a consequence

of Lemma 2.9, the shape hessian of the lagrangian P + tE + µ(t)Vol at balls is

`2[P + tE + µ(t)Vol](B1).(ϕ,ϕ) =
∞∑
k=0

ck(t)

dk∑
l=1

αk,l(ϕ)2

where we have set

ck(t) = k2 +

[
(d− 2) +

1

d2
t

]
k −

[
(d− 1) +

1

d2
t

]
= (k − 1)

[
k + (d− 1) +

1

d2
t

]
.

Therefore, the hessian of the Lagrangian `2[P + tE + µ(t)Vol](B1) is coercive in T (∂B1) if and onmly if t

solves the inequalities

k + (d− 1) +
1

d2
t > 0
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for all k ≥ 2. Of course, it suffices to solves that inequality in the special case k = 2 that provides t > −(d+1)d2.

(ii) With the same notions as in (i) with P + tλ1 + µ(t)Vol, we obtain :

µ(t) = γ2
d t − (d− 1), ck(t) = k2 + (d− 2 + tγ2

d)k − (d− 1) + tγ2
d

[
d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
.

We introduce the sequences ak = Jk−1+d/2(jd/2−1) and bk = ak+1/ak so that:

ck(t) = k2 + (d− 2)k − (d− 1) + 2tγ2
d

[
k + d− 1− jd/2−1bk

]
.

For a given integer k ≥ 2, ck(t) > 0 holds when t > τk defined as

τk = −
(k − 1)(k + d− 1)

2γ2
d(k + d− 1− jd/2−1bk)

.

In order to obtain to find the optimal value of t so that these inequalities are satisfied for every k ≥ 2, we

need to compute the supremum of {τk, k ≥ 2}. It is proven by Nitsch in [35, p. 332, proof of Lemma 2.3] that

for all k ≥ 2, τk ≤ τ2, so the ball is strictly stable if and only if t > τ2. We describe here how one can obtain

a more explicit version of τ2: from the recurrence formula for Bessel function ([1, 9.1.27, p 361])

(2ν/z)Jν(z) = Jν−1(z) + Jν+1(z)

applied to ν = k − 1 + d/2 and z = jd/2−1, the sequences ak and bk satisfy the recurrence property

ak+1 =
2(k − 1) + d

jd/2−1
ak − ak−1 and bk+1 =

2(k − 1) + d

jd/2−1
−

1

bk

with the initial terms a0 = 0 and a1 = Jd/2(jd/2−1) so that b1 = a2/a1 = d/jd/2−1 (which explains c1(t) = 0

for any t, as known for the invariance by translations of all the involved functions). Therefore, we have:

b2 =
d

jd/2−1
−
jd/2−1

d
=
d2 − j2

d/2−1

djd/2−1

and as a consequence, we obtain that

τ2 = −
d(d+ 1)

2γ2
d(d+ j2

d/2−1)
.

(iii) With the same notions as in (i) with E + tλ1 + µ(t)Vol, we obtain :

µ(t) = (1/d2) + tγ2
d , ck(t) =

(
1

d2
+ tγ2

d

)
k −

1

d2
+ tγ2

d

[
d− 1− jd/2−1bk

]
.

Again c1(t) = 0 and ck(t) > 0 if and only if

t > τ ′k = −
k − 1

d2γ2
d(k + d− 1− jd/2−1bk)

.

Using that b1 ≥ bk > 0, we obtain

τ ′k < −
1

d2γ2
d

k − 1

k + d− 1
= −

1

d2γ2
d

(
1−

d

k + d− 1

)
≤ −

1

d2(d+ 1)γ2
d

.

Therefore, if t > −
1

d2(d+ 1)γ2
d

then for any k ≥ 2, t > τ ′k, which leads to the result.
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(iv) With the same notions as in (i) with λ1 + tE + µ(t)Vol, we obtain :

µ(t) = (t/d2) + γ2
d , ck(t) =

(
t

d2
+ γ2

d

)
k −

t

d2
+ γ2

d

[
d− 1− jd/2−1bk

]
.

We check c1(t) = 0, and ck(t) > 0 if and only if

t > τ ′′k = −γ2
dd

2

(
1 +

d− jd/2−1bk

k − 1

)
.

Using that b1 ≥ bk > 0, we obtain τ ′′k ≤ −γ2
dd

2, and therefore, if t > −γ2
dd

2 then for any k ≥ 2, t > τ ′′k , which

leads to the result. �

6 Counterexample for non smooth perturbations

We show in this section that even if the ball is a local minimum in a smooth neighborhood, it may not be a

local minimum in a non-smooth neighborhood.

Consider Ω∗ = B a ball of volume V0. We have seen in Proposition 5.1 that there is a real number

γ0 ∈ (0,∞) such that for every γ ∈ (−γ0,∞), B is a stable local minimum for P + γE.

For γ ≥ 0 this is not surprising: since the ball minimizes E among sets of given volume, it is enough to

prove that the ball is a stable minimizer for the perimeter, which goes back to Fuglede [21]. Moreover, it has

been proven that B is an L1-stable minimizer of the perimeter in a L1-neighborhood of the ball, that is to say

there exists η > 0 such that

∀ Ω such that |Ω∆B| ≤ η, |Ω| = |B|, P (Ω)− P (B) ≥ c|Ω∆B|2

where we assume the barycenter of Ω to be the same as the one of B (actually this result is no longer local,

see [23]). Therefore a similar inequality is valid for P + γE if γ ≥ 0.

However, for γ < 0, the fact that the ball is a local minimizer is no longer trivial : there is a competition

between the minimization of the perimeter and maximization the Dirichlet energy. If the coefficient in E is

small enough, our result shows that B is still a local minimizer in a W2,p-neighborhood. Nevertheless, in that

case B is no longer a local minimizer in a L1-neighborhood :

Proposition 6.1 Let B be a ball. For every γ < 0 and any ε > 0 one can find Ωε such that

|Ωε∆B| < ε, |Ωε| = |B|, and (P + γE)(Ωε) < (P + γE)(B).

To prove this result, we use the idea of topological derivative : it is well known that if one consider a small

hole of size ε in the interior of a fixed shape, the energy will change at order εd−2 if d ≥ 3 and 1/log(ε) if d = 2,

which is strictly bigger than the change of perimeter which is of order εd−1, and therefore will strictly decrease

the energy P+γE when γ < 0. For the sake of completeness, we provide a proof of this fact for a centered hole.

Proof. We can assume without loss of generality (using translation and scaling properties) that B = B1 is

the centered ball of radius 1, and we define Ωε = B1 \ B(0, ε). Using that ∆u = ∂rru + d−1
r ∂ru when u is

radial, the state function is:

uΩε(r) =
(εd−2 − εd)r2−d + εd − 1

2d(εd−2 − 1)
− r2

2d
, if d ≥ 3

uΩε(r) =
1− ε2

−4 log(ε)
log(r) +

1− r2

4
, if d = 2

and therefore

if d ≥ 3, E(Ωε) = −1

2

∫
Ωε

uΩε =

[
d(1− ε2)2εd−2 − 2(1− εd)2

8d2(1− εd−2)
+

1− εd+2

4d(d+ 2)

]
P (B1)

=

[
− 1

2d2(d+ 2)
+
d− 2

8d2
εd−2 + o(εd−2)

]
P (B1),
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if d = 2, E(Ωε) = −1

2

∫
Ωε

uΩε =

[
(1− ε2)

−8 log(ε)
(1− ε2(1− 2 log(ε)))− 1

16
(1− ε2 +

ε4

2
)

]
P (B1)

=

[
− 1

16
− 1

8 log(ε)
+ o

(
1

log(ε)

)]
P (B1).

We now define Ω̃ε = µεΩε where µε = (1− εd)−1/d so that

|Ω̃ε| = |B1|, P (Ω̃ε)− P (B1) =
[
µd−1
ε (1 + εd−1)− 1

]
P (B1) ∼ε→0 ε

d−1P (B1)

E(Ω̃ε)− E(B1) ∼ε→0
(d− 2)P (B1)

8d2
εd−2 > 0, if d ≥ 3, E(Ω̃ε)− E(B1) ∼ε→0

P (B1)

−8 log(ε)
> 0, if d = 2

so that in both cases, for any negative γ, (P + γE)(Ωε)− (P + γE)(B1) < 0 for small ε. �
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