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Thin-shell concentration for convex measures

Matthieu Fradelizi, Olivier Guédon and Alain Pajor

Abstract

We prove that for s < 0, s-concave measures on R
n satisfy a

thin-shell concentration similar to the log-concave case. It leads to a
Berry-Esseen type estimate for most of their one dimensional marginal
distributions. We also establish sharp reverse Hölder inequalities for
s-concave measures.

1 Introduction

For any subsets A,B ⊂ R
n, the Minkowski sum is defined by

A+B = {a+ b : a ∈ A, b ∈ B}.

Let s ∈ [−∞, 1]. A measure µ on R
n is called s-concave whenever

µ ((1− λ)A+ λB) ≥ ((1− λ)µ(A)s + λµ(B)s)1/s ,

for every λ ∈ [0, 1] and every compact subsets A,B ⊂ R
n such that µ(A)µ(B) >

0. When s = 0, this inequality should be read as

µ ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ

2010 Mathematics Subject Classification: Primary 60E15, 60F10, 52A23; Secondary
52A40, 46B09.
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and it defines µ as a log-concave measure. When s = −∞, the measure is
said to be convex and the inequality is replaced by

µ ((1− λ)A+ λB) ≥ min (µ(A), µ(B)) .

Notice that the class of s-concave measures on R
n is decreasing in s so

that any s-concave measure is a convex measure. Any s-concave measure
with s ≥ 0 is log-concave and the thin-shell concentration for log-concave
measures has been studied in [16, 17, 19, 22, 23]. The purpose of this paper
is to prove a thin-shell concentration for s-concave measures in the case s < 0,
which we consider from now on. By measure, we always mean probability
measure.

The class of s-concave measures was introduced and studied in [10, 11],
where a complete characterization was established. An s-concave measure is
supported on some convex subset of an affine subspace where it has a density
(see Section 2 for more details). When the support of an s-concave measure
µ generates the whole space, we say that µ is full-dimensional.

A random vector with an s-concave distribution is called s-concave. The
linear image of an s-concave random vector is also s-concave. We say that
a random vector is full-dimensional if its distribution is full-dimensional. It
is known that any semi-norm of an s-concave random vector with s < 0
has moments of all order p ∈ (0,−1/s) (see [10] and [1]). The Euclidean
norm of an s-concave random vector X has a finite moment of order 2 if
and only if s > −1/2. Since we are interested in comparison of moments of
the Euclidean norm with the moment of order 2, we will always assume that
−1/2 < s < 0.

Let n ≥ 1 be an integer. The Euclidean space R
n is equipped with its

Euclidean norm | . |2 and its scalar product 〈 . , . 〉. Its unit sphere is denoted
by Sn−1 and its unit ball by Bn

2 . We say that a random vector X is isotropic
if EX = 0 and for every θ ∈ Sn−1, E〈X, θ〉2 = 1. Observe that if X is an
s-concave full-dimensional random vector and −1/2 < s, we can always find
an affine transformation A such that AX is isotropic.

Let p ∈ R and X ∈ R
n be a random vector. Assume that |X|2 has

finite moments of order 2 and p with the convention that (E|X|p2)1/p =
exp(E ln |X|2) for p = 0. We define

αp(X) :=

∣

∣

∣

∣

(E|X|p2)1/p
(E|X|22)1/2

− 1

∣

∣

∣

∣

.

Our main result is the following
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Theorem 1. Let r > 2. Let X ∈ R
n be a full-dimensional (−1/r)-concave

random vector.
If X is isotropic, then for any p such that |p| ≤ cmin(r, n1/3), we have

αp(X) ≤ C |p− 2|
r

+

(

C |p− 2|
n1/3

)3/5

,

where C and c are universal constants.
In the general case (when X is not isotropic), let A be an affine transfor-

mation such that AX is full-dimensional and isotropic. Then for any p ∈ R

such that |p| ≤ cmin
(

r, n1/3

‖A‖2/3‖A−1‖2/3

)

, we have

αp(X) ≤ C |p− 2|
r

+

(

C |p− 2|(‖A‖‖A−1‖)2/3
n1/3

)3/5

,

where C and c are universal constants.

We also show (see Remark 15) that for r > n+
√
n, the estimate of αp(X)

in Theorem 1 can be improved and recovers the estimate of the log-concave
case from [19].

To present the connections between moment inequalities, concentration
in a thin-shell and the Berry-Esseen theorem for one dimensional marginals,
let us introduce some notations.

Let X ∈ R
n be an isotropic random vector. Thus E|X|22 = n. Define

ε(X) to be the smallest number ε > 0 such that

P

(
∣

∣

∣

∣

|X|2√
n

− 1

∣

∣

∣

∣

≥ ε

)

≤ ε. (1)

If ε(X) = o(1) with respect to the dimension n, we say thatX is concentrated
in a thin-shell. This is the usual jargon of the subject. More rigorously, it
suggests that we are considering a sequence of random vectors (Xn) with
Xn ∈ R

n and that ε(Xn) = o(1) as n goes to ∞. It was shown in [2] (see
also [13, 14]) that if an isotropic random vector X uniformly distributed on a
convex body in R

n is such that ε(X) = o(1), then almost all one dimensional
marginal distributions of X satisfy a Berry-Esseen theorem. More generally,
let X ∈ R

n be an isotropic random vector, it was proved in [7] that

σn−1

(

θ ∈ Sn−1 : sup
t∈R

|P(〈X, θ〉 ≤ t)− Φ(t)| ≥ 4ε(X) + δ

)

≤ 4n3/8e−cnδ4 ,
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where σn−1 denotes the rotation invariant probability measure on the unit
sphere Sn−1, Φ is the standard normal distribution function and c > 0 is
a universal constant. It is worth noticing that the result from [7] does not
assume log-concavity. Assuming only that X is isotropic, we get that if ε(X)
is o(1) then almost all the one dimension marginal distributions of X are
approximately Gaussian. The fact that indeed for all log-concave random
vector ε(X) = o(1) was proved later in [22, 17] and the best estimate at this
date [19] is that

ε(X) = O(n−1/6 log n).

Now let p > 2 and assume that X is isotropic and that |X|2 has a fi-
nite moment of order p. Then ε(X) is o(1) if and only if αp(X) is o(1), see
Remark 4 below. Hence Theorem 1 ensures that if r → +∞ with the dimen-
sion n then any isotropic (−1/r)-concave random vector satisfies a thin-shell
concentration and therefore almost all its one dimensional marginals verify
a Berry-Esseen theorem. As a matter of fact, this condition on r is neces-
sary. If r is fixed and does not depend on the dimension n, Proposition 5
gives an example of an isotropic (−1/r)-concave random vector X ∈ R

n

which does not satisfy a thin-shell concentration. Remark 6 also shows the
asymptotic sharpness of Theorem 1, since for this example, for a fixed p > 2,
αp(X) ≥ C(p − 2)/r for r and n large enough, where C > 0 is a universal
constant.

To build the proof of Theorem 1, we need to extend to the case of s-
concave measures several tools coming from the study of log-concave mea-
sures. This is the purpose of Section 2. Some of them were already achieved
by Bobkov [8], like analog of the Ball’s bodies [5] in the s-concave setting.
Some others were also noticed previously (see e.g. [8], [1]) but not with the
most accurate point of view. These new ingredients are analog to the results
of [12] in the log-concave setting and are at the heart of our proof. As in the
approach of [16] or [19], an important ingredient is the log-Sobolev inequality
on SO(n). It follows e.g. from the work of Bakry and Émery [4] and the
calculus of the Ricci curvature of SO(n) (see [21, Formula (F6)] for example)
that for any Lipschitz function f : SO(n) → R

+ (see sections 3 and 4 for
definitions)

E(f(U) log f(U))− Ef(U) log(Ef(U)) ≤ c

n
E
(

|∇ log f(U)|2f(U)
)

, (2)

where U is uniformly distributed on SO(n). It allows to get reverse Hölder
inequalities (see inequality (15) in [16]): for every f : SO(n) → R, let L be
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the log-Lipschitz constant of f (that is the Lipschitz constant of log f), then
for every q > r > 0,

(E|f(U)|q)1/q ≤ exp

(

c L2

n
(q − r)

)

(E|f(U)|r)1/r, (3)

where U is uniformly distributed on SO(n).
Let X be a (−1/r)-concave random vector in R

n with full-dimensional
support and distributed according to a measure with a density function w :
R

n → R+. For any linear subspace E, denote by PE the orthogonal projection
onto E and for any x ∈ E denote by

πEw(x) =

∫

x+E⊥

w(y)dy

the marginal of w on E. Given an integer k between 1 and n, a real number
p ∈ (−k, r), a linear subspace E0 of R

n of dimension k and θ0 ∈ S(E0), where
S(E0) denotes the unit sphere of E0, we define the function hk,p : SO(n) →
R+ by

hk,p(u) := |Sk−1|
∫ ∞

0

tp+k−1πu(E0)w(tu(θ0))dt, (4)

for every u ∈ SO(n), where |Sk−1| denotes the area of the sphere.
Following the approach of [23, 16], we observe that for any p ∈ (−k, r)

E|X|p2 =
Γ((p+ n)/2)Γ(k/2)

Γ(n/2)Γ((p+ k)/2)
Ehk,p(U), (5)

where U is uniformly distributed on SO(n). In view of (5) and the definition
of hk,p, we notice that it is of importance to work with family of measures
which are stable after taking the marginals and it is clear from the definition
that for any subspace E, if X is (−1/r)-concave, then PEX is also (−1/r)-
concave.

In the next section 2, we first introduce more notation and recall im-
portant facts concerning convex measures. Then we give an example of an
isotropic (−1/r)-concave random vector X ∈ R

n that does not satisfy a thin-
shell concentration, when r is fixed with respect to the dimension. Finally,
we extend to the case of s-concave measures several tools coming from the
study of log-concave measures that will be essential in the proof of Theorem
1. Section 3 is devoted to the proof of Theorem 1. Some of the results of
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these two sections are either classical or variation of known results; their
proofs are shifted to the appendix.

Acknowledgement. We deeply and warmly thank the referee for his
constructive comments on the first version of the paper. It forced us to
clarify several main points and we hope that it improved the presentation of
the paper.

2 Preliminary results for s-concave measures

We first recall some properties of s-concave measures and their relation to
β-concave functions.

The class of s-concave measures was introduced and studied in [10, 11],
where the following complete characterization was established. An s-concave
measure µ on R

n is supported on some convex subset of an affine subspace
where it has a density. When this subspace is the whole space, we say that µ is
full-dimensional. In this case, its density w is β-concave with β = s/(1−ns).
Recall that a function f : Rn → R+ is called β-concave whenever

f ((1− λ)x+ λy) ≥
(

(1− λ)f(x)β + λf(y)β
)1/β

for every λ ∈ [0, 1] and every x, y ∈ R
n such that f(x)f(y) > 0, where the

right hand side is replaced by f(x)1−λf(y)λ for β = 0. Note that when β < 0
which will be the case below, β-concavity means that fβ is convex on its
convex support {f > 0}.

We will use a similar language for probability measure, random vector
and function which are related here as distribution, law of a random vector
and density of probability. It is important to remember that when X ∈ R

n

is (−1/r)-concave full-dimensional, then the result recalled above states that
its distribution has a support that generates Rn and has a density which is
(−1/(n+ r))-concave.

Recall that for every x > 0, Γ(x) =
∫∞
0

ux−1e−u du and for every x, y > 0,

B(x, y) =
∫ 1

0
ux−1(1− u)y−1du =

∫ +∞
0

ux−1(u+ 1)−(x+y) du.
The following inequality of Paley-Zygmund type is well known.

Lemma 2. Let 2 < p < s. Let Y be a non-negative random variable with
finite s-moment. Then for every 0 ≤ t ≤ (EY p)1/p we have

P(Y ≥ t) ≥
(

EY p − tp

(EY s)p/s

)s/(s−p)

.
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Proof. Using Hölder inequality, we have

EY p = EY p1Y <t + EY p1Y≥t ≤ tp + (EY s)p/sP(Y ≥ t)1−p/s.

Thus

P(Y ≥ t) ≥
(

EY p − tp

(EY s)p/s

)s/(s−p)

.

Proposition 3. Let 2 < p < s. Let X ∈ R
n be an isotropic random vector

such that |X|2 has a finite s-moment. Then

min

(

αp(X)

2
,

(

pαp(X)/2

(αs(X) + 1)p

)s/(s−p)
)

≤ ε(X) ≤ ((αp(X) + 1)p − 1)1/3 .

Proof. Let ε > 0. Applying Lemma 2 to Y = |X|2/(E|X|22)1/2, t = ε+ 1 and
noticing that EY p = (αp(X) + 1)p, EY s = (αs(X) + 1)s, we get that

P

( |X|2
(E|X|22)1/2

≥ 1 + ε

)

≥
(

(αp(X) + 1)p − (ε+ 1)p

(αs(X) + 1)p

)s/(s−p)

whenever 0 < ε ≤ αp(X). Since for p ≥ 1 and x ≥ y ≥ 1, xp− yp ≥ p(x− y),
we have

P

( |X|2
(E|X|22)1/2

≥ 1 + ε

)

≥
(

p(αp(X)− ε)

(αs(X) + 1)p

)s/(s−p)

.

Therefore

P

( |X|2
(E|X|22)1/2

≥ 1 + ε

)

≥
(

pαp(X)/2

(αs(X) + 1)p

)s/(s−p)

whenever 0 < ε ≤ αp(X)/2. The left-hand side inequality follows.
Since for q ≥ 1, |x−1| ≤ |xq−1| for every x ≥ 0, Markov inequality gives

P

(
∣

∣

∣

∣

|X|2
(E|X|22)1/2

− 1

∣

∣

∣

∣

≥ ε

)

≤ P

(
∣

∣

∣

∣

|X|q2
(E|X|22)q/2

− 1

∣

∣

∣

∣

≥ ε

)

≤
E

∣

∣

∣

|X|q
2

(E|X|2
2
)q/2

− 1
∣

∣

∣

2

ε2
.

To conclude the right-hand side inequality, take q = p/2 and observe that

E

∣

∣

∣

∣

|X|q2
(E|X|22)q/2

− 1

∣

∣

∣

∣

2

= (α2q(X)+1)2q+1−2(αq(X)+1)q ≤ (α2q(X)+1)2q−1.
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Remark 4. Let 2 < p < s. Let X ∈ R
n be an isotropic random vector such

that |X|2 has a finite s-moment. Proposition 3 shows that ε(X) is o(1) if
and only if αp(X) is o(1) when n → ∞.

Now we estimate ε(X) for an example which shows that an isotropic
(−1/r)-concave random vector X ∈ R

n may not satisfy a thin-shell con-
centration. In the proposition below, the notation lim refers to the limit
inferior.

Proposition 5. Let r > 2. There exists a sequence (Xn)n of isotropic
(−1/r)-concave random vectors Xn ∈ R

n such that

lim
n→∞

ε(Xn) ≥ c(r) > 0,

where c(r) > 0 depends only on r.

Proof. Let r > 2 and 2 < p < r and let Xn ∈ R
n be an isotropic random

vector with density

fn,r(x) =
c1

(1 + c2|x|2)r+n
,

where c1 and c2 are normalization factors. From [10, 11], such a random
vector is (−1/r)-concave. An immediate computation gives that

(E|Xn|p2)1/p
(E|Xn|22)1/2

=

(

B(n+ p, r − p)

B(n, r)

)1/p(
B(n+ 2, r − 2)

B(n, r)

)−1/2

.

For fixed r and 2 < p < r, we have

lim
n→+∞

(E|Xn|p2)1/p
(E|Xn|22)1/2

=

(

Γ(r − p)

Γ(r)

)1/p(
Γ(r − 2)

Γ(r)

)−1/2

(6)

and by the strict log-convexity of the Gamma function, we have

lim
n→+∞

(αp(Xn) + 1) = lim
n→+∞

(E|Xn|p2)1/p
(E|Xn|22)1/2

> 1.

As a consequence for any 2 < p < r, limn→+∞ αp(Xn) > 0.
Now let 2 < p < s < r. From Proposition 3, we get

lim
n→+∞

ε(Xn) ≥ lim
n→∞

min

(

αp(Xn)

2
,

(

pαp(Xn)/2

(αs(Xn) + 1)p

)s/(s−p)
)

> 0. (7)
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Choose p = (2+r)/2 and s = (p+r)/2 for which 2 < p < s < r and note that
the right hand side term in equation (7) depends only on r. This concludes
the proof.

Remark 6. Let 2 < p < r and let r → ∞. Applying Stirling formula in (6)
when r → ∞, a calculation gives that

lim
r→∞

r lim
n→∞

αp(Xn) = (p− 2)/2.

This asymptotic estimate shows that for a fixed p > 2 and r and n large
enough, then αp(Xn) ≥ C(p − 2)/r where C > 0 is a universal constant.
This proves the sharpness of Theorem 1 under these conditions.

We now prove some inequalities for s-concave measures that will be useful
tools in the next section.

Theorem 7. (1) Let f : [0,∞) → [0,∞) be a measurable function such that
‖f‖∞ > 0. Then

p 7→
(
∫ ∞

0

ptp−1f(t) dt/‖f‖∞
)1/p

is non-decreasing on its domain of definition.
(2) Let α > 0 and f : [0,∞) → [0,∞) be (−1/α)-concave, continuous

and integrable. Define Hf : [0, α) → R+ by

Hf(p) =















1

B(p, α− p)

∫ +∞

0

tp−1f(t)dt for 0 < p < α

f(0) for p = 0.

Then Hf is log-concave on [0, α).

The proof of the first part may be treated as in Lemma 2.1 in [25] and
the proof of the second part is identical to the well known (1/n)-concave case
[12]. We postpone the proof of Theorem 7 to the appendix.

We present several consequences of this result such as some reverse Hölder
inequalities with sharp constants in the spirit of Borell’s [12] and Berwald’s
[6] inequalities.
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Corollary 8. Let r > 0 and µ be a (−1/r)-concave measure on R
n. Let

φ : Rn → R+ such that {φ > 0} is convex and φ is concave on {φ > 0}.
Then the function

p 7→















1

pB(p, r − p)

∫

φ(x)pdµ(x) for 0 < p < r

µ({φ > 0}) for p = 0

is log-concave on [0, r).
Moreover, if µ({φ > 0}) > 0 then for any 0 < p ≤ q < r,

(
∫

Rn

φ(x)q
dµ(x)

µ({φ > 0})

)1/q

≤ (qB(q, r − q))1/q

(pB(p, r − p))1/p

(
∫

Rn

φ(x)p
dµ(x)

µ({φ > 0})

)1/p

.

Proof. By the concavity of φ, for every u, v ≥ 0 and every λ ∈ [0, 1]

(1− λ){φ > u}+ λ{φ > v} ⊂ {φ > (1− λ)u+ λv}.

By the (−1/r)-concavity of µ, the function f(t) = µ({φ > t}) is (−1/r)-
concave and it is clearly continuous on R+. Observe by Fubini that for any
p > 0,

∫

Rn

φ(x)pdµ(x) =

∫ +∞

0

ptp−1f(t)dt.

The result follows from the part (2) of Theorem 7. The moreover part follows
from the log-concavity since then p 7→ (Hf(p)/f(0))

1/p is a non-increasing
function.

The second corollary concerns the function hk,p defined in (4).

Corollary 9. Let r > 0 and u ∈ SO(n). For any (−1/(r + n))-concave
function w : Rn → R+ and any subspace E0 of dimension k ≤ n, the function

p 7→















hk,p(u)

B(p+ k, r − p)
for p > −k + 1

|Sk−1|πu(E0)w(0) for p = −k + 1

is log-concave on [−k + 1, r).

10



Proof. Since w is (−1/(r+ n))-concave, we note that t 7→ πU(E0)w(tu(θ0)) is
(−1/(r + k))-concave and it is clearly continuous on R+. Theorem 7 proves
the result.

We finish with some geometric properties of a family of bodies introduced
by K. Ball in [5] in the log-concave case.

Corollary 10. Let α > 0. Let w : Rn → R+ be a (−1/α)-concave function
such that w(0) > 0. For 0 < a < α let

Ka(w) =

{

x ∈ R
n; a

∫ +∞

0

ta−1w(tx)dt ≥ w(0)

}

.

Then for any 0 < a ≤ b < α

(

w(0)

‖w‖∞

)
1

a
− 1

b

Ka(w) ⊂ Kb(w) ⊂
(bB(b, α− b))1/b

(aB(a, α− a))1/a
Ka(w).

Proof. Notice that the sets Ka are star-shaped with respect to the origin,
that is for every x ∈ Ka and every λ ∈ [0, 1], λx ∈ Ka. The radial function
of Ka is

ρKa(x) := sup{r : rx ∈ Ka} =

(

a

∫ +∞

0

ta−1w(tx)

w(0)
dt

)
1

a

.

For any x ∈ R
n, let f be the continuous (−1/α)-concave function defined

on R
+ by f(t) = w(tx)/w(0). By (1) of Theorem 7, the function a 7→

(

∫ +∞
0

ta−1 f(t)
‖f‖∞dt

)
1

a
is non-decreasing. The left hand side inclusion follows.

Moreover, from (2) of Theorem 7, the function Hf : [0, α) → R+ is log-
concave on [0, α) with Hf(0) = 1. For 0 < a ≤ b < α, we have thus
Hf(b)

1/b ≤ Hf(a)
1/a. The right hand side inclusion follows.

3 Thin shell for convex measures

The purpose of this section is to prove Theorem 1. We follow the strategy of
the log-concave case initiated in [22, 17, 23] and further developed in [16, 19].
The support function hK of a non-empty compact set K ⊂ R

n is defined by

∀θ ∈ R
n, hK(θ) = sup

x∈K
〈x, θ〉 .

11



To any random vector X in R
n and any p ≥ 1, we associate its Z+

p -body
defined by its support function

∀θ ∈ R
n, hZ+

p (X)(θ) =
(

E 〈X, θ〉p+
)1/p

.

When the distribution of X has a density g, we write Z+
p (g) = Z+

p (X).
Extending a theorem of Ball [5] for log-concave functions, Bobkov proved in
[8, Remark 2.6] (see also [15, Theorem 3.1]) that if w is (−1/(r+n))-concave
on R

n such that w(0) > 0, then

Ka(w) is convex and compact for any 0 < a ≤ r + n− 1. (8)

In the case of log-concave measures [26, 27, 19, 20], several relations between
the Z+

p bodies and the convex sets Ka are known. We need their analogue in
the setting of s-concave measures for negative s. We start with two technical
lemmas. We postpone their proofs to the appendix.

Lemma 11. Let x, y ≥ 1, then

c
x

x+ y
≤ (xB(x, y))1/x ≤ C

x

x+ y
, (9)

where c, C are positive universal constants. Moreover, for k, r > 1, the ex-
tension by continuity at 0 of the function p 7→ 1

p
log B(k+p,r−p)

B(k,r)
is differentiable

on [−(k−1
2
), r−1

2
] and satisfies

0 ≤ d

dp

(

1

p
log

B(k + p, r − p)

B(k, r)

)

≤ 1

r − 1
+

1

k − 1
(10)

for p ∈ [−(k−1
2
), r−1

2
].

In this paper, we use the notion of geometric distance between sets, de-
fined for every compact subsets K, L ⊂ R

n containing 0 in their interior
by

d(K,L) = inf{t2/t1 : t1L ⊂ K ⊂ t2L, t1, t2 > 0}.
Let n ≥ 1, r ≥ 2 and w be the (−1/(r+n))-concave density of a probability
measure µ on R

n. Then by Corollary 8 and Lemma 11, for 1 ≤ p ≤ q ≤ r−1,
one has

Z+
p (w) ⊂ Z+

q (w) ⊂ c
q

p

(

inf
θ∈Sn−1

µ ({x : 〈x, θ〉 > 0})
)

1

q
− 1

p

Z+
p (w).

12



Fix θ ∈ Sn−1 and define F (t) = µ({x : 〈x, θ〉 ≤ t}), for t ∈ R. One has
∫

R
tF ′(t)dt =

∫

Rn〈x, θ〉w(x)dx = 0 and F is (−1/r)-concave. Using Jensen’s
inequality, we get

F (0)−
1

r = F

(
∫

R

tF ′(t)dt

)− 1

r

≤
∫

R

F (t)−
1

rF ′(t)dt =

[

F (t)1−
1

r

1− 1
r

]+∞

−∞

=
1

1− 1
r

.

Hence µ({x : 〈x, θ〉 > 0}) ≥
(

1− 1
r

)r ≥ 1/4 for r ≥ 2. We have recovered
here in a simple way a Grünbaum’s type inequality for convex measures due
to Bobkov [8, Theorem 5.2]. We deduce that, for 1 ≤ p ≤ q ≤ r − 1,

Z+
p (w) ⊂ Z+

q (w) ⊂ C
q

p
Z+

p (w) and d(Z+
p (w), Z

+
q (w)) ≤ C

q

p
. (11)

Lemma 12. Let r, m and p be such that m is a positive integer, r ≥ m+ 1
and −m

2
≤ p ≤ r − 1. Let F be a subspace of Rn of dimension m and let g

be a (−1/(r + m))-concave density of a probability measure on F such that
∫

F
xg(x)dx = 0. Then we have

d(Km+p(g), Z
+
max(m,p)(g)) ≤ c,

where c is a universal constant.

As in [19], an important ingredient in the proof of the thin-shell concen-
tration inequality is an estimate from above of the log-Lipschitz constant of
the map on SO(n) : u 7→ hk,p(u). Let Mn(R) be the set of square n × n
matrices. We equip

SO(n) = {u ∈ Mn(R) : u
tu = Id, det(u) = 1}

with its standard invariant Riemannian metric, which we specify for concrete-
ness on TIdSO(n), the tangent space at the identity element Id ∈ SO(n).
Since utu = Id, this tangent space may be identified with the set of anti-
symmetric matrices {B ∈ Mn(R) : Bt + B = 0}. We define the scalar
product 〈B,B〉 = 1

2
tr(BtB) on TIdSO(n).

Proposition 13. Let n ≥ 1, r > 10 and w be the (−1/(r + n))-concave
density of a probability measure on R

n such that
∫

Rn xw(x)dx = 0. Let k
be an integer such that k ≥ 2, 2k − 1 ≤ n and 2k ≤ r. Let p such that

13



−k
2
≤ p ≤ r − 1. Denote by Lk,p the log-Lipschitz constant of the map on

SO(n) : u 7→ hk,p(u). Then

Lk,p ≤ Cmax(k, p)d(Z+
max(k,p)(w), B

n
2 ),

where C is a universal constant.

Proof. For any subspace F of dimension m, the marginal πF (w) is a (−1/(r+
m))-concave function on F and from (8), for any a ∈ [0, r + m − 1], we
associate the convex body Ka(πF (w)) in F . Then the proof of Theorem 2.1
in [19, section 2.2] gives the upper bound:

Lk,p ≤ max
F

{(m+ p) d(Km+p(πF (w)), B2(F ))}

over all subspaces F of dimension m = k, k + 1, 2k − 1, where B2(F ) is the
Euclidean unit ball in F . By assumptions on k, we get that for these values
of m, m ≤ 2k − 1 ≤ n and r ≥ 2k ≥ m+ 1 and p ≥ −k/2 ≥ −m/2. Hence
from Lemma 12, we have

d(Km+p(πF (w)), B2(F )) ≤ c d(Z+
max(m,p)(πF (w)), B2(F )).

By definition, if X is the random vector with density w on R
n, the marginal

πF (w) is the density of the projection of X onto F , namely PFX . By iden-
tification of the support functions, we have that, for any θ ∈ F ,

hp

Z+
p (πF (w))

(θ) = E〈PFX, θ〉p+ = E〈X, θ〉p+.

This means that Z+
p (πF (w)) = PF (Z

+
p (w)). Since the distance to the Eu-

clidean ball cannot increase after projections, we conclude that

d(Km+p(πF (w)), B2(F )) ≤ cd(Z+
max(m,p)(w), B

n
2 ).

By equation (11), for m = k, k + 1, 2k − 1, one has

d(Z+
max(m,p)(w), Z

+
max(k,p)(w)) ≤ c.

This finishes the proof.

We define the q-condition number of a random vector X to be

ρq(X) =
sup|θ|2=1

(

E 〈X, θ〉q+
)1/q

inf |θ|2=1

(

E 〈X, θ〉q+
)1/q

.

Obviously, if w is the density of a full-dimensional random vector X in R
n

then ρq(X) = d(Z+
q (w), B

n
2 ).

14



Proposition 14. With the same assumptions as in Proposition 13, if a ran-
dom vector X with density w is isotropic then

Lk,p ≤ Cmax(k, p)2.

More generally if A is such that AX is isotropic then

Lk,p ≤ C max(k, p)2 ‖A‖‖A−1‖. (12)

Proof. Let q = max(k, p), then one has 1 ≤ q ≤ r − 1. Using the triangular
inequality we get

ρq(X) = d(Z+
q (w), B

n
2 ) ≤ d(Z+

q (w), Z
+
2 (w)) d(Z

+
2 (w), B

n
2 ).

From equation (11) we deduce that d(Z+
q (w), Z

+
2 (w)) ≤ cq. For any θ ∈ Sn−1,

E〈X, θ〉 = 0, hence E〈X, θ〉+ = E〈−X, θ〉+. Using this equality and equation
(11) we deduce that

(

E〈−X, θ〉2+
)

1

2 ≤ cE〈−X, θ〉+ = cE〈X, θ〉+ ≤ c
(

E〈X, θ〉2+
)

1

2 .

Thus

E〈X, θ〉2+ ≤ E〈X, θ〉2 = E〈X, θ〉2+ + E〈−X, θ〉2+ ≤ C E〈X, θ〉2+.

Hence if X is isotropic we deduce that d(Z+
2 (w), B

n
2 ) ≤ c′. We conclude that

ρq(X) = d(Z+
q (w), B

n
2 ) ≤ C ′q.

The conclusion follows from Proposition 13. In the general case, notice that
Z+

q (AX) = AZ+
q (X) and d(ABn

2 , B
n
2 ) = ‖A‖‖A−1‖, thus

ρq(X) ≤ ρq(AX)‖A‖‖A−1‖.

Proof of Theorem 1. Without loss of generality, we can assume that r > 32.
Indeed, if r ≤ 32 then the statement in Theorem 1 is valid for |p| ≤ cr and
it gives only a comparison of (E|X|p2)1/p with (E|X|22)1/2 up to a constant
factor. The result is a consequence of Theorem 5.2 in [1].

From now on, we assume that r > 32 and that |p| ≤ r
8
. We start by

presenting a complete argument following [16]. This will give a complete
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proof of Theorem 1 with a slightly weaker result. In the second part, we just
indicate the needed modifications of the argument of [19] to get the complete
conclusion.

In this first part, we will prove that for any p ∈ [ 1√
n
,min(cn1/8, r

8
)]

(E|X|p2E|X|−p
2 )1/p ≤ 1 +

C p

r
+

(

Cp

n1/3

)3/5

. (13)

Assuming (13), few elementary steps are needed to prove that for any p such
that |p| ≤ min(cn1/8, r

8
),

∣

∣

∣

∣

(E|X|p2)1/p
(E|X|22)1/2

− 1

∣

∣

∣

∣

≤ C(1 + |p|)
r

+

(

C(1 + |p|)
n1/3

)3/5

, (14)

which is already enough to get a thin-shell concentration. Indeed, for p ≥ 2,
by Hölder inequality, we have

0 ≤ (E|X|p2)1/p
(E|X|22)1/2

− 1 ≤ (E|X|p2)1/p
(E|X|−p

2 )−1/p
− 1

and we conclude by (13). For p ≤ −2, we have |p| = −p ≥ 2 and from Hölder
inequality and (13),

0 ≤ (E|X|22)1/2
(E|X|p2)1/p

− 1 ≤ (E|X||p|2 )1/|p|

(E|X|−|p|
2 )−1/|p|

− 1 ≤ C |p|
r

+

(

C|p|
n1/3

)3/5

.

An elementary computation shows that

∣

∣

∣

∣

(E|X|p2)1/p
(E|X|22)1/2

− 1

∣

∣

∣

∣

≤ C|p|
r

+

(

C|p|
n1/3

)3/5

.

For p ∈ [−2, 2], by Hölder inequality, we have

0 ≤ 1− (E|X|p2)1/p
(E|X|22)1/2

≤ 1− (E|X|−2
2 )−1/2

(E|X|22)1/2

and we conclude by the previous estimate for p = −2. This concludes the
proof of (14).
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Let us start the proof of (13). Let p ∈ [ 1√
n
,min(cn1/8, r

8
)] and k be an

integer greater or equal than 2 such that p < k ≤ n. We will optimize the
choice of k at the end of the proof. Recall that by (5),

E|X|p2 =
Γ((p+ n)/2)Γ(k/2)

Γ(n/2)Γ((p+ k)/2)
Ehk,p(U),

where U is uniformly distributed on SO(n). Using that the function d
dp
log Γ(p)

is concave (see for example the proof of Lemma 11 in the appendix), we de-
duce that

d

dp

(

1

p
log

Γ((p+ n)/2)Γ(k/2)

Γ((p+ k)/2)Γ(n/2)

)

≤ 0. (15)

It follows that for any 0 < p < k,

Γ((p+ n)/2)Γ(k/2)

Γ(n/2)Γ((p+ k)/2)

Γ((−p+ n)/2)Γ(k/2)

Γ(n/2)Γ((−p+ k)/2)
≤ 1.

Then for all 0 < p < r and n ≥ k > p we have

E|X|p2E|X|−p
2 ≤ Ehk,p(U)Ehk,−p(U). (16)

Applying log-Sobolev inequality (3) to hk,p and hk,−p we get

Ehk,p(U)2 ≤ e
cL2

k,p
n (Ehk,p(U))2 , Ehk,−p(U)2 ≤ e

cL2
k,−p
n (Ehk,−p(U))2 . (17)

Since Varf = Ef 2 − (Ef)2 we deduce that














Varhk,p(U) ≤
(

e
c L2

k,p
n − 1

)

(Ehk,p(U))2 ,

Varhk,−p(U) ≤
(

e
cL2

k,−p
n − 1

)

(Ehk,−p(U))2 .
(18)

By Corollary 9, we know that p 7→ hk,p(u)/B(k + p, r − p) is log-concave on
[−k + 1, r) hence

hk,p(u) hk,−p(u) ≤
(

B(k + p, r − p)

B(k, r)

B(k − p, r + p)

B(k, r)

)

h2
k,0(u).

Taking the expectation with respect to SO(n), we get that

Ehk,p(U)hk,−p(U) ≤
(

B(k + p, r − p)

B(k, r)

B(k − p, r + p)

B(k, r)

)

Eh2
k,0(U).

17



Since Ehk,0(U) = 1 we deduce from (17) that

Eh2
k,0(U) ≤ e

c L2
k,0
n .

Assume that k is such that k ≤ r then by (10), we know that for p ≤ (k−1)/2,

(

B(k + p, r − p)

B(k, r)

B(k − p, r + p)

B(k, r)

)1/p

≤ e2p(
1

k−1
+ 1

r−1) ≤ e4p(
1

k
+ 1

r )

since k, r ≥ 2. Hence

Ehk,p(U)hk,−p(U) ≤ e
c L2

k,0
n

+4p2( 1

k
+ 1

r). (19)

Moreover

Ehk,p(U) hk,−p(U) =Ehk,p(U) Ehk,−p(U) + Cov(hk,p(U), hk,−p(U))

≥ Ehk,p(U)Ehk,−p(U)−
√

Varhk,p(U) Var hk,−p(U)

≥ Ehk,p(U)Ehk,−p(U)

(

1−
√

(

e
cL2

k,p
n − 1

)(

e
c L2

k,−p
n − 1

)

)

(20)

where the last inequality follows from (18). Assume moreover that k is such
that 2k − 1 ≤ n and 2k ≤ r then for p ≤ (k − 1)/2, we can evaluate Lk,p,
Lk,−p and Lk,0 from Proposition 14 since the assumptions are fulfilled. We
get that if X is isotropic then max(Lk,p, Lk,−p, Lk,0) ≤ Ck2. If k ≤ c0n

1/4 for
a small enough numerical constant c0, we have

√

(

e
cL2

k,p
n − 1

)(

e
c L2

k,−p
n − 1

)

≤ c′
k4

n
≤ 1

10
.

Combining this estimate with (20) and (19), we have proved that if k is an
integer such that k ≥ 2, 2k − 1 ≤ n, 2k ≤ r, k ≤ c0n

1/4 and 2p+ 1 ≤ k (this
set of integers is not empty since r > 32 and p ≤ r/8) then

Ehk,p(U)Ehk,−p(U) ≤ e4p
2( 1

k
+ 1

r )+c k4

n

1− c′ k4

n

≤ e4p
2( 1

k
+ 1

r)+C k4

n .

18



For p ≤ 1, we also force k to satisfy k ≤ C0p
1/4n1/4. Hence taking the power

1/p in the last expression, we conclude from (16) that

(E|X|p2E|X|−p
2 )1/p ≤ e4p(

1

k
+ 1

r )+C k4

pn ≤ 1 + cp

(

1

k
+

1

r

)

+ c
k4

pn
,

since p/k, p/r and k4/pn are bounded by universal constants. It remains to
optimize the choice of k. Let p0 = n−1/2. In this case we choose k = 2 and
get

(E|X|p02 E|X|−p0
2 )1/p0 ≤ 1 +

C√
n
. (21)

If p ≥ n−1/2 we choose k to be an integer such that min(r/4, (p2n)1/5) ≤
k ≤ 2min(r/4, (p2n)1/5) with the restriction 2p + 1 ≤ k ≤ cn1/4 and that
k ≤ cp1/4n1/4. For any p such that p0 ≤ p ≤ min(c n1/8, r/8), the integer k
satisfies k ≥ 2, 2k − 1 ≤ n, 2k ≤ r, k ≤ c0n

1/4 and 2p + 1 ≤ k and we get
that

(E|X|p2E|X|−p
2 )1/p ≤ 1 +

C p

r
+

(

Cp

n1/3

)3/5

.

This ends the proof of (13).
In the second part, we follow the argument developed in [19] to get a

better estimate. We deal now with the case of p being positive or negative
and, as already said, we can assume without loss of generality that r > 34
and |p| ≤ r/8. As in [19], our goal is to estimate

d

dp
log((E|X|p2)

1

p ) =
d

dp
log((Ehk,p(U))

1

p ) +
d

dp

(

1

p
log

Γ((p+ n)/2)Γ(k/2)

Γ(n/2)Γ((p+ k)/2)

)

.

Most of the computation of section 3.2 in [19] is identical. All the ingredients
needed for the proof have been established and, adapting the argument done
in section 3.2 in [19], we get

d

dp
log((E|X|p2)

1

p ) ≤ c

p2n
(2L2

k,p + 3L2
k,0) +

C

k − 1
+

C

r − 1
. (22)

For convenience of the reader, we will shortly reproduce the proof of (22) in
the appendix.

Assume that X is isotropic. For any 2|p| ≤ k ≤ r/2 (this set of integers
is not empty since r > 32 and |p| ≤ r/8), we know by Proposition 14, that
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Lk,p and Lk,0 are smaller than Ck2. We get that

d

dp
log((E|X|p2)

1

p ) ≤ C

(

k4

p2n
+

1

k
+

1

r

)

.

We have to minimize this expression for k being an integer greater or equal
than 2 and k ∈ [2|p|, r/2]. For |p| ∈ [n−1/2, cn1/3], we set k being an inte-
ger such that min(r/4, 2(p2n)1/5) ≤ k ≤ 2min(r/4, 2(p2n)1/5). Therefore k
satisfies the restrictions and we get for any p such that |p| ∈ [n−1/2, cn1/3],

d

dp
log((E|X|p2)

1

p ) ≤ C

(

1

(p2n)1/5
+

1

r

)

. (23)

After integration over p, we get that for all p ∈ [n−1/2, cmin(r, n1/3)]

∣

∣

∣

∣

log
(E|X|p2)1/p
(E|X|22)1/2

∣

∣

∣

∣

≤ C |p− 2|
r

+
C |p3/5 − 23/5|

n1/5
.

Since |p3/5 − 23/5| ≤ |p − 2|3/5 and all terms in the right hand side of the
inequality are bounded by a universal constant, we conclude by adjusting

that
∣

∣

∣

∣

(E|X|p2)1/p
(E|X|22)1/2

− 1

∣

∣

∣

∣

≤ C |p− 2|
r

+

(

C |p− 2|
n1/3

)3/5

, ∀p ∈ [n−1/2, cmin(r, n1/3)].

Since (23) holds only for |p| ≥ n−1/2, we use (21) to bridge the gap between
−n−1/2 and n−1/2. Indeed, from (21), the previous inequality for p0 = n−1/2

and using that |p0 − 2| = 2− p0 ≤ 2, we get that for p ∈ [−p0, p0],

(E|X|p2)1/p ≥ (E|X|−p0
2 )−1/p0 ≥ 1

1 + C√
n

(E|X|p02 )1/p0

≥
1− 2C

r
− ( 2C

n1/3 )
3/5

1 + C
n1/5

(E|X|22)1/2.

An easy adaptation of the constants leads to the conclusion of Theorem 1
for all p ∈ [−n−1/2, n−1/2].
Integrating again (23), we get, for p ∈ [−cmin(r, n1/3),−n−1/2],

(E|X|p2)1/p
(E|X|−p0

2 )−1/p0
≥ 1− C |p+ p0|

r
−
(

C |p+ p0|
n1/3

)3/5

.
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Using that |p + p0| ≤ |p − 2| and the previous comparison of the moment
of order −p0 with the moment of order 2 and adjusting the constants, this
proves that for all p ∈ [−cmin(r, n1/3),−n−1/2],

∣

∣

∣

∣

(E|X|p2)1/p
(E|X|22)1/2

− 1

∣

∣

∣

∣

≤ C |p− 2|
r

+

(

C |p− 2|
n1/3

)3/5

.

This concludes the proof of the first part of Theorem 1.
If X is such that AX is isotropic, we know from Proposition 14 that for

any integer k such that 2|p| ≤ k ≤ r/2,

max(Lk,p, Lk,0) ≤ Ck2‖A‖‖A−1‖.

The proof is identical to the previous one replacing n by n
‖A‖2‖A−1‖2 .

Remark 15. In [19], a preprocessing step consisted in adding a Gaussian
isotropic vector to the random vector X in order to start at the very beginning
with a better information on the Z+

p bodies associated to the measure. In [23,
16], this convolution argument played a role of regularization. It is natural
to ask if such a process could be done in the situation of s-concave measure.
Nothing is doable by adding a Gaussian vector because for s < 0, the new
vector does not belong to any class of s-concave vectors. However, for r > n,
we can build a similar argument, adding to X a random vector Z uniformly
distributed on the Euclidean ball, see also [9]. Since Z is (1/n)-concave and
X is (−1/r)-concave, the new vector Y = X+Z√

2
will be (−1/(r−n))-concave.

For any p ≥ 1, we have (see inequality (4.7) in [19])

αp(X) ≤ α2p(Y ) (2 + α2p(Y ))

so that it remains to bound α2p(Y ). It is easy to see that Y is such that for

every q ≥ 2 and every θ ∈ Sn−1,
(

E 〈Y, θ〉q+
)1/q ≥ c

√
q. Adapting the proof of

Proposition 14, we get Lk,p ≤ Cmax(k, p)3/2. As in [19], this improvement
leads to the following estimate: if r − n > 2, then for any p such that 1 ≤
p ≤ cmin(r − n,

√
n)

α2p(Y ) ≤ C(2p− 2)

r − n
+

(

C(2p− 2)√
n

)1/2

.

For r > n +
√
n, we recover the same thin-shell concentration as in the

log-concave case. It would be interesting to understand in which precise
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sense the s-concave measures are close to the log-concave measures for s ∈
(−1/n, 1/n). Another question is to know what kind of preprocessing argu-
ment like in [24] would enable to recover the small ball estimates from [1].

4 Appendix

Proof of Theorem 7. (1) This result is classical. In the symmetric case, it
follows from Lemma 2.1 in [25]. The general case is similar. We provide
its proof for completeness. We may assume, without loss of generality, that
‖f‖∞ = 1. Denote Ip(f) =

∫ +∞
0

tp−1f(t)dt. From Hölder inequality, the
function p 7→ log(Ip(f)) is convex on its convex support, thus the domain of
definition of Ip(f) is an interval. Let 0 < p < q be fixed such that Ip(f) < +∞
and Iq(f) < +∞. Let a = (pIp(f))

1/p and ϕ(t) = tp−1(f(t)−1[0,a](t)). Notice

that ϕ ≤ 0 on [0, a], ϕ ≥ 0 on [a,+∞) and
∫ +∞
0

ϕ(t)dt = 0. Thus

Iq(f)− Iq(1[0,a]) =

∫ +∞

0

tq−pϕ(t)dt =

∫ +∞

0

(tq−p − aq−p)ϕ(t)dt ≥ 0,

since the integrand is non negative on R+. We conclude that

Iq(f) ≥ Iq(1[0,a]) =
aq

q
=

1

q
(pIp(f))

q
p .

(2) Since f is (−1/α)-concave, there exists a convex function ϕ : [0,∞) →
(0,∞) such that f = ϕ−α. Since f is integrable it follows that ϕ tends to
+∞ at +∞. From the convexity of ϕ, one deduces that for some constant
c > 0, ϕ(t) ≥ c(1 + t). Thus f(t) ≤ (c + ct)−α, for every t ≥ 0. Therefore,
tp−1f is integrable for every p < α, which means that Hf (p) < +∞ for
every 0 < p < α. Let p ∈ (0, α) and m,M > 0. Define g : R+ → R+ by

g(t) = m
(

1 + t
M

)−α
. Then

∫ +∞

0

tp−1g(t)dt = mMp

∫ +∞

0

vp−1(1 + v)−αdv = mMpB(p, α− p).

Thus Hg(p) = mMp, which implies that log(Hg) is affine on (0, α). Take
0 < a < b < c < α. Let λ ∈ [0, 1] be such that b = (1− λ)a+ λc. Choose m
and M such that mMa = Hf(a) and mM b = Hf(b) so that Hg(a) = Hf (a)
and Hg(b) = Hf(b). If we prove that

∫ +∞

0

tc−1(g − f)(t)dt ≥ 0, (24)
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that is Hg(c) ≥ Hf (c), then using that log(Hg) is affine, we will deduce that

Hf(b) = Hg(b) = Hg(a)
1−λHg(c)

λ ≥ Hf(a)
1−λHf(c)

λ

and this will prove the log-concavity of H on (0, α). If f = g then (24) is
satisfied so that in the following we assume that the function h := g−f 6≡ 0.
Let

H1(t) =

∫ +∞

t

sa−1h(s)ds and H2(t) =

∫ +∞

t

sb−a−1H1(s)ds.

Since h(t) = O(t−α) at infinity, we deduce that H1(t) = O(ta−α) and H2(t) =
O(tb−α). We have

∫ +∞
0

ta−1h(t)dt = 0 thus H1(∞) = H1(0) = 0. Obviously
H2(∞) = 0. We also observe

0 =

∫ +∞

0

tb−1h(t)dt =

∫ +∞

0

tb−ata−1h(t)dt = −
∫ +∞

0

tb−aH ′
1(t)dt

= [tb−aH1(t)]
+∞
0 + (b− a)

∫ +∞

0

tb−a−1H1(t)dt = (b− a)H2(0),

whence H2(∞) = H2(0) = 0. Since
∫ +∞
0

tb−a−1H1(t)dt = 0 and H1 6≡ 0, the
function H1 has at least one change of sign. Moreover, using that H1(0) =
H1(∞) = 0, we deduce that H ′

1 and therefore h has at least two sign changes.
Since h = g − f has the same sign as f−α − g−α which is convex, it cannot
have more than two sign changes. Thus it has exactly two sign changes at
some 0 < t1 < t2. Moreover, from the convexity of f−α − g−α, the sign of h
has to be negative on (t1, t2) and positive on (0, t1) and (t2,+∞). From an
easy study of the function H2, we deduce that H2 ≥ 0. Therefore, using that
H1(0) = H1(∞) = H2(0) = H2(∞) = 0, we get
∫ +∞

0

tc−1h(t)dt =

∫ +∞

0

tc−ata−1h(t)dt = −
∫ +∞

0

tc−aH ′
1(t)dt

= [−tc−aH1(t)]
+∞
0 + (c− a)

∫ +∞

0

tc−a−1H1(t)dt

= (c− a)

∫ +∞

0

tc−btb−a−1H1(t)dt

= (c− a)[−tc−bH2(t)]
+∞
0 + (c− a)(c− b)

∫ +∞

0

tc−b−1H2(t)dt

= (c− a)(c− b)

∫ +∞

0

tc−b−1H2(t)dt ≥ 0.
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This proves (24) and establish the log-concavity of Hf on (0, α). To get it
on [0, α), it is enough to prove that Hf is continuous at 0. This follows from
the observation that

B(p, α− p) ∼
p→0

Γ(p) ∼
p→0

1

p
thus Hf(p) ∼

p→0
p

∫ +∞

0

tp−1f(t)dt.

And it is classical that, for a continuous function f , the right hand side term
tends to f(0) when p → 0.

Proof of Lemma 11. Equation (9) follows easily from the classical bounds for
the Gamma function (see [3]), valid for x ≥ 1:

√
2πxx− 1

2 e−x ≤ Γ(x) ≤
√
2πxx− 1

2 e−x+ 1

12 .

For equation (10), we write that

B(k + p, r − p)

B(k, r)
=

Γ(k + p)Γ(r − p)

Γ(k)Γ(r)
.

Denote G(p) = log Γ(p), for p > 0. We know that G′′(p) =
∑

i≥0 1/(p + i)2

hence G′′ is non-increasing and 0 ≤ G′′(p) ≤ 1/(p − 1), for p > 1. Denote

Fk(p) =
G(k+p)−G(k)

p
, for k > 0 and p > −k. We have Fk(p) =

∫ 1

0
G′(k+up)du.

Using that G′′ is non-increasing, we get that for k > 1 and p ≥ −(k − 1)/2,

F ′
k(p) =

∫ 1

0

G′′(k+up)udu ≤ G′′
(

k + 1

2

)
∫ 1

0

udu =
1

2
G′′
(

k + 1

2

)

≤ 1

k − 1

and F ′
k(p) ≥ 0. Therefore, if k > 1, r > 1 and −k−1

2
≤ p ≤ r−1

2
then

0 ≤ d

dp

(

1

p
log

B(k + p, r − p)

B(k, r)

)

=
d

dp
(Fk(p)− Fr(−p))

= F ′
k(p) + F ′

r(−p) ≤ 1

k − 1
+

1

r − 1
.

Proof of Lemma 12. We present here a similar proof than in the appendix of
[19]. Applying Corollary 10 to w = g, n = m, α = r + m, we deduce that,
for m

2
≤ a ≤ b ≤ r +m− 1, one has

(

g(0)

‖g‖∞

)
1

a
− 1

b

Ka(g) ⊂ Kb(g) ⊂
(bB(b, r +m− b))1/b

(aB(a, r +m− a))1/a
Ka(g).
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From Lemma 11, we have

(bB(b, r +m− b))1/b

(aB(a, r +m− a))1/a
≤ c

b

a

Moreover since
∫

xg(x)dx = 0, from Lemma 7.2 of [1], one has

g(0)

‖g‖∞
≥
(

r − 1

r +m− 1

)r+m

≥ e−2m.

Using that 1
a
− 1

b
≤ 1

a
≤ 2

m
, we deduce that

(

g(0)
‖g‖∞

)
1

a
− 1

b ≥ e−4. We conclude

that for m
2
≤ a ≤ b ≤ r +m− 1, one has

e−4Ka(g) ⊂ Kb(g) ⊂ c
b

a
Ka(g). (25)

By integration in polar coordinates, it is well known [26] (see also [20]) that we
have the following relation between the Z+

q -bodies associated with g and the
Z+

q -bodies associated with one of the convex bodies Ka(g): for any 0 < q < r

Z+
q (g) = g(0)1/qZ+

q (Km+q(g)), (26)

where for any body K, Z+
q (K) denotes the convex body whose support func-

tion is defined by

∀θ ∈ R
m, hZ+

q (K)(θ) =

(
∫

K

〈x, θ〉q+dx
)

1

q

.

Let θ ∈ R
m and K be a convex body containing 0. From Berwald’s inequal-

ities [6] applied to K ∩ {〈x, θ〉 ≥ 0} and the function x 7→ 〈x, θ〉+ which is
concave on K ∩ {〈x, θ〉 ≥ 0}, the function

p 7→
(

∫

K
〈x, θ〉p+dx

mB(p + 1, m)Vol(K ∩ {〈x, θ〉 ≥ 0})

)

1

p

is decreasing. Observe that for every θ ∈ R
m, limp→∞

(∫

K
〈x, θ〉p+dx

)
1

p =
hK(θ) and that

(mB(p+ 1, m))
1

p =

(

m

∫ 1

0

up(1− u)m−1du

)

1

p

→
p→+∞

1.
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We deduce that

(

∫

K
〈x, θ〉q+dx

mB(q + 1, m)Vol(K ∩ {〈x, θ〉 ≥ 0})

)

1

q

≥ hK(θ).

Note also that
∫

K
〈x, θ〉q+dx ≤ hK(θ)

qVol(K ∩{〈x, θ〉 ≥ 0}) and that mB(q+
1, m) = qB(q,m+ 1). Therefore

hK(θ) ≥
hZ+

q (K)(θ)

Vol(K ∩ {〈x, θ〉 ≥ 0})1/q ≥ (qB(q,m+ 1))1/q hK(θ). (27)

Now we establish that for q = max(p,m)

d(Km+q(g), Z
+
q (g)) ≤ c. (28)

Take K = Km+q(g). By Lemma 11, for any q ≥ m ≥ 1, (qB(q,m+ 1))1/q ≥
cq/(m+ q + 1) ≥ c/3 and we deduce from (27) that for every θ ∈ R

n,

hKm+q(g)(θ) ≥
hZ+

q (Km+q(g))
(θ)

Vol(Km+q(g) ∩ {〈x, θ〉 ≥ 0})1/q ≥ c

3
hK(θ).

where c is a universal constant. Together with (26), we conclude that

d(Km+q(g), Z
+
q (g)) = d(Km+q(g), Z

+
q (Km+q(g)))

≤ c
supθ∈Rn Vol(Km+q(g) ∩ {〈x, θ〉 ≥ 0})1/q
infθ∈Rn Vol(Km+q(g) ∩ {〈x, θ〉 ≥ 0})1/q (29)

for a universal constant c. Applying (25) for a = m + 1 and b = m + q, we
get

e−4Km+1(g) ⊂ Km+q(g) ⊂ c
m+ q

m+ 1
Km+1(g).

Since q ≥ m and
(

m+q
m+1

)m/q ≤ e, we get from (29)

d(Km+q(g), Z
+
q (g)) ≤ C

supθ∈Rn Vol(Km+1(g) ∩ {〈x, θ〉 ≥ 0})1/q
infθ∈Rn Vol(Km+1(g) ∩ {〈x, θ〉 ≥ 0})1/q

for a universal constant C. Since g has its barycenter at the origin then
Km+1(g) has also its barycenter at the origin and we deduce from a classical
result of Grünbaum [18] that there exists a universal constant c for which

supθ∈Rn Vol(Km+1(g) ∩ {〈x, θ〉 ≥ 0})1/q
infθ∈Rn Vol(Km+1(g) ∩ {〈x, θ〉 ≥ 0})1/q ≤ (e− 1)1/q ≤ e− 1.
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And (28) is proved.
To conclude the proof of the Lemma, it is enough to establish that

d(Km+q, Km+p) ≤ c, where q = max(m, p). For q = p, this is obvious so
we may assume that q = m ≥ p. Then m

2
≤ m+ p ≤ m+ q = 2m and using

equation (25) for a = m+ p ≤ b = 2m, we deduce that

d(Km+p(g), K2m(g)) ≤ ce4
2m

m+ p
≤ 4ce4.

Proof of inequality (22). Our goal is to estimate

d

dp
log
(

(E|X|p2)
1

p

)

=
d

dp
log
(

(Ehk,p(U))
1

p

)

+
d

dp

(

1

p
log

Γ((p+ n)/2)Γ(k/2)

Γ(n/2)Γ((p+ k)/2)

)

.

As already mentioned in (15), by concavity of p 7→ d
dp
log Γ(p), we have

d

dp

(

1

p
log

Γ((p+ n)/2)Γ(k/2)

Γ(n/2)Γ((p+ k)/2)

)

≤ 0.

We use the following convention: let (Ω, µ) be a measurable space, for any
measurable function f : Ω → R

+, we set

Eµ(f) =

∫

fdµ and Entµ(f) = Eµ(f log f)− Eµ(f) log(Eµ(f)).

Let w be the density of the distribution of X on R
n. Since X is (−1/r)-

concave, w is (−1/(r + n))-concave on R
n. To any fixed u ∈ SO(n), we

associate the measure µu on R
+ with density

t 7→ |Sk−1|tk−1πu(E0)w(tu(θ0))

so that

hk,p(u) = |Sk−1|
∫ ∞

0

tp+k−1πu(E0)w(tu(θ0))dt = Eµu(t
p).

Define also µk,p the measure on R
+ with density

t 7→ |Sk−1|tk−1
EπU(E0)w(tU(θ0)).
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Then Ehk,p(U) = EUEµU
(tp) = Eµk,p

(tp). Since w is a density of probabil-
ity, µk,p is a probability measure on R

+. A classical fact, verified by direct
computation, is that

d

dp
log
(

(Eµ(f
p))1/p

)

=
1

p2
Entµ(f

p)

Eµ(f p)
.

Therefore

d

dp
log
(

(Ehk,p(U))
1

p

)

=
d

dp
log
(

(

Eµk,p
(tp)
)

1

p

)

=
1

p2
Entµk,p

(tp)

Eµk,p
(tp)

=
1

p2
Entµk,p

(tp)

Ehk,p(U)
. (30)

The numerator can be decomposed into two terms:

Entµk,p
(tp) = EUEntµU

(tp) + EntUEµU
(tp) = EUEntµU

(tp) + EntUhk,p(U).

To control the second term, we use the log-Sobolev inequality (2):

1

p2
EntUhk,p(U)

Ehk,p(U)
≤ c

p2n

E (|∇ log hk,p|2(U)hk,p(U))

Ehk,p(U)
≤

cL2
k,p

p2n
. (31)

To control the first term, we start by observing that for a fixed u ∈ SO(n),

1

p2
Entµu(t

p)

Eµu(t
p)

=
d

dp
log
(

(Eµu(f
p))1/p

)

=
d

dp

(

1

p
log hk,p(u)

)

=
d

dp

1

p

(

log
hk,p(u)

B(p+ k, r − p)
− log

hk,0(u)

B(k, r)
+ log

B(p+ k, r − p)

B(k, r)
+ log hk,0(u)

)

.

By Corollary 9, the map p 7→ hk,p(u)

B(p+k,r−p)
is log-concave on (−k + 1, r). This

implies that

d

dp

1

p

(

log
hk,p(u)

B(p+ k, r − p)
− log

hk,0(u)

B(k, r)

)

≤ 0.

We know from Lemma 11 that, for all p ∈ [−k−1
2
, r−1

2
],

d

dp

(

1

p
log

B(k + p, r − p)

B(k, r)

)

≤ C

(

1

k − 1
+

1

r − 1

)

.
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Therefore, for any fixed u ∈ SO(n),

1

p2
Entµu(t

p) ≤ Chk,p(u)

(

1

k − 1
+

1

r − 1

)

− 1

p2
hk,p(u) log hk,0(u).

Integrating over u ∈ SO(n), we deduce that

1

p2
EEntµU

(tp)

Ehk,p(U)
≤ C

(

1

k − 1
+

1

r − 1

)

+
1

p2
Ehk,p(U) log(hk,0(U)−1)

Ehk,p(U)
. (32)

From Jensen and Hölder inequalities,

E(hk,p(U) log hk,0(U)−1)

Ehk,p(U)
≤ log

(

E(hk,p(U)hk,0(U)−1)

Ehk,p(U)

)

≤ log

(

(Ehk,p(U)2)1/2

Ehk,p(U)

)

+ log
(

(E(hk,0(U)−2))1/2
)

.

From (3), the first term is upper bounded by c
n
L2
k,p. For the second term,

we first use (3) with f = h−1
k,0, q = 2 and r = 0, then we use (3) again with

f = hk,0, q = 1 and r = 0. Since Ehk,0(U) = Eµk,0
(1) = 1, we deduce that

this term is bounded by 3c
n
L2
k,0. Combining this last inequality with (32),

(31) and (30), we conclude that

d

dp
log((E|X|p2)

1

p ) ≤ c

p2n
(2L2

k,p + 3L2
k,0) +

C

k − 1
+

C

r − 1
.
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