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A FITTING THEOREM FOR SIMPLE THEORIES

DANIEL PALACÍN AND FRANK O. WAGNER

Abstract. The Fitting subgroup of a type-definable group in a
simple theory is relatively definable and nilpotent. Moreover, the
Fitting subgroup of a supersimple hyperdefinable group has a nor-
mal hyperdefinable nilpotent subgroup of bounded index, and is
itself of bounded index in a hyperdefinable subgroup.

1. Introduction

The Fitting subgroup F (G) of a group G is the group generated by all
normal nilpotent subgroups. Since the product of two normal nilpotent
subgroups of class c and c′ respectively is again a normal nilpotent
subgroup of class c+ c′, it is clear that the Fitting subgroup of a finite
group is nilpotent. In general, this need not be the case, and some
additional finiteness conditions are needed. For groups with the chain
condition on centralisers (Mc), nilpotency of the Fitting subgroup was
shown by Bryant [3] for periodic groups, by Poizat and Wagner [9, 12]
in the stable case, and generally by Derakhshan and Wagner [4].

In this paper, we shall consider a weaker chain condition on centralisers

one might call M̃c: The chain condition on centralisers up to finite
index. More precisely, we shall assume that there are natural numbers
n, d < ω such that any decreasing chain of centralizers, each of index
at least d in its predecessor, has length at most n. This chain condition
holds notably in groups type-definable in a simple theory [13, Theorem
4.2.12]. Similarly to the approach in [9, 12] we shall also need this chain
condition on certain quotients by relatively definable subgroups, which
again follows from simplicity, as the quotients are again type-definable.
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In this context, it is natural to consider the FC-centralizer introduced
by Haimo [5]: For H ≤ G put FCG(H) = {g ∈ G : |H : CH(g)| < ∞}.
However, whereas for subgroups H,K ≤ G trivially H ≤ CG(K) ⇔
K ≤ CG(H), no such symmetry has to hold for the FC-centralisers,
even if one only asks for inclusion up to finite index. Nevertheless, for
type-definable groups in a simple theory, symmetry does hold (Propo-
sition 2.7).

In the course of the proof, we shall also need that soluble and nilpo-
tent groups are contained (up to finite index) in relatively definable
soluble and nilpotent supergroups. In the definable simple case this
has been shown by Milliet [7] and generalized, for soluble subgroups,

to M̃c-groups by Hempel [6]; in the nilpotent case the symmetry al-
luded to above seems to be necessary. We basically reproduce their
proofs (which adapt ideas from the hyperdefinable case [13]) in the
type-definable context, adding some precision about the existence of a
suitable normal relatively definable abelian/central series.

2. Almost just definitions

Definition 2.1. A subgroup H of G is almost contained in another
subgroup K, denoted by H . K, if H ∩K has finite index in H . Then
H and K are commensurable, denoted by H ∼ K, if H . K and
K . H .

Observe that . is a transitive relation among subgroups of G, and that
∼ is an equivalence relation.

Definition 2.2. Let H be a subgroup of a group G. The almost nor-

malizer of H is defined as

ÑG(H) = {g ∈ G : H ∼ Hg}.

Note that if H and K are commensurable, then ÑG(H) = ÑG(K).

We shall usually work in a context where commensurativity is uni-
form. Then a theorem by Schlichting [11], generalized by Bergmann
and Lenstra [2] (see also [13, Theorem 4.2.4] for definability questions),
provides an invariant object:

Fact 2.3. Let H be a family of uniformy commensurable subgroups of a

group G, i.e. the index |H : H∩H∗| is finite and bounded independently

of H,H∗ ∈ H. Then there is a subgroup N commensurable with any

H ∈ H, which is invariant under any automorphism of G stabilizing
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H setwise. Moreover, N is a finite extension of a finite intersection of

groups in H; if the latter are relatively definable, so is N .

It follows that if H is uniformly commensurable with all its ÑG(H)-

conjugates, then there is a normal subgroup H̃�ÑG(H) commensurable
with N . Clearly, any two choices for H̃ will be commensurable, and
NG(H̃) = ÑG(H̃) = ÑG(H).

Definition 2.4. Let K and H be subgroups of a group G with H .

ÑG(K), and suppose K̃ exists. The almost centralizer of H modulo K
is given by

C̃G(H/K) = {g ∈ ÑG(K) : |H : CH(g/K̃)| is finite}.

For n < ω the n-th iterated almost centralizer of H modulo K is defined
inductively by C̃0

G(H/K) = K and

C̃n+1
G (H/K) =

⋂

i≤n

ÑG(C̃
i
G(H/K)) ∩ C̃G(H/C̃n

G(H/K)).

If K = {1} it is omitted.

Thus C̃G(H/K) = C̃1
G(H/K). For any subgroup L we put C̃n

L(H/K) =

C̃n
G(H/K) ∩ L and ÑL(K) = ÑG(K) ∩ L.

Remark 2.5. If H∗ ∼ H and K∗ ∼ K, then C̃n
G(H/K) = C̃n

G(H
∗/K∗)

for all n > 0.

From now on we shall be working inside a very saturated model of a
complete first-order theory.

Fact 2.6. If H is type-definable and K relatively definable in a simple

theory, then K̃ exists, and both ÑG(K) and C̃n
G(H/K) are relatively

definable in G.

Proof: This follows immediately from [13, Lemma 4.2.6]. �

In a simple theory, the existence of generic elements yields the following
symmetry property, which plays an essential role throughout the paper.

Proposition 2.7. Let G be type-definable in a simple theory, and H
and K be type-definable subgroups of G. The following are equivalent:

(1) H . C̃G(K).
(2) There are independent generic elements h ∈ H and k ∈ K with

[h, k] = 1.

In particular, H . C̃G(K) if and only if K . C̃G(H).
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Proof: Suppose H . C̃G(K). So there is a generic h ∈ H with h ∈
C̃G(K). Thus CK(h) has finite index in K, and there is generic k ∈ K
over h with k ∈ CG(h). Then h and k are independent, and [h, k] = 1.

Conversely, suppose h ∈ H and k ∈ K are independent generics with
[h, k] = 1. As k ∈ CK(h) and k is generic over h, the index of CK(h) in

K is finite. Thus h ∈ C̃G(K); as h is generic, we get H . C̃G(K). �

Of course, if H,K ≤ NG(N) we also have H . C̃G(K/N) if and only if
K . C̃G(H/N), by working in the group NG(N)/N . Thus symmetry
also holds for relative almost centralizers.

We shall finish this section by recalling two group-theoretic facts.

Fact 2.8. [8, Theorem 3.1] There is a finite bound of the size of con-

jugacy classes in a group G if and only if the derived subgroup G′ is

finite.

Fact 2.9. [1, 10] Let H and N be subgroups of G with N normalized

by H. If the set of commutators

{[h, n] : h ∈ H, n ∈ N}

is finite, then the group [H,N ] is finite.

3. Nilpotency in type-definable groups in a simple theory

We shall first generalize the results of Milliet [7] to the relatively de-
finable context. For this we need the following result.

Fact 3.1. [13, Theorem 4.2.12] Let G be a type-definable group in a

simple theory, and H a family of uniformly relatively definable sub-

groups. Then there are n, d < ω such that any descending chain of

intersections of groups in H, each of index at least d in its predecessor,

has length at most n.

Lemma 3.2. Let G be a type-definable group in a simple theory, and H
a soluble subgroup of G. Then there is a relatively definable soluble sub-

group S containing H, and a series of relatively definable S-invariant
subgroups

{1} = S0 < S1 < · · · < Sn = S,

all normalized by NG(H), such that Si/Si+1 is abelian for all i < n.
The derived length n of S is at most three times the derived length of

H. Moreover, S1 and Sn/Sn−1 are finite.
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Proof: Suppose first that H is abelian. By Fact 3.1 there is a finite
tuple h̄ ∈ H and d < ω such that for any h ∈ H

|CG(h̄) : CG(h̄, h)| < d.

Hence the family of NG(H)-conjugates of CG(h̄) is uniformly commen-

surable; note that NG(H) ≤ ÑG(CG(h̄)) =: N . By Fact 2.3 there is a
relatively definable group C commensurable with CG(h̄) and normal-
ized by N . Then we obtain H . C as H = CH(h̄), and NG(C) = N .
Now, as C ∼ CG(h̄) . CG(h) for any h ∈ H , the relatively definable
subgroup Z̃(C) of G contains H ∩ C, and so H . Z̃(C). By compact-

ness there is a finite bound on the size of conjugacy classes in Z̃(C), so
Z̃(C)′ is finite by Fact 2.8 and hence definable. Put S2 = CZ̃(C)(Z̃(C)′),

a relatively definable subgroup normalized by N . Since Z̃(C)′ is finite,

S2 has finite index in Z̃(C), so H . S2. If S1 = S2 ∩ Z̃(C)′, then
S1 is finite, abelian and normalized by N , and S2/S1 is abelian. Put
S3 = HS2, a finite extension of S2 and thus relatively definable. Then
S3/S2 is abelian as well, and if h̄′ is a system of representatives of
S3/S2, then

NG(S3) = {g ∈ N : hg ∈ S3 for all h ∈ h̄′}

is a relatively definable subgroup of G. Clearly NG(S3) ≥ NG(H).

We can now replace G by NG(S3)/S3 and finish by induction. �

Note that the above proof merely uses the M̃c-condition for G and
for certain relatively definable sections of G, but not symmetry of the
almost centraliser. This is different for nilpotency, where the following
lemma is used.

Lemma 3.3. Let G be a type-definable group in a simple theory. Then

there is a characteristic relatively definable subgroup G0 of finite index

and a finite characteristic subgroup N ≤ Z(G0) such that Z̃(G) ≤
CG(G0/N).

Proof: As trivially C̃G(G) . C̃G(G), Proposition 2.7 yields C̃G(Z̃(G)) =

C̃G(C̃G(G)) . G, and so C̃G(Z̃(G)) is a characteristic relatively defin-
able subgroup of finite index in G. For independent g ∈ Z̃(G) and

h ∈ C̃G(Z̃(G)) we have

[g, h] ∈ acl(g) ∩ acl(h) = acl(∅).

As every element in Z̃(G) is the product of two generic elements g, g′

each of which can be chosen independently of h ∈ C̃G(Z̃(G)), and

[gg′, h] = [g, h][[g, h], g′][g′, h] ∈ acl(∅),
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the set of commutators

{[g, h] : g ∈ Z̃(G), h ∈ C̃G(Z̃(G))]}

is bounded, whence finite by compactness. By Fact 2.9 the character-
istic group Z = [Z̃(G), C̃G(Z̃(G))] is finite. We put G0 = C̃G(Z̃(G)) ∩
CG(Z) and N = Z ∩G0. �

Lemma 3.4. Let G be a type-definable group in a simple theory, and

H a nilpotent subgroup of G. Then there is a relatively definable nilpo-

tent subgroup N with H . N , and a series of relatively definable N-

invariant subgroups

{1} = N0 < N1 < · · · < Nn = N

normalized by NG(H), such that Ni+1 ≤ CG(N/Ni) for all i < n. The

nilpotency class n of N is at most two times the nilpotency class of K.

The same conclusion holds if H is merely FC-nilpotent, i.e. H .

Z̃k(H) for some k.

Proof: We use double induction on the (FC-) nilpotency class of H and
the maximal length of a chain of centralizers, each of infinite index in
its predecessor. If there is g ∈ C̃G(H) \ Z̃(G), we consider the family
H = {CG(g

h) : h ∈ NG(H)}. By Fact 3.1 there is a finite intersection
C of groups in H such that any further intersection has boundedly
finite index. In particular, note that ÑG(C) ≥ NG(H). Thus, by Fact
2.3 there is an ÑG(C)-invariant relatively definable subgroup C0 of G
commensurable with C, and so C0 . CG(g

h) for any h ∈ NG(H). As
the index |H : CH(g)| is finite, we get H . C, and whence H . C0.
Replacing G by C0 and H by H ∩ C0, we have reduced the maximal
length of a chain of centralizers, each of infinite index in its predecessor.

If C̃G(H) ≤ Z̃(G), consider the groups G0 and N given by Lemma 3.3.
We put N1 = N and N2 = Z̃(G)∩G0, and replace H by (H ∩G0)/N2,
a nilpotent subgroup of G0/N2 of smaller nilpotency class. �

Remark 3.5. If in addition H is normal, then NH is nilpotent of class
at most three times the class of H ; if c is the nilpotency class of H and
h̄ ∈ H is a system of representatives of NH/N , then

{1} ≤ CN1
(h̄) ≤ C2

N1
(h̄) ≤ · · · ≤ Cc+1

N1
(h̄) = N1

≤ CN2
(h̄/N1) ≤ C2

N2
(h̄/N1) ≤ · · · ≤ Cc+1

N2
(h̄) = N3

≤ · · · ≤ Cc+1
Nn

(h̄/Nn−1) = Nn = N

≤ NZ(H) ≤ NZ2(H) ≤ · · · ≤ NZc(H) = NH

is a relatively definable central series for NH normalised by NG(H).
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Lemma 3.6. Let G be a type-definable group in a simple theory and

H a directed system of nilpotent subgroups. Then H =
⋃
H is soluble.

Proof: Let (n, d) be the bounds given by Fact 3.1 for chains of central-
izers, and (n′, d′) the bounds for chains of centralizers modulo Z̃(G).
The proof is by induction on n.

Consider G0 and N as given by Lemma 3.3. As HG0/G0 is finite and

nilpotent, we may assume that H ≤ G0. If H ≤ Z̃(G) we are done, as
Z̃(G)/N and N are abelian.

If H 6≤ Z̃(G), then consider some H0 ∈ H with H0 6≤ Z̃(G) and we

take h0 ∈ CH0
(H0/Z̃(G)) \ Z̃(G); note that a such element exists as

H0/Z̃(G) is nilpotent. If CH(h0/Z̃(G)) has index greater than d′ in H ,

then there is some H1 > H0 such that CH1
(h0/Z̃(G)) has index greater

than d′ inH1. If h1 ∈ CH1
(H1/Z̃(G))\Z̃(G), then CG(h1, h0/Z̃(G)) has

index greater than d′ in CG(h1/Z̃(G)). If CH(h1/Z̃(G)) has index more
than d′ inH , then we can iterate this process, which must stabilize after
at most n′ steps. It follows that there is some h ∈ H \ Z̃(G) such that
CH(h/Z̃(G)) has index at most d′ in H .

Since CG(h) has infinite index in G, the induction hypothesis for n− 1
yields that CH(h) is soluble. Moreover, as N is central in G0 the map
from CH(h/N) to N given by x 7→ [h, x] is a homomorphism with
abelian image and kernel CH(h). Thus CH(h/N)/CH(h) is abelian.
Similarly, as Z̃(G) is centralised by H modulo N , the map x 7→ [h, x]N

is a homomorphism from CH(h/Z̃(G)) to Z̃(G)/N with abelian image
and kernel CH(h/N). Therefore, CH(h/Z̃(G)) is soluble. Finally, as

CH(h/Z̃(G)) contains a normal subgroup K of H with H/K finite,
whence nilpotent, we see that H must be soluble. �

Corollary 3.7. A locally nilpotent subgroup H of a type-definable group

in a simple theory is soluble.

Proof: The collection of finitely generated subgroups of H satisfies the
hypotheses of Lemma 3.6. �

Lemma 3.8. Let G be a type-definable group acting on a type-definable

abelian group A, in a simple theory. Suppose that H ≤ G is abelian,

and that there are ḡ = (gi : i < k) in H and mi < ω for i < k such

that (gi − 1)miA is finite for all i < k, and for any g ∈ H the index

of CA(ḡ, g) in CA(ḡ) is finite. Put m = 1 +
∑

i<k(mi − 1). Then there

is a relatively definable supergroup H̄ of H such that C̃m
A (H̄) has finite

index in A.



8 DANIEL PALACÍN AND FRANK O. WAGNER

Proof: By [13, Lemma 4.2.6] the group

H̄ = {g ∈ CG(ḡ) : |CA(ḡ) : CA(ḡ, g)| finite}

is relatively definable, and it clearly contains H . By the pigeonhole
principle, for any m indices (ij : j < m) ∈ km, there must be at least
one i < k such that mi of the indices are equal to i. As the group ring
Z(H) is commutative, this implies that

(gi0 − 1)(gi1 − 1) · · · (gim−1
− 1)A

is finite. Hence there is a subgroup A0 of finite index in A such that

(gi0 − 1)(gi1 − 1) · · · (gim−1
− 1)A0 = 0

for all choices (ij : j < m) ∈ km. It follows that for all choices of
(ij : 0 < j < m) ∈ km−1 we have

(gi1 − 1) . . . (gim−1
− 1)A0 ≤ CA(gi : i < k).

As CA(h0, gi : i < k) has finite index in CA(gi : i < k) for all h0 ∈ H̄,
the group

(h0 − 1)(gi1 − 1) · · · (gim−1
− 1)A0

is finite, as is (h0 − 1)(gi1 − 1) · · · (gim−1
− 1)A.

By the same argument and the fact that H̄ ≤ CG(ḡ) we see that for
any h1 in G

(h1 − 1)(h0 − 1)(gi2 − 1) · · · (gim−1
− 1)A

is finite, and inductively that

(hm−1 − 1) · · · (h1 − 1)(h0 − 1)A

is finite for any (hj : j < m) in H̄ . It follows that

H̄ ≤ C̃H̄((hm−2 − 1) · · · (h0 − 1)A)

for all (hj : j < m− 1) in G, whence by symmetry

(hm−2 − 1) · · · (h0 − 1)A . C̃A(H̄).

But C̃A(H̄) is relatively definable; we may divide out and note that

(hm−2 − 1) · · · (h0 − 1)A/C̃A(H̄)

is finite for all choices of (hj : j < m− 1) in H̄ . Hence

H̄ ≤ C̃H̄((hm−3 − 1) · · · (h0 − 1)A/C̃A(H̄))

and by symmetry

(hm−3 − 1) · · · (h0 − 1)A . C̃A(H̄/C̃A(H̄)) = C̃2
A(H̄).

Inductively, we see that A . C̃m
A (H̄). �
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Theorem 3.9. Let G be a type-definable group in a simple theory.

Then the Fitting subgroup F (G) is nilpotent.

Proof: F (G) is soluble by Lemma 3.6; by Lemma 3.2 there is a chain

{1} = S0 < S1 < · · · < Sd = S

of relatively definable normal subgroups of G such that all quotients
Si+1/Si for i < d are abelian. Since F (Si) = F (G)∩Si, we may assume
by induction on d that F (G)′ ≤ F (Sd−1) is nilpotent. By Lemma 3.4
and Remark 3.5 there is a relatively definable normal nilpotent group
N containing F (G)′, and a relatively definable series

{1} = N0 < N1 < · · · < Nk = N

of normal subgroups of G with [N,Ni+1] ≤ Ni for all i < k.

Fix i > 0. Any g ∈ F (G) is contained in a normal nilpotent subgroup
Hg. Since NiHg is again nilpotent, there is mg < ω such that

(g − 1)mgNi ≤ Ni−1.

By Fact 3.1 there is a finite tuple ḡ ∈ F (G) such that for any g ∈ F (G)
the index |CNi

(ḡ/Ni−1) : CNi
(ḡ, g/Ni−1)| is finite. Furthermore, by

Lemma 3.8 (applied to G/N and to the abelian subgroup F (G)/N
acting on Ni/Ni−1 by conjugation) there is mi < ω and a relatively

definable group Hi ≥ F (G) such that Ni . C̃mi

G (Hi/Ni−1). Then, the
finite intersection

⋂
iHi is a relatively definable supergroup of F (G).

By Facts 3.1 and 2.3 there is a relatively definable normal subgroup
H , which is a finite extension of a finite intersection of G-conjugates
of

⋂
i Hi. Thus H ≥ F (G), and H . Hi for all i; by Lemma 3.2 we

may restrict H and assume that there are relatively definable normal
subgroups

N ≤ Z ≤ A ≤ H

of G with Z/N and H/A finite and A/Z abelian. Then

Ni . C̃mi

G (Hi/Ni−1) ≤ C̃mi

G (Hi ∩H/Ni−1) = C̃mi

G (H/Ni−1),

and inductively

Ni . C̃mi

G (H/Ni−1)

≤ C̃mi

G (H/C̃
mi−1

G (H/Ni−2)) = C̃
mi+mi−1

G (H/Ni−2)

· · ·

≤ C̃
mi+mi−1+···+m1

G (H).

Thus N . C̃m
N (H) for m = m1 + m2 + · · · + mk. Since Z . N and

N ≤ A ≤ H we obtain Z . C̃m
A (A), whence A = Z̃m+1(A). So A is
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nilpotent-by-finite by Lemma 3.4, as is F (G), since F (G) . A. If F is
a normal nilpotent subgroup of finite index in F (G) and K a normal
nilpotent group containing representatives for F (G)/F , then FK is
nilpotent, as is F (G). �

4. Hyperdefinable groups

In the previous section we have systematically used the fact that type-
definability is preserved under quotients whenever we divide out by
a relatively definable subgroup. However, type-definability is not pre-
served when quotienting by a type-definable subgroup, and in fact such
quotients (and even the slightly more general ones defined below) arise
naturally from model-theoretic considerations in simplicity theory. We
are thus led to the following definition.

Definition 4.1. A hyperdefinable group is a group whose domain is
given by a partial type π modulo a type-definable equivalence relation
E, and whose group law is induced by an E-invariant type-definable
relation on π3.

Note that a quotient of a hyperdefinable group by a hyperdefinable
group is again hyperdefinable. In this context, we have to replace fi-

nite index by bounded index, i.e. the index remains bounded even in
a very saturated elementary extension. With this replacement in the
definitions of Section 2, almost containment is transitive, commensu-
rability is an equivalence relation, and we still have good definability
properties in a simple theory.

Remark 4.2. Note that if H is type-definable and K relatively de-
finable in an ω-saturated type-definable group G, by compactness the
index |H : H ∩ K| is finite if and only if it bounded. So our revised
definition agrees with the old version in this context.

Fact 4.3. [13, Proposition 4.4.10 and Corollary 4.5.16] Let K and H
be hyperdefinable subgroups of a hyperdefinable group G, with H .

ÑG(K). Then:

(1) ÑG(K) is hyperdefinable, and K̃ exists.

(2) C̃n
G(H/K) is hyperdefinable for all n < ω.

Moreover, the proof of symmetry (Proposition 2.7) remains valid in the
hyperdefinable context.

In contrast to the type-definable case, simplicity does not necessarly
yield a finite chain condition on centralizers (even though there is an
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ordinal α such that any descending chain of hyperdefinable subgroups
having unbounded index in its predecessor stabilizes, up to bounded
index, after α many steps). In order to adapt the arguments from
the previous section we shall make a stronger assumption, supersim-
plicity. More precisely, we shall assume the following consequence of
supersimplicity: There is no infinite descending chain of hyperdefinable
subgroups, each of unbounded index in its predecessor. In particular,
we obtain a minimal condition on centralizers, up to bounded index.

As a consequence, all proofs of the previous section adapt to this wider
context and therefore we obtain the same result, up to bounded index.
Note that Remark 3.5 need no longer hold, as a system of representa-
tives for a subgroup of bounded index can now be infinite.

Alternatively, we offer a distinct proof of virtual nilpotency of the Fit-
ting subgroup of a hyperdefinable group of ordinal SU -rank in a simple
theory, which in addition provides a bound on the nilpotency class. For
the rest of the section, the ambient theory will be simple. We first recall
some facts starting with the Lascar inequalities for SU -rank.

Fact 4.4. [13, Theorem 5.1.6 (1)] If H and K are hyperdefinable sub-

groups of a common hyperdefinable group, then

SU(H) + SU(HK/H) ≤ SU(HK) ≤ SU(H)⊕ SU(HK/H),

where ⊕ is the least symmetric increasing function on ordinals satisfy-

ing f(α, β + 1) = f(α, β) + 1.

Fact 4.5. [13, Proposition 5.4.3] If G is an ∅-hyperdefinable group of

rank SU(G) = ωα · n + γ with γ < ωα, then G has an ∅-hyperdefinable
normal subgroup H of SU-rank ωα · n.

Corollary 4.6. Let G be an ∅-hyperdefinable group of rank SU(G) =
ωα1 · n1 + . . .+ ωαk · nk with αi > αi+1 for i < k and ni > 0 for i ≤ k.
Then there exists a series of ∅-hyperdefinable G-invariant subgroups

{1} = G0 �G1 � · · ·�Gℓ = G

with ℓ ≤ n1+ . . .+nk such that each quotient Gi+1/Gi is unbounded of

monomial SU-rank ωβi · mi and its ∅-hyperdefinable G-invariant sub-

groups of unbounded index have SU-rank strictly smaller than ωβi.

Proof: By Fact 4.5 there is an ∅-hyperdefinable normal subgroup G1

of G of minimal monomial Lascar rank of the form SU(G1) = ωα1 ·m
with positive m ≤ n1. By minimality, G1 is as required. If SU(G1) =
SU(G) we are done. Otherwise, SU(G/G1) < SU(G) by the Lascar
inequalities, so we finish by induction on SU(G). �
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Next, we recall the supersimple version of Zilber’s Indecomposability
Theorem.

Fact 4.7. [13, Theorem 5.4.5 and Remark 5.4.7] Let G be an ∅-hyper-
definable group of rank SU(G) < ωα+1. If X is a family of hyperde-

finable subsets of G, then there exists a hyperdefinable subgroup K ≤
X±1

1 · · ·X±1
m for some X1, . . . , Xm ∈ X, such that SU(XK) < SU(K)+

ωα for all X ∈ X. Moreover, SU(K) = ωα · n, and K is unique up to

commensurability. In particular, if X is invariant under all automor-

phisms we can choose K hyperdefinable over ∅, and if X is G-invariant,

we can take K to be normal in G.

Finally, we state the hyperdefinable version of our main result in the
supersimple case.

Theorem 4.8. Let G be an ∅-hyperdefinable group of rank SU(G) =
ωα1 · n1 + . . . + ωαk · nk. Then F (G) has bounded index in an ∅-
hyperdefinable FC-nilpotent normal subgroup N of class ℓ ≤ n1 + . . .+
nk. In particular, the hyperdefinable normal group N0

∅ is nilpotent of

class 2ℓ and has bounded index in F (G).

Proof: By Lemma 4.6 there is a finite series of ∅-hyperdefinable G-
invariant subgroups

{1} = G0 �G1 � · · ·�Gℓ = G

with ℓ ≤ n1 + · · ·+ nk, such that each quotient Gi+1/Gi is unbounded
of monomial Lascar rank ωβi ·mi, and its ∅-hyperdefinable G-invariant
subgroups of unbounded index have SU -rank strictly smaller than ωβi.
Clearly, we may assume that all Gi are ∅-connected, i.e. have no ∅-
hyperdefinable subgroup of bounded index.

Let N be the intersection
⋂

i<ℓ C̃G(Gi+1/Gi), an ∅-hyperdefinable nor-

mal subgroup of G. Note that N ≤ C̃G((Gi+1 ∩N)/(Gi ∩N)). Hence
by symmetry we get

Gi+1 ∩N . C̃G(N/(Gi ∩N))

for all i < ℓ. Inductively,

N = Gℓ ∩N . C̃G(N/(Gℓ−1 ∩N))

≤ C̃G(N/(C̃G(N/(Gℓ−2 ∩N))) = C̃2
G(N/(Gℓ−2 ∩N))

≤ C̃2
G(N/C̃G(N/(Gℓ−3 ∩N))) = C̃3

G(N/(Gℓ−3 ∩N))

≤ · · · ≤ C̃ℓ
G(N/(G0 ∩N)) = C̃ℓ

G(N).
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Now we prove that F (G) ≤ N . Fix i ≤ ℓ, and consider the ∅-invariant
family X formed by the hyperdefinable sets Xa = [a,Gi+1]/Gi for
a ∈ F (G). Suppose, towards a contradiction, that the SU -rank of
some of these sets is greater than ωβi. By Fact 4.7 applied to Gi+1/Gi

we obtain an ∅-hyperdefinable G-invariant subgroup H ≤ Gi+1/Gi

of monomial SU -rank which is contained in a finite product of sets
X±1

a0
, . . . , X±1

am
from X; moreover, SU(H) ≥ ωβi. Thus H has bounded

index in Gi+1/Gi and must be equal by ∅-connectivity. But every ai is
contained in a normal nilpotent subgroup of G which must also contain
Xai , so K = 〈ai, Xai : i ≤ m〉 is nilpotent. However,

(†) H ≤ X±1
a0

· · ·X±1
am

= [a0, H ]±1 · · · [am, H ]±1 ⊆ H

and we must have equality, contradicting nilpotency ofK: IfH is in the
k-th element γk(K) of the lower central series, then equation (†) implies
that H ≤ γk+1(K). Thus H ≤

⋂
k<ω γk(K) = {1}, a contradiction.

It follows that SU(Xa) < ωβi for all Xa ∈ X. As Xa is in bijection with
Gi+1/CGi+1

(a/Gi), the Lascar inequalities imply that Xa is bounded

and so a ∈ C̃G(Gi+1/Gi). Therefore F (G) ≤ N , whence F (G) .

Z̃ℓ(N)0∅. As Z̃ℓ(F )0∅ is nilpotent of class 2ℓ by [13, Proposition 4.4.10
(3)], we conclude. �
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