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Abstract

We advocate for ambitious corpus linguistics drawing inspiration from the latest devel-
opments of semiparametrics for a modern targeted learning. Transgressing discipline-specific
borders, we adapt an approach that has proven successful in biostatistics and apply it to the
well-travelled case study of the dative alternation in English. The essence of the approach
hinges on causal analysis and targeted minimum loss estimation (TMLE). Through causal
analysis, we operationalize the set of scientific questions that we wish to address regarding
the dative alternation. Drawing on the philosophy of TMLE, we answer these questions by
targeting some versatile machine learners. We derive estimates and confidence regions for
well-defined parameters that can be interpreted as the influence of each contextual variable on
the outcome of the alternation (prepositional vs double-object), all other things being equal.

1 Introduction

Gries (2014) describes corpus linguistics as a “distributional science” investigating the frequencies
of occurrence of various elements in corpora, their dispersion, and their co-occurrence properties.
Baayen (2011) argues that, “although this characterization of present-day corpus linguistics is
factually correct (. . . ), corpus linguistics should be more ambitious”. Focusing on a classification
problem, he compares the performances of different classifiers based either on the principle of
parametric regression or on more data-adaptive algorithms gathered under the banner of machine
learning, both in terms of accuracy of prediction and of quality of the underlying models for human
learning. Following Baayen (2011), we also advocate for ambitious corpus linguistics drawing
inspiration from the latest developments of semiparametrics for a modern targeted learning.

We break free from artificial discipline-specific boundaries, as we benefit from the lessons of
state-of-the-art causal analysis and biostatistics to address a long-standing issue in linguistics. Our
guiding principle is the following: predicting is not explaining. It conveys the idea that one should
always carefully cast the questions at stake as statistical parameters of the true, unknown law
of the data. Once this is done, we suggest the two-step procedure known as targeted minimum
loss estimation (TMLE, van der Laan and Rubin, 2006; van der Laan and Rose, 2011). The first
step takes advantage of the power of machine learning, while acknowledging its limits in terms of
inference. To overcome these limits, the second step consists in bending the initial estimators by
targeting them toward the parameters they are meant to capture.

In Section 2, we briefly introduce the dative alternation, the theoretical issues it raises, and a
summary of recent corpus-based, statistics driven investigations. In Section 3, we lay out our plan
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for the prediction and explanation of the dative alternation based on corpus data. We claim that
these two tasks differ substantially. Our approach is motivated by causal considerations. Section 4
is a concise presentation of the statistical apparatus that we elaborate to tackle the statistical
problems defined in Section 3. We present and comment on the results in Section 5. Additional
material is gathered in the appendix. In particular, details on the machine learning and on TMLE
procedures are given in Sections A.2 and A.3, respectively. These are the more technical parts of
the article.

2 The dative alternation

An argument alternation is characterized by sentence pairs with the same verb, but different
syntactic patterns. Well known to linguists is the dative alternation, which consists of the prepo-
sitional dative (henceforth PD) and the ditransitive constructions (or double-object construction,
henceforth DO), exemplified in (i) and (ii) respectively:

(i) John
Sag

gave
V

the book
Otheme

to Mary.
Orec

(PD)

(ii) John
Sag

gave
V

Mary
Orec

the book.
Otheme

(DO)

What alternates in this case is the realization of the recipient and the theme, one of which must
be an object while the other can be either a direct object or a prepositional object. Levin and
Rappaport Hovav (2005) describe the dative alternation as a case of object alternation, a subcase
of multiple argument realization phenomena.

To account for the dative alternation, linguists have relies on either intuition or corpora and
quantitative methods. We review each trend in Sections 2.1 and 2.2.

2.1 Theoretical issues

The dative alternation has been a fruitful research topic in many different theories. Substantial
accounts of past research can be found for instance in (Levin, 1993), (Krifka, 2004) and (Levin and
Rappaport Hovav, 2005, chapter 7).

Chomsky (1957, 1962) suggests that an alternating verb has a single lexical entry for both forms.
These forms have the same deep syntactic structure. Differences visible at the sentence level are
explained by the fact that the surface structure of the basic form is a direct projection of the deep
structure, whereas the surface structure of the derived form is the product of a transformation.

Subsequent transformational-generative studies holding a distinction between deep and surface
structures debate over which variant of the dative alternation is transformationally derived from
the basic argument realization. Conclusions differ. On the one hand, Fillmore (1965), Hall (1975),
and Emons (1972) contend that PD is basic whereas DO is derived. On the other hand, Burt
(1971) and Aoun and Li (1989) argue for the opposite pattern of transformation: DO is basic
whereas PD is derived.

Semantic restrictions to the dative alternation have challenged transformational accounts. One
restriction is that certain verbs alternate while others readily enter only one variant:

(iii) a. Anthony gave $100 to charity.

b. Anthony gave charity $100.

(iv) a. Anthony donated $100 to charity.
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b. ?Anthony donated charity $100.

(v) a. ??The bank denied a checking account to me.

b. The bank denied me a checking account.

Proponents of the Localist Hypothesis (Jackendoff, 1983), who construe the recipient as a spatial
goal, might further argue that DO is possible in (vi b) if London refers metonymically to a person
or an institution, in which case it differs from (vi a) where London is clearly a place:

(vi) a. She sent a parcel to London.

b. She sent London a parcel.

A second restriction is the frequent lack of semantic equivalence between alternating forms in
cases where the verb readily enters both variants (Green, 1974; Oehrle, 1976), as in (vii):

(vii) a. Will taught linguistics to the students.

b. Will taught the students linguistics.

DO conveys a sense of completion in such a way that the teaching is successful in (vii b). Example
(vii a) is more neutral in this respect. However, more recent studies warn that these semantic
differences are intuitive and may be subject to contextual modulation (Baker, 1997; Davidse, 1998;
Levin and Rappaport Hovav, 2005).

Despite continuous efforts to maintain that alternating verbs have a single meaning underlying
both formal variants (Jackendoff, 1990; Dowty, 1991; Bresnan, 2001), there is now cross-theoretical
consensus that the two variants of the dative alternation have distinct semantic representations.
According to Pinker (1989) and Rappaport Hovav and Levin (2008), caused motion underlies PD,
whereas caused possession underlies DO, as schematized in (viii):

(viii) a. John gave the book to Mary.
X cause Z to be at Y (caused motion, Y is a goal)
‘John causes the book to go to Mary’

b. John gave Mary the book.
X cause Y to have Z (caused possession, Y is a recipient)
‘John causes Mary to have the book’

In a similar fashion, Speas (1990, pp. 88–89) schematizes the semantic representations of both
variants as follows:

(ix) a. X cause [Y to be at (possession) Z] (PD)

b. X cause [Z to come to be in STATE (of possession)] by means of [X cause [Y to come
to be at (poss) Z]] (DO)

In the Construction Grammar framework, Goldberg (1995) posits that PD is a subtype of the more
general caused-motion construction (cf. the Localist Hypothesis), whereas DO expresses a transfer
of possession:

(x) a. X cause Y to move Z (PD)

b. X cause Y to receive Z (DO)

The above finds empirical support in (Gries and Stefanowitsch, 2004).

Given that the distribution of verbs across the dative variants is semantically constrained, and
given the frequent lack of semantic equivalence between PD and DO for a given verb, a set of
semantic factors have been recognized to influence the choice of PD vs. DO. Among the known
lexical semantic restrictions applying to verbs in the dative alternation are the following:
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• Movement (PD) vs. possession (DO): in PD, the theme undergoes movement (literal or
figurative) from an origin to a goal, whereas in DO the agent possesses the theme via the
verb event.

• Affectedness: as seen in (vii), the recipient of dative verb is more likely to receive an affected
interpretation when expressed as the first object in DO than in PD;

• Continuous imparting of force: in PD, the verb can express a continuous imparting of force
(e.g. haul, pull, push). DO shows a dispreference for such verbs (??Will pushed Anthony the
biscuits). Under certain conditions, exceptions occur (Baker, 1992).

• Communication verbs: as opposed to speech act verbs (tell, read, write, cite, etc.) and
denominal verbs expressing communication means (fax, email, phone), which can occur in
PD or DO, verbs that denote a manner of speaking (shout, yell, scream, whisper, etc.).
Exceptions are listed in (Gropen et al., 1989).

• Verbs of impeded possession: such verbs (deny, spare, cost) have a preference for DO.

• Latinate verbs: due to their morphophonology, such verbs (donate, explain, recite, illustrate,
etc.) disprefer DO, except when they express a future possession (guarantee, assign, offer,
promise), as pointed out by Pinker (1989, 216).

Lexical semantic restrictions are sometimes overridden by information-structure factors (Arnold
et al., 2000; Davidse, 1996; Wasow, 2008, interalia). The first factor is discourse givenness: given
material precedes new material. PD is expected when the theme is more given than the recipient,
as in (xi a), whereas DO is more likely when the recipient is more given than the theme, as in
(xii b):

(xi) a. Will gave his manuscript to a first-year student. (PD)

b. ??Will gave a first-year student his book. (DO)

(xii) a. ??Will gave a manuscript to his best student. (PD)

b. Will gave his best student a manuscript. (DO)

The second factor is a corollary of the first: because recipients are typically human and themes
typically inanimate, they are more likely to be given and thus to occur before themes. In this
respect, DO is more frequent than PD. Bresnan and Nikitina (2009) find empirical support for
this, but they also find exceptions such as (xiii a):

(xiii) a. It would cost nothing to the government. (PD)

b. It would cost the government nothing. (DO)

Although peripheral, the third factor, heaviness, is correlated with information-structure con-
siderations. Heavy material comes last, as exemplified below:

(xiv) a. ??Anthony gave a bottle of his favorite red wine to Will. (PD)

b. Anthony gave Will a bottle of his favorite red wine. (DO)

Because given material is generally shorter than non-given material (e.g. given recipients will
generally occur in the form of pronouns), DO is the preferred realization of the dative alternation
due to the last two factors.

What is still theoretically unclear is which factor(s) take(s) precedence over the other(s). Sny-
der (2003) claims that information-structure factors are more important than heaviness, whereas
Arnold et al. (2000) treat all factors on equal footing.
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What is clearer is that what determines the dative alternation is a multifactorial problem whose
full understanding is best resolved empirically. We now turn to recent corpus-based, statistics-
driven investigations of the dative alternation.

2.2 Corpus-based answers

Since (Williams, 1994), the dative alternation has become a model construction for benchmarking
predictive methods (Arnold et al., 2000; Gries, 2003; Bresnan et al., 2007; Baayen, 2011; Theijssen
et al., 2013). Focusing on DO, Williams (1994) uses the logistic procedure to test on a two-part
but limited data set (original data set, sample size is 168 ; aggregate data set, sample size is 59).
The model construction includes 8 variables: syntactic class of verb, register, modality, givenness
of goal, prosodic length of goal vs. theme, definiteness of goal, animacy of goal, and specificity of
goal. Williams finds that not all independent variables are predictors of the position of the goal.
Only three reach a relatively high level of significance in the model: the prosodic length of goal
vs. theme (the length of the goal is shorter than the length of the theme), syntactic class of verb
(ditransitive), and register (informal).

Arnold et al. (2000) investigate the effects of newness and heaviness on word order in the
dative alternation. Their data consists of debate transcriptions from the Canadian parliament (the
Aligned-Hansard corpus). Utterances are manually annotated for: constituent order (non-shifted
vs. shifted; prepositional vs. double object), heaviness (three categories of relative length measured
as follows: number of words in the theme minus number of words in the recipient), and newness
(given, inferable, or new). Arnold et al. conclude that heaviness and newness are significantly
correlated with constituent order. DO is preferred when the theme is(a) newer and (b) heavier
than the goal.

Gries (2003) uses linear discriminant analysis to investigate the effect of multiple variables on
the choice of PD vs. DO. in the British National Corpus. Gries observes that all properties of
NPgoal along with morphosyntactic variables have the highest discriminatory power. However, (a)
discriminant analysis makes distributional assumptions that are seldom satisfied by the data, and
(b) Gries (2003) concedes that the data set is limited: being part of a larger project, it consists of
only 117 instances of the dative alternation.

To circumvent assumptions about the data distribution and to control for the influence of
multiple variables on a binary response, Bresnan et al. (2007) use (mixed-effects) logistic regression,
like Williams (1994) and Arnold et al. (2000). Unlike those previous works, Bresnan et al.’s data set
is relatively large, consisting of 2,360 dative observations from the 3M-word Switchboard collection
of recorded telephone conversations. More importantly, the authors also address the question of
circular correlations, which are largely ignored in former statistical models, e.g.:

• personal pronouns are short, definite and have animate, discourse-given referents;

• animate, discourse-given nominals are often realized as personal pronouns, which are short
and definite.

Such correlations trick researchers into believing that the dative alternation can be explained with
one or two variables.

Bresnan et al. (2007)’s dative data set is annotated for 14 explanatory variables whose influence
on the choice of the dative variants is considered likely: modality, verb, semantic class of verb use,
and length, animacy, definiteness, pronominality, and accessibility of recipient/theme; see also
Section 3.1. One of their logistic regression models predicts which variant of the dative alternation
is used with a high accuracy.

Using Bresnan et al.’s data set, Baayen (2011) tests naive discriminative learning (henceforth
NDL) on the dative alternation. Baayen compares NDL to other well-established statistical clas-
sifiers such as logistic regression (Bresnan et al., 2007; Speelman, 2014), memory-based learning
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(Daelemans and van den Bosch, 2009; Theijssen et al., 2013), analogical modeling of language (Sk-
ousen et al., 2002), support vector machines (Vapnik, 1995), and random forests (Breiman, 2001).
He addresses two questions:

• how can statistical models faithfully reflect a speaker’s knowledge without underestimating
or overestimating what a native speaker has internalized?;

• how do occurrence and co-occurrence frequencies in human classification compare to such
frequencies in machine classification?

NDL is based on supervised learning, namely the equilibrium equations for the Rescorla-Wagner
model (Danks, 2003). According to the Wagner-Rescorla equations (Wagner and Rescorla, 1972),
learners predict an outcome from cues available in their environment if such cues have a value
in terms of outcome prediction, information gain, and statistical association. When the learner
predicts an outcome correctly on the basis of the available cue, the association strength between
cue and outcome is weighted in such a way that prediction accuracy improves in subsequent trials.
Whereas the Rescorla-Wagner equations are particularly useful in the study of language acquisition
(Ellis, 2006; Ellis and Ferreira-Junior, 2009), the equilibrium equations for the Rescorla-Wagner
model apply to adult-learner states (i.e. when weights from cues to outcomes do not change as
much). NDL estimates the probability of a given outcome independently from the other outcomes.

Like memory-based learning, NDL stands out because it reflects human performance. Unlike
parametric regression models, it is unaffected by collinearity issues. When two or more predict-
ing variables are highly correlated, multiple regression models may indicate how well a group of
variables predicts an outcome variable, but may not detect (a) which individual predictor(s) im-
prove the model, and (b) which predictors are redundant. Unlike memory-based learning however,
NDL does not need to store exemplars in memory to capture the constraint networks that shape
linguistic behavior. Such exemplars are merged into the weights (Baayen, 2011, p. 320).

Baayen fits a NDL model with the following predictors: verb, semantic class of verb use,
and length, animacy, definiteness, accessibility, and pronominality of recipient and theme. NDL
provides a very good fit to the dative data set, which compares well to predictions obtained with
other classifiers such as memory-based learning, mixed-effects logistic regression and support vector
machine.

The prediction of the dative alternation is now a well-travelled path in quantitative linguistics,
as evidenced by the high accuracy of the most recent methods. Yet, the community is in midstream.
There is far more to the dative alternation than its prediction, since predicting is not explaining.
We believe that this distinction is worth maintaining both at the conceptual and the operational
levels. This idea is the backbone of our article.

3 Targeting the dative alternation in English

3.1 Data

We used the dative data set available in the languageR package (Bresnan et al., 2007; Baayen,
2009). It contains 3263 observations consisting of 15 variables. The variables divide into:

• speaker, a categorical variable with 424 levels, including NAs;

• modality, a categorical variable with 2 levels: spoken vs. written;

• verb, a categorical variable with 75 levels: e.g. accord, afford, give, etc.;
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• semantic class, a categorical variable with, 5 levels: abstract (e.g. give in give it some
thought), transfer of possession (e.g. send), future transfer of possession (e.g. owe), preven-
tion of possession (e.g. deny), and communication (e.g., tell);

• length in words of recipient, an integer valued variable;

• animacy of recipient, a categorical variable with 2 levels: animate vs. inanimate;

• definiteness of recipient, a categorical variable with 2 levels: definite vs. indefinite;

• pronominality of recipient, a categorical variable with 2 levels: pronominal vs. nonpronomi-
nal;

• length in words of theme, an integer valued variable;

• animacy of theme, a categorical variable with 2 levels: animate vs. inanimate;

• definiteness of theme, a categorical variable with 2 levels: definite vs. indefinite;

• pronominality of theme, a categorical variable with 2 levels: pronominal vs. nonpronominal;

• realization of recipient, a categorical variable with 2 levels: PD vs. DO;

• accessibility of recipient, a categorical variable with 3 levels: accessible, given, new;

• accessibility of theme, a categorical variable with 3 levels: accessible, given, new.

We considered speakers coded NA as mutually independent speakers, also independent from
the set of identified speakers. About 80% of the identified speakers contribute more than one
construction. This is a source of dependency between observations.

The approach we develop below takes this dependency into account. For the sake of clarity,
we describe our approach in the context of independent observations. However, our results were
obtained considering dependency.

3.2 Predicting and explaining the dative alternation

Our goal is to both predict and explain the dative alternation in English. In the next two subsec-
tions, we rephrase these two challenges in statistical terms. In a unifying probabilistic framework
reflecting subject-matter knowledge, we specifically elaborate two statistical parameters targeted
toward the above two goals. By “subject-matter knowledge” we mean what has been operational-
ized from what linguists know about the dative alternation and, more specifically, our data set.
The parameters differ substantially because the two goals are radically different.

3.2.1 Predicting. Predicting the dative alternation in English means building an algorithm
that poses as a native speaker of English when he or she formulates a construction involving a
dative alternation. The objective could be to deceive a native English speaker sitting in front of a
computer and trying to figure out whether his or her interlocutor is also a native English speaker or
not. To do so, the player can only rely on limited information, namely a transcribed construction
involving a dative alternation with contextual information. The algorithm does not need to tell us
how the dative alternation in English works. Telling us how the alternation works falls within the
scope of explaining it. It is the topic of Section 3.2.2.

For us to learn how to build such an algorithm based on experimental data, a random experi-
ment ideally follows these steps:

1. randomly sample a generic member from the population of native English speakers;

7



2. observe her until she formulates either in thoughts, orally, or in writing, a construction that
involves a dative alternation;

3. record the construction with all the available contextual information;

4. repeat the three above steps a large number of times.

Of course, realizations of this ideal experiment are out of reach. A less idealized, surrogate random
experiment, say P0 (P stands for “probability”, and 0 for “truth”), could go as follows: in an
immense library gathering all spoken and written English documents produced by native English
speakers during a period of interest:

1. randomly sample a document that contains at least one dative alternation;

2. randomly sample a dative alternation from it;

3. record the specific construction with all the available contextual information;

4. repeat the three above steps a large number of times.

We posit that the data set described in Section 3.1 is a set of realizations of a similar random
experiment.

The random experiment P0 is a complex byproduct of the English language seen itself as a
probability distribution, or law. We invite the reader to think of P0 as the quintessential law of
the dative alternation. One might dispute this representation. We shall not go down the route of
counter-arguing. We see random variation and change as inherent to natural phenomena. They
are not errors. This conception of randomness is the byproduct of what Hacking (1990) calls the
“erosion of determinism”. Thus it is legitimate, if not inescapable, for a scientific approach to
reality in general, and to language in particular, to place variation and change at the core of the
representation, not at its periphery.

The law P0 fully describes the random production of an observation O that decomposes as
O = (W,Y ). Here,W ∈ W ⊂ Rd is the contextual information attached to the random construction
summarized by O. As for Y ∈ {0, 1}, it encodes the corresponding form taken by the dative
alternation, say 0 for DO and 1 for PD, without loss of generality. Predicting the dative alternation
in English requires that we learn a specific feature of P0 that we call a statistical parameter. The
statistician will first define a loss function to unequivocally identify which feature of P0 she wants
to unveil to predict the alternation. A loss function operationalizes the cost of a wrong prediction.
The loss function underlies the definition of a statistical parameter.

One may want to minimize the overall probability to wrongly predict the dative alternation.
In this case, one may choose the loss function ℓ whose cost is 1 if the prediction is incorrect and 0
otherwise. The construction of the predicting algorithm that we referred to at the very beginning
of this section may involve ℓ at some point. Formally, ℓ maps any function f from W to {0, 1} and
O to

ℓ(f,O) = 1{Y 6= f(W )} =

{

1 if Y 6= f(W )
0 otherwise

.

Indeed, the risk Rℓ
P0
(f) of f which is, by definition, the mean value of the loss, satisfies Rℓ

P0
(f) =

EP0
{ℓ(f,O)} = P0{Y 6= f(W )}. Statisticians know well that f 7→ Rℓ

P0
(f) is minimized at the

statistical parameter f = Φ(P0) characterized by

Φ(P0)(W ) = 1{P0(Y = 1|W ) ≥ 0.5} (1)

(see for instance Devroye et al., 1996, Theorem 2.1). Equality (1) means this: the optimal classi-
fication rule from the point of view of the loss ℓ is the so-called Bayes classifier which predicts a
PD if and only if PD is more likely to occur than DO in the current context.
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The second statistical parameter Q(P0) characterized by

Q(P0)(W ) = P0(Y = 1|W ) (2)

plays a crucial role in the prediction since knowing Q(P0) implies knowing Φ(P0). Note that the
reverse is false. In particular, (1) suggests that if q is close to Q(P0) then f given by f(W ) =
1{q(W ) ≥ 0.5} should be close to Φ(P0). We deduce that a predictor can be conveniently built by
(a) approaching Q(P0) with a function q mapping W onto [0, 1], and (b) deriving by substitution
the related classifier f given by f(W ) = 1{q(W ) ≥ 0.5}. Another loss function is at play in this
two-step procedure, namely, L which maps any function q from W to [0, 1] and O to L(q,O) =
(Y − q(W ))2. Just like Φ(P0) minimizes the risk Rℓ

P0
, Q(P0) minimizes the risk RL

P0
attached to

L and characterized by RL
P0
(q) = EP0

{L(q,O)}.
It is important now to emphasize what the notation only suggests. The statistical parameters

Φ(P0) and Q(P0) are actually the values at P0 of two functionals Φ and Q. These functionals
map the set M of all laws compatible with the definition of O to the set of functions mapping W
to {0, 1} and to the set of functions mapping W to [0, 1], respectively. Constraints on M must
only reflect what the linguist knows for sure about P0. The linguist may know for instance that
the first component of W is binary whereas its second and third components are categorical with
three levels and integer valued, respectively. In any case, the current state of the art on the dative
alternation does not guarantee that M is parametric. Hence Φ(P0) and Q(P0) do not belong to
specific parametric models already known to us.

3.2.2 Explaining. In contrast, explaining the dative alternation in English means uncovering
what drives the choice of one dative form over the other. This is certainly a multi-faceted challenge,
one that cannot be exhausted and yet is worth being taken up for itself through a specifically
designed analysis. To the best of our knowledge, however, such a targeted approach has not yet been
carried out. It is indeed through the back-door that explanations have been sought so far, typically
by (a) predicting the dative alternation, and (b) extracting features of the resulting estimator Φ̂ of
Φ(P0). For instance, Baayen (2011) assesses non-parametrically the variable importance of the jth
componentW j of the contextual informationW on Y by comparing how well the predictor behaves
when the information conveyed by W j is either conserved or blurred. Specifically, a predictor Φ̂ is
built based on the original data set. Then the observed values of W j which the construction relies
on are randomly permuted in order to break its potential relation with Y and a second predictor
Φ̂′ is built. The greater the decrease in prediction performances of Φ̂′ is with respect to those of
Φ̂, the greater the importance of W j . Of course, resulting variable importance depends heavily on
the prediction algorithm. Yet, a sensible variable importance should be defined universally. Let us
see how we can define sound variable importance measures universally.

In Section 3.2.1, we imagined an ideal random experiment for the sake of learning to predict
the dative alternation. What could an ideal experiment be for the sake of explaining it? More
precisely, what could such an experiment be to assess the effect of each component of the contextual
information on the dative alternation? We draw our inspiration from a common reasoning in the
design and statistical analysis of randomized clinical trials for the sake of evaluating the effect of a
drug on a disease. The interested reader will find an accessible review on this topic, presented as
a trialogue between a philosopher, a medical doctor and a statistician, in (Chambaz et al., 2014,
see Sections 3, 8 and 9 in particular). We consider in turn how to proceed with a categorical
component as opposed to a non-categorical component.

Assessing the effect of a categorical contextual variable on the dative alternation.
First, let us clarify what we mean by the importance of W j on Y , with j ∈ J , the set of indices
of the categorical components of W (there are many ways of doing it). To keep things simple, we
consider a categorical variable, say W 1, with two levels only, e.g. the animacy of recipient with
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its levels animate and inanimate. We denote the levels by 0 and 1, without loss of generality. An
ideal random experiment could go along these lines:

1. randomly sample a generic member from the population of native English speakers;

2. randomly sample some contextual information W , and a message to convey;

3. give her all this information exceptW 1, some partial contextual information, which we denote
W−1;

4. ask her to formulate a construction involving a dative alternation to convey the message
under the constraint W 1 = 0;

5. record the resulting form of the alternation, which we denote Y 1
0 ;

6. take her back in time and ask her to formulate a construction involving a dative alternation
to convey the message under the constraint W 1 = 1;

7. record the resulting form of the alternation, which we denote Y 1
1 ;

8. repeat the seven above steps a large number of times.

Here and henceforth, the superscript “1” refer to the fact that we intervene on W 1 while the
subscripts “0” and “1” refer to the fact that W 1 is set to 0 and 1, respectively. The two forms of
the dative alternation Y 1

0 and Y 1
1 are obtained ceteris paribus sic standibus, i.e. all other things

being equal. Within this conceptual framework, the form of the dative alternation that would have
been observed had the speaker been given all the contextual information W (and not W−1 and an
additional constraint on W 1) would have been Y = Y 1

W 1 , i.e. Y = Y 1
0 if W 1 = 0 and Y = Y 1

1 if
W 1 = 1. The variables Y 1

0 and Y 1
1 are called counterfactuals in causal analysis (Pearl, 2000).

If we denote P1
0 the law of the above ideal random experiment, then the difference EP

1

0

{Y 1
1 } −

EP
1

0

{Y 1
0 } = P1

0(Y
1
1 = 1)−P1

0(Y
1
0 = 1) can be interpreted as an “effect” of W 1 on Y all other things

being equal. Note that this is a parameter of P1
0. Moreover, if we could indeed sample data from

P1
0 (time travel is not a realistic option yet), then the statistical inference of the latter parameter

would be child’s play based on the trivial estimator (1/n)
∑n

i=1(Y
1
i,1−Y 1

i,0), with n the sample size

and (Y 1
i,0, Y

1
i,1) the ith counterfactual outcome.

It turns out that P1
0 and the less idealized, surrogate random experiment P0 that we introduced

in Section 3.2.1 can be modeled altogether by means of a non-parametric system of structural
equations, a notion which originates in the works of Wright (1921), Haavelmo (1943) and was
brought up-to-date by Pearl (2000).

Let us now describe a system of structural equations that encapsulates both P1
0 and P0. We

characterize the variable importance of W 1 on Y as a parameter of P1
0. Unfortunately, it is not

possible to sample observations from P1
0, so that one might be tempted to give up on estimating

this parameter. Fortunately, the system of structural equations that links P1
0 and P0 offers the

opportunity to see the apparently inaccessible parameter of P1
0 as a parameter of P0 that we can

estimate based on data sampled from P0.

Assume that there exist two deterministic functions F and f , taking their values in W and
{0, 1}, respectively, and a source of randomness (U, V ) such that sampling O = (W,Y ) from P0 is
equivalent to (a) sampling (U, V ) from its law and (b) computing, deterministically given (U, V ),

{

W = F (U)
Y = f(W,V )

. (3)

Model (3) is our first system of structural equations. It is quite general. In particular, taking F
equal to the identity (i.e. F (w) = w for all w ∈ W) and U = W yields that a model of the form
(3) for P0 exists whenever Y can be written as an implicit function of W and additional terms, at
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the exception of Y itself, gathered in a variable that we call V . Necessarily, (3) can be rewritten
under the equivalent form

{

W j = F j(U j), j = 1, . . . , d
Y = f((W 1, . . . ,W d), V )

(4)

for some deterministic functions F 1, . . . , F d derived from F , the same f as in (3), and some source
of randomness (U1, . . . , Ud, V ). Now, note that (4) allows us to define the following system















W j = F j(U j), j = 1, . . . , d
Y 1
0 = f((0,W 2, . . . ,W d), V )
Y 1
1 = f((1,W 2, . . . ,W d), V )
Y = Y 1

W 1

, (5)

provided that the second and third equations always make sense. What is changed there is the
value of the first component of the first argument of f . We substitute either 0 or 1 for W 1. Model
(5) gives us a joint model for P1

0 and P0. Furthermore, (5) allows to define a counterpart to
EP

1

0

{Y 1
1 } − EP

1

0

{Y 1
0 } characterized as a statistical parameter of P0.

Let us now introduce the functional Ψ1 which maps the set M to [−1, 1] and is given at any
P ∈ M by

Ψ1(P ) = EP {P (Y = 1|W 1 = 1,W−1)− P (Y = 1|W 1 = 0,W−1)} (6)

= EP {Q(P )(1,W−1)−Q(P )(0,W−1)},

because Q(P )(W ) = P (Y = 1|W ) (see (2) for the case P = P0). It is well-known to statisticians
that under suitable, untestable assumptions, Ψ1(P0) = EP

1

0

{Y 1
1 } − EP

1

0

{Y 1
0 }. We state this result

formally and give its simple proof in Section A.1. The equality grants Ψ1 a causal interpretation.

The fact that W 1 takes only two different values plays a minor role in the above argument.
Say that W 2 takes (K + 1) different values with K ≥ 1 and denote these values by 0, . . . ,K. In
addition to (5), (4) also yields the following system







W j = F j(U j), j = 1, . . . , d
Y 2
k = f((W 1, k,W 3, . . . ,W d), V ), k = 0, . . . ,K
Y = Y 2

W 2

, (7)

provided that the second equation always makes sense. What is changed there is the value of the
second component of the first argument of f . We substitute 0, . . . ,K for W 2. Model (7) gives
us a joint model for P0 and P2

0, the law of the ideal random experiment where we intervene on
W 2 instead of W 1. The counterpart to the parameter of P1

0 that we introduced earlier is merely
the collection of parameters (EP

2

0

{Y 2
k } − EP

2

0

{Y 2
0 } = P2

0(Y
2
k = 1) − P2

0(Y
2
0 = 1) : k = 1, . . . ,K),

where W 2 = 0 serves as a reference level. As for the related statistical parameter of P0, it is the
value at P0 of the functional Ψ2 which maps the set M to [−1, 1]K and is given at any P ∈ M by
Ψ2(P ) = (Ψ2

k(P ) : 1 ≤ k ≤ K) with

Ψ2
k(P ) = EP {P (Y = 1|W 2 = k,W−2)− P (Y = 1|W 2 = 0,W−2)} (8)

= EP {Q(P )(W 1, k,W 3, . . . ,W d)−Q(P )(W 1, 0,W 3, . . . ,W d)},

where W−2 equals W deprived from its second component W 2. One can also endow Ψ2 with a
causal interpretation under suitable, untestable assumptions.

Assessing the effect of an integer valued contextual variable on the dative alternation.
We now turn to the elaboration of a notion of the importance of W j on Y , with j 6∈ J , i.e. W j

is an integer valued contextual variable. Say that W 3 ∈ N is such a variable. Drawing inspiration
from the way we defined the importance of W 2 based on the definition of the importance of W 1,
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one might think of treating W 3 like a categorical contextual variable that can take many different
values. This option has several drawbacks. First, we would lose the inherent information provided
by the ordering of integers. Second, we might have to infer many different statistical parameters
if W 3 does take many different values. The proliferation of statistical parameters makes it less
likely to extract significant results from our analysis due to an unavoidable, more stringent multiple
testing procedure. To circumvent this, we define a statistical parameter of a different kind.

We rely again on (4) to carve out a new system similar to systems (5) and (7). The resulting
statistical parameter is tailored to the fact that the importance we wish to quantify is that of a
non-categorical variable. Let W3 ⊂ N be the set of values that W 3 can take. The new system is







W j = F j(U j), j = 1, . . . , d
Y 3
w = f((W 1,W 2, w,W 4, . . . ,W d), V ), all w ∈ W3

Y = Y 3
W 3

, (9)

provided that the second equation always makes sense. Among other things, system (9) induces a
model for P3

0, the law of the ideal random experiment where we intervene on W 3 instead of W 1

or W 2. Based on systems (5) and (7), we introduced P1
0, P

2
0, and some parameters of the latter

which are interpretable as importance measures. In the present situation, though, we cannot yet
introduce our parameter of P3

0 that will serve as an importance measure of W 3. We still need two
more ingredients to reduce the dimensionality of the problem at stake.

The first ingredient is a so-called marginal structural model, a statistical model for the function
w 7→ EP

3

0

{Y 3
w} which mapsW3 to [0, 1], i.e. a parametric set F = {w 7→ fθ(w) : θ ∈ Θ} of functions

mapping W3 to [0, 1], indexed by a finite-dimensional parameter θ ∈ Θ. The second ingredient is
merely a weight function h mapping W3 to R+ such that

∑

w∈W3 h(w) < ∞. Based on F and h,
we can now propose the following parameter of P3

0 as a measure of the importance of W 3 on Y :

argmax
θ∈Θ

∑

w∈W3

h(w)Λ
(

EP
3

0

{Y 3
w}, fθ(w)

)

= argmax
θ∈Θ

∑

w∈W3

h(w)Λ
(

P3
0(Y

3
w = 1), fθ(w)

)

, (10)

where we use the notation Λ(p, p′) = p log(p′) + (1 − p) log(1 − p′) for all p ∈ [0, 1] and p′ ∈]0, 1[.
Robins (1997) first introduced marginal structural models in causal analysis. Robins et al. (2000)
discusses their use in epidemiology. More recently, Rosenblum et al. (2009) use them to define
and estimate the impact of adherence to antiretroviral therapy on virologic failure in HIV infected
patients.

As opposed to the previous parameters EP
1

0

{Y 1
1 } − EP

1

0

{Y 1
0 } on one hand and (EP

2

0

{Y 2
k } −

EP
2

0

{Y 2
0 } : k = 1, . . . ,K) on the other hand, (10) has no closed-form explicit expression in terms

of P3
0 in general. However, its implicit characterization gives us a direct interpretation. Parameter

(10) is a specific θ ∈ Θ such that fθ is closer to w 7→ EP
3

0

{Y 3
w} than every other fθ′ , where the gap

between two functions f, f ′ mapping W3 to [0, 1] is measured by

∑

w∈W3

h(w) [f(w) log(f/f ′(w)) + (1− f(w)) log((1− f)/(1− f ′)(w))]

= −
∑

w∈W3

h(w)Λ(f(w), f ′(w)) +
∑

w∈W3

h(w) [f(w) log(f(w)) + (1− f(w)) log((1− f)(w))] .

The above is a so-called integrated Kullback-Leibler divergence. The minus sign before the first
term in the RHS of the above display explains why (10) involves an argmax and not an argmin.
In particular, if w 7→ EP

3

0

{Y 3
w} coincides with fθ for some θ ∈ Θ and if the weight function h only

takes positive values then (10) equals θ. This is very unlikely. If, on the contrary, no fθ equals
w 7→ EP

3

0

{Y 3
w} then (10) can still be interpreted as the projection of the latter onto F .

Often, users of logistic regression models take for granted that their model assumptions are met
by the true, unknown law of their data. They are unaware of the precautionary measures required
when assessing the results of a fit. This is especially true for the interpretation of the pointwise
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estimates, and for the reliability of the confidence intervals, which comes at a high price in terms
of untestable assumptions about the true, unknown law of the data. We refer the reader to the
discussion about the effect of definiteness of theme in Section 5 to hammer home this important
point.

Because the set F does not contain the truth, it is often referred to as a “working model”. It
is selected so as to retrieve information on how EP

3

0

{Y 3
w} depends upon w. For technical reasons,

F must be identifiable, i.e. such that fθ = fθ′ implies θ = θ′. Recall that expit and logit are
two reciprocal functions characterized on R and [0, 1] by expit(q) = 1/(1 + e−q) and logit(p) =
log(p/(1− p)), respectively. In this article, we consider the set

F =
{

w 7→ expit
(

θ0 + θ1w + θ2w
2
)

: θ = (θ0, θ1, θ2) ∈ Θ = R3
}

, (11)

and assume that (10) uniquely defines a single element of Θ for this specific choice of F , an
assumption that cannot be tested on data. Thus, the parameter (10) should be understood as

the best second-order polynomial approximation to w 7→ logit
(

EP
3

0

{Y 3
w}
)

with respect to the

aforementioned gap.

By analogy, it is now time to characterize a statistical parameter of P0 which is a good proxy
to (10) in the sense that (a) under appropriate assumptions it is equal to (10) and (b) it can be
inferred from data sampled from P0. Let Ψ3 be defined as the function mapping M to Θ such
that, for any P ∈ M,

Ψ3(P ) = argmax
θ∈Θ

∑

w∈W3

h(w)Λ
(

EP {P (Y = 1|W 3 = w,W−3)}, fθ(w)
)

= argmax
θ∈Θ

∑

w∈W3

h(w)Λ
(

EP {Q(P )(W 1,W 2, w,W 4, . . . ,W d)}, fθ(w)
)

, (12)

where W−3 equals W deprived from its third component W 3. Here too, a lemma similar to
Lemma 1 may guarantee that Ψ3(P0) coincides with (10) under suitable, untestable assumptions.

4 Statistical apparatus

Now that the parameters we wish to infer are specified, we turn to their targeted estimation. The
targeted estimation relies on machine learning prediction, see Section 4.1, followed by targeted
minimum loss explanation, see Section 4.2.

4.1 Machine learning prediction

We consider first the inference of Q(P0) as defined in (2). The literature on the topic of classi-
fication, both from the theoretical and applied points of view, is too vast to select a handful of
outstanding references. Instead of choosing one particular approach, we advocate for considering all
our favorite approaches, seen as a library of algorithms, and combining them into a meta-algorithm
drawing data-adaptively the best from each of them. Many methods have been proposed in this
spirit, now gathered under the name of “ensemble learners” (see Schapire, 1990; Wolpert, 1992;
Breiman, 1996a,b; Hoeting et al., 1999, to cite only a few seminal works, with an emphasis on
methods using the cross-validation principle). Specifically, we choose to rely on the super-learning
methodology (van der Laan et al., 2007; Polley et al., 2011).

We now give a nutshell description of the super-learning methodology. Say that we have n
independent observations O1 = (W1, Y1), . . . , On = (Wn, Yn) drawn from P0 and an arbitrarily
chosen partition of {1, . . . , n}, i.e. a collection of sets {T (ν) ⊂ {1, . . . , n} : 1 ≤ ν ≤ V } such
that ∪V

ν=1T (ν) = {1, . . . , n} (their union covers {1, . . . , n}) and for each 1 ≤ ν1 6= ν2 ≤ V ,
T (ν1)∩T (ν2) = ∅ (the sets are pairwise disjoint). For convenience, we introduce the notation Pn,S
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to represent the subset {Oi : i ∈ S} of the complete data set, represented by Pn, corresponding to
these observations index by i ∈ S ⊂ {1, . . . , n}. We use the data to infer the best combination of
K algorithms Q̂1, . . . , Q̂K which map any subset of the data set to a function from W to [0, 1]. For
instance, Q̂1(Pn,T (2))(W ) is the predicted conditional probability that Y = 1 given W according
to the first algorithm trained on {Oi : i ∈ T (2)}. Among a variety of possible ways to combine
Q̂1, . . . , Q̂K we decide to resort to convex combinations: thus, for each α ∈ A = {a ∈ RK

+ :
∑K

k=1 ak = 1}, we define Q̂α =
∑K

k=1 αkQ̂k, the meta-algorithm mapping any subset Pn,S of the

data set to the function Q̂α(Pn,S) =
∑K

k=1 αkQ̂k(Pn,S) from W to [0, 1]. Note that if every Q̂k

produces functions mapping W to [0, 1] then so does Q̂α for any α ∈ A.

Recall that the risk RL
P0
(Q̂α(Pn,S)) = EP0

{L(Q̂α(Pn,S), O)} quantifies how close Q̂α(Pn,S) is to

Q(P0), the parameter of P0 that we wish to target. Of course, we cannot compute RL
P0
(Q̂α(Pn,S))

in general because we do not know P0. Its estimator

RL
Pn,S

(Q̂α(Pn,S)) = EPn,S
{L(Q̂α(Pn,S), O)}

=

∑

i∈S L(Q̂α(Pn,S), Oi)

card(S)

is known to be over-optimistic, since the same data are involved in the construction of Q̂α(Pn,S)
and in the evaluation of how well it performs. Cross-validation offers a powerful way to circumvent
this: the cross-validated estimator

RL
Pn

(Q̂α) =
1

V

V
∑

ν=1

∑

i∈T (ν)c L(Q̂α(Pn,T (ν)), Oi)

card(T (ν)c)
(13)

(we slightly abuse notation) accurately evaluates how good are the estimators of Q(P0) produced
by the α-indexed meta-algorithm Q̂α. They key is that in each term of the RHS of (13), the
subset of data used to “train” Q̂α, represented by Pn,T (ν), and the subset used to evaluate its
performances, represented by Pn,T (ν)c , are disjoint. This motivates the introduction of

αn = argmin
α∈A

RL
Pn

(Q̂α), (14)

the minimizer of the cross-validated risk, which finally yields the super-learner

Q̂αn
(Pn)

by training Q̂αn
on the complete data set. It can be shown that, if every Q̂k produces functions

mapping W to [0, 1] then the super-learner performs almost as well as the so-called “oracle” (since
it cannot be inferred without knowing the true law P0) best algorithm in the library. We refer the
reader to Section A.2.1 for a more accurate mathematical statement of this remarkable fact.

4.2 Targeted minimum loss explanation

We now turn to the estimation of Ψ1(P0), Ψ
2(P0) and Ψ3(P0) as defined in (6), (8) and (12).

We take the route of TMLE, a paradigm of inference based on semiparametrics and estimating
functions (see van der Laan and Robins, 2003; van der Vaart, 1998, Chapter 25, for recent and
comprehensive introductions). Introduced by van der Laan and Rubin (2006), TMLE has been
studied and applied in a variety of contexts since then (we refer to van der Laan and Rose, 2011, for
an overview). An accessible introduction to TMLE is given in (Chambaz et al., 2014, Sections 12,
13 and 14).

It is apparent in (6), (8) and (12) that the parameters Ψ1(P0), Ψ
2(P0) and Ψ3(P0) all depend

on Q(P0). Let us assume that we have already built an estimator of Q(P0), which we denote by
Qinit

n —that could be, for instance, the super-learner Q̂αn
(Pn) whose construction we described in
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Section 4.1. Here, the superscript “init” indicates that we think of Qinit
n as an initial estimator of

Q(P0) built for the sake of predicting, not explaining.

Taking a closer look at (6), (8) and (12), we see that it is easy to estimate Ψ1(P0), Ψ
2(P0)

and Ψ3(P0) by relying on Qinit
n . Consider (6): if we substitute Qinit

n for Q(P ) in the formula, then
only the marginal law of W−1 is left unspecified. The simplest way to estimate the latter, which
can be shown to be the most efficient too, is to use its empirical law. That means estimating the
marginal law of W−1 by the empirical law under which W−1 = W−1

i , the ith observed value of
W−1 in the data set, with probability 1/n. Substituting the empirical marginal law of W−1 for its
counterpart under P in (6) yields an initial estimator of Ψ1(P0), say ψ

1,init
n , writing as

ψ1,init
n = EPn

{

Qinit
n (1,W−1)−Qinit

n (0,W−1)
}

=
1

n

n
∑

i=1

[

Qinit
n (1,W−1

i )−Qinit
n (0,W−1

i )
]

.

Likewise, the parameter Ψ2(P0) can be simply estimated by ψ2,init
n = (ψ2,init

k,n : 1 ≤ k ≤ K) with

ψ2,init
k,n = EPn

{

Qinit
n (W 1, k,W 3, . . . ,W d)−Qinit

n (W 1, 0,W 3, . . . ,W d)
}

=
1

n

n
∑

i=1

[

Qinit
n (W 1

i , k,W
3
i , . . . ,W

d
i )−Qinit

n (W 1
i , 0,W

3
i , . . . ,W

d
i )
]

while the parameter Ψ3(P0) can be estimated by

ψ3,init
n = argmax

θ∈Θ

∑

w∈W3

h(w)Λ
(

EPn

{

Qinit
n (W 1,W 2, w,W 4, . . . ,W d)

}

, fθ(w)
)

(15)

= argmax
θ∈Θ

∑

w∈W3

h(w)Λ

(

1

n

n
∑

i=1

Qinit
n (W 1

i ,W
2
i , w,W

4
i , . . . ,W

d
i ), fθ(w)

)

. (16)

Interestingly, the optimization problem (15) can be solved easily, see Section A.3.3.

Arguably, ψ1,init
n , ψ2,init

n and ψ3,init
n are not targeted toward Ψ1(P0), Ψ2(P0) and Ψ3(P0) in

the sense that, although they are obtained by substitution, the key estimator Qinit
n which plays

a crucial role in their definitions was built for the sake of prediction and not specifically tailored
for estimating either Ψ1(P0), Ψ

2(P0) or Ψ
3(P0). In this respect, the targeting step of TMLE can

be presented as a general statistical methodology to derive new substitution estimators from such
initial estimators so that the updated ones really target what they aim at.

Targeting is made possible because Ψ1, Ψ2 and Ψ3, seen as functions mapping M to [−1, 1],
[−1, 1]K and Θ, respectively, are differentiable, see Section A.3.1. In these three cases, the resulting
gradients (derivatives), denoted by ∇Ψ1, ∇Ψ2 and ∇Ψ3, drive our choices of estimating functions.
Targeting the parameter of interest consists in (a) designing a collection {Qinit

n,ε : ε ∈ E} of functions

mappingW3 to [0, 1] conceived as fluctuations of Qinit
n = Qinit

n,ε

∣

∣

ε=0
in the direction of the parameter

of interest, and (b) identifying that specific element of the collection which better targets the
parameter of interest, see Section A.3.2. Let us denote by Q1,targ

n = Qinit
n,ε1n

, Q2,targ
n = Qinit

n,ε2n
and

Q3,targ
n = Qinit

n,ε3n
the three a priori different fluctuations of Qinit

n that respectively target Ψ1(P0),
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Ψ2(P0), and Ψ3(P0). They finally yield, by substitution, the three estimators

ψ1,targ
n =

1

n

n
∑

i=1

[

Q1,targ
n (1,W−1

i )−Q1,targ
n (0,W−1

i )
]

, (17)

ψ2,targ
n = (ψ2,targ

k,n : 1 ≤ k ≤ K) where, for each 1 ≤ k ≤ K, (18)

ψ2,targ
k,n =

1

n

n
∑

i=1

[

Q2,targ
n (W 1

i , k,W
3
i , . . . ,W

d
i )−Q2,targ

n (W 1
i , 0,W

3
i , . . . ,W

d
i )
]

,

ψ3,targ
n = argmax

θ∈Θ

∑

w∈W3

h(w)Λ

(

1

n

n
∑

i=1

Q3,targ
n (W 1

i ,W
2
i , w,W

4
i , . . . ,W

d
i ), fθ(w)

)

(19)

= argmax
θ∈Θ

∑

w∈W3

n
∑

i=1

h(w)Λ
(

Q3,targ
n (W 1

i ,W
2
i , w,W

4
i , . . . ,W

d
i ), fθ(w)

)

.

The optimization problem (19) can be solved easily just like (15), see Section A.3.3.

The above estimators satisfy ψ1,targ
n = Ψ1(P 1,targ

n ), ψ2,targ
k,n = Ψ2

k(P
2,targ
n ), ψ3,targ

n = Ψ3(P 3,targ
n )

for three empirical laws P 1,targ
n , P 2targ

n , P 3,targ
n ∈ M. They are targeted in the sense that they

satisfy EPn
{∇Ψ1(P 1,targ

n )(O)} = 0, EPn
{∇Ψ2(P 2,targ

n )(O)} = 0, EPn
{∇Ψ3(P 3,targ

n )(O)} = 0, three
equalities which are the core of the theoretical study of their asymptotic properties. The two main
properties concern the consistency of the estimators and the construction of asymptotic confidence
intervals. An estimator is consistent if it converges to the truth when the sample size goes to
infinity. The targeted estimators defined in (17), (18) and (19) are double-robust: the stronger
requirement for them to be consistent is that either the corresponding targeted estimator of Q(P0),
say Qtarg

n , converge to Q(P0) or the conditional law of the variable whose importance is sought given
the other components of W , say g(P0), be consistently estimated by, say, gn. Furthermore, the
stronger requirement to make it possible to build asymptotically conservative confidence intervals
is that the product of the rates of convergence of Qtarg

n to Q(P0) and of gn to g(P0) be faster than
1/
√
n. Finally, we wish to acknowledge that it is possible to target all parameters with a single,

specifically designed, richer collection of fluctuations. Targeting all parameters at once enables
the construction of simultaneous confidence regions that better take the mutual dependency of the
estimators into account. In a problem with higher stakes, we would have gone that bumpier route.

5 Application

We consider in turn every component of the contextual information variable W and estimate its
effect on the dative alternation as defined in Section 3.2.2 along the lines presented in Section 4. We
systematically report 95%-confidence intervals and p-values when testing whether the parameter
is equal to 0 or not. We emphasize that these are not simultaneous 95%-confidence intervals. It
is possible, however, to use the p-values to carry out a multiple testing procedure, controlling a
user-supplied type-I error rate such as the familywise error rate.

As explained in Section 3.1, the forthcoming results are obtained with consideration for speaker-
related dependency, see Section A.3.4.

Categorical contextual information variables. Let us now comment on the results of Table 1.
We disregard the estimates whose p-values are large, because they correspond to insignificant
results. We arbitrarily set our p-value threshold to 1%. An estimate ψn of the effect of setting
W = w1 as opposed to setting W = w0 can be interpreted as follows: all other things being equal,
the probability of obtaining a PD construction increases/decreases additively by ψn when W is set
to w1 as opposed to w0. Ranked by decreasing magnitude of the estimates, we obtain:
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• a 38.24% decrease when accessibility of recipient switches from accessible to new;

• a 16.57% increase when semantic class switches from abstract to communication meaning;

• a 14.71% decrease when semantic class switches from abstract to future transfer of possession
meaning;

• a 13.98% decrease when pronominality of recipient switches from nonpronominal to pronom-
inal;

• a 11.68% decrease when pronominality of theme switches from nonpronominal to pronominal,
see examples (xvii) and (xviii);

• a 11.52% increase when semantic class switches from abstract to transfer meaning;

• a 9.38% increase when animacy of recipient switches from animate to inanimate, see exam-
ple (xv);

• a 9.28% decrease when semantic class switches from abstract to prevention of possession
meaning;

• a 8.43% increase when animacy of theme switches from animate to inanimate;

• a 7.82% decrease when accessibility of theme switches from accessible to new;

• a 5.68% decrease when definiteness of theme switches from definite to indefinite, see exam-
ple (xvi);

• a 3.95% increase when definiteness of recipient switches from definite to indefinite.

As we go down the list, differences in acceptability are less striking. This reflects the fact that
the corresponding estimates get smaller. Let us comment on the above findings about the impor-
tance of animacy of recipient, definiteness of theme, and pronominality of theme. We deliberately
follow the steps of the thought experiment process designed in Section 3.2.2.

Consider for instance example (xv): under the constraint “set the animacy of recipient to
inanimate”, the speaker selects either (xv a) or (xv b); under the constraint “set the animacy of
recipient to animate”, she selects either (xv c) or (xv d). What matters is the extent to which the
probability to select the PD construction is altered when one switches from one constraint to the
other. Even if linguists might find (xv d) slightly more natural than (xv c), (xv a) is undoubtedly
more natural than (xv b). This is consonant with our result, which states that the probability of
the PD construction increases when the animacy of recipient is set from animate to inanimate.

(xv) a. Anthony gave $100 to charity.

b. Anthony gave charity $100.

c. Anthony gave $100 to Will.

d. Anthony gave Will $100.

Illustrating the inferred statement about the effect of definiteness of theme is challenging. We
see this as a welcome opportunity to emphasize the singularity of our statistical approach. To
produce a convincing example, we have to choose a longer theme than before. Indeed, linguists
know for a fact that when the theme is long, PD is dispreferred. In example (xvi), one can conceive
that the preference of (xvi d) over (xvi c) is slightly stronger than that of (xvi b) over (xvi a). This
is consonant with our result, which states that the probability of the PD construction decreases
slightly when the definiteness of theme is set from definite to indefinite.

(xvi) a. Anthony bought the incredibly good cake for Will.
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b. Anthony bought Will the incredibly good cake.

c. Anthony bought an incredibly good cake for Will.

d. Anthony bought Will an incredibly good cake.

Example (xvi) is clearly counterintuitive to linguists used to interpreting results from logistic-re-
gression models. This is a common pitfall. It is due to the belief that the interpretation of a fitted
logistic regression still holds even when the true law does not belong to the logistic model. This is
never the case. From a mathematical point of view, the parameter matching definiteness of theme
in a logistic-regression model is a very awkward function of the true law. No matter how awkward
the function is, no sensible interpretation can be built without it. In contrast, the parameter we
define and estimate to assess the effect of definiteness of theme is a rather simple function of the
true law. Moreover, its simple statistical interpretation is buttressed by a causal interpretation,
at the cost of untestable assumptions. This above lines epitomize the approach defended in this
article.

How do statisticians intuit then? Denote W 1 the definiteness of theme (W 1 = 1 for indefinite
and W 1 = 0 for definite), W 2 the length of theme, and consider this baby model, tweaked for
demonstration purposes. Say, contrary to facts, that the true difference P0(Y = 1|W 1 = 1,W−1)−
P0(Y = 1|W 1 = 0,W−1) depends on W−1 only through a thresholded version of W 2. More
precisely, say that

P0(Y = 1|W 1 = 1,W−1)− P0(Y = 1|W 1 = 0,W−1) =

{

1.00% if W 2 ≤ 2
−8.54% if W 2 ≥ 3

. (20)

Here, for a given context, PD is 1% more likely to occur when definiteness is switched from definite
to indefinite and when the theme is short. Concomitantly, PD is 8.54% less likely to occur when
definiteness is switched from definite to indefinite and when the theme is long. In addition, assume
that P0(W

2 ≤ 2) = 30%, hence P0(W
2 ≥ 3) = 70%. These are the actual empirical probabilities

computed from the data set. Then

Ψ1(P0) = 30%× 1.00%− 70%× 8.54% ≈ −5.68%.

We fine-tuned the values in (20) so that the above coincide with our estimate of the effect of
definiteness of theme based on (6).

Now that the reader is more familiar with the statistical reasoning underlying our approach, let
us consider one last example. Intuitively, when the theme is pronominal, PD is largely preferred:

(xvii) a. Anthony sent it to you.

b. ??Anthony sent you it.

Yet, Table 1 shows a 11.68% decrease of the probability of obtaining a PD construction when
pronominality of theme switches from nonpronominal to pronominal. This is a consequence of
averaging out the context, which is reminiscent of what happens with definiteness of theme. Indeed,
the intuition at work in example (xvii) holds when the theme is indefinite. If the theme is definite,
then the preference for PD is not so marked anymore:

(xviii) a. Anthony sent this to you.

b. Anthony sent you this.

A reader can only be surprised by our finding if she is lulled into believing that examples such
as (xvii) are as a rule more frequent in the data set than those such as (xviii). It is immensely
difficult to apprehend the variety of contexts where speakers choose to use a pronominal theme as
opposed to a nonpronominal one, even in the limited context of our data set. We do not embark
on this impossible task. We leave that to our method, through the definition of the effect of
pronominality of theme and the power of our statistical apparatus.
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Integer valued contextual information variables. Just like Ψ1 and Ψ2 differ from Ψ3 (only
Ψ3 involves a working model), Table 2 is different in nature from Table 1. Instead of commenting
on the values in Table 2, we comment on Figure 1.

The left panel represents the effect of length of theme on the alternation. It shows how the
probability of PD (y-axis) evolves as a function of w when length of theme (x-axis) is set to w,
all other things being equal. The weight values are the values of the function h appearing in
(12) when evaluated at the integers 1, . . . , 10. The vertical bars are simultaneous 95%-confidence
intervals for the probabilities. We observe a decreasing trend, with significant differences between
the smallest and the largest values of length of theme, as evidenced by non-overlapping confidence
intervals. From a linguistic point of view, this comes as no surprise because of the following
information-structure consideration: a long theme is heavy material, and heavy material comes
last, see example (xiv).

The right panel represents the effect of length of recipient on the alternation. It shows how the
probability of PD (y-axis) evolves as a function of w when length of recipient (x-axis) is set to w,
all other things being equal. Again, the weight values are the values of the function h appearing
in (12) when evaluated at the integers 1, . . . , 10. Here too, the vertical bars are simultaneous 95%-
confidence intervals for the probabilities. This time, we observe an increasing trend, with even
more significant differences as we go along the x-axis. From a linguistic point of view, this comes
as no surprise either for the same reason as above.

6 Discussion

If any, the lessons of this article are about crafting parameters to capture the essence of what
one looks for, the merits of scaffolding a thought experiment yielding the ideal data one would
have liked to work on, and targeting the above parameters. Using a well-travelled case-study in
linguistics, we have adapted and benchmarked a combination of concepts and methods that has
already proven its worth in biostatistics.

We showed how to operationalize the effect of any given element of context on the dative
alternation as a functional evaluated at the true, unknown law P0 of the data. We also showed
how to estimate this effect in a targeted way, under the form of that functional evaluated at an
empirical law built specifically to estimate the corresponding effect. We consider models as useful
tools. One of these models is the backbone of the definition of the effect of an integer valued
element of context. Yet, we do not assume that it reflects the true nature of P0. The remaining
models are at the core of algorithms used by us to build reliable predictors of features of P0 that are
involved in the estimation methodology. The combined power of these algorithms is harnessed by
ambitious machine learning. Based on cross-validation, machine learning estimators are reliable
but not meant for drawing statistical inference. The targeting step bends them so that valid
confidence intervals can be drawn from them. Although we must assume that at least some of
these models reflect some aspects of the true nature of P0, we try to restrict the number of such
untestable, unrealistic assumptions to guarantee the validity of inference.

We acknowledge that the reasoning underlying the approach advocated in this article is demand-
ing. However, linguistics is at a quantitative turn in its history. Graduate programs throughout
the world dramatically improve their offer in statistical training. Junior researchers are more ea-
ger than ever for statistics. Massive data sets are piling up. To achieve far reaching results, the
discipline needs state-of-the-art theoretical statistics and robust statistical tools. We believe that
after the heyday of logistic regression, linguists are now ready to embrace the distinction between
predicting and explaining.

Acknowledgements. The authors gratefully acknowledge that this research was partially sup-
ported by the French National Center for Scientific Research (CNRS) through the interdisciplinary
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variable versus estimate CI p-value
Modality written%spoken 0.0277 [-0.0031,0.0585] 0.0776
AnimacyOfRec inanimate%animate 0.0938 [0.0549,0.1327] 0.0000
DefinOfRec indefinite%definite 0.0395 [0.0102,0.0688] 0.0083
PronomOfRec pronominal%nonpronominal -0.1398 [-0.2171,-0.0624] 0.0004
AnimacyOfTheme inanimate%animate 0.0843 [0.0337,0.1348] 0.0011
DefinOfTheme indefinite%definite -0.0568 [-0.0865,-0.0272] 0.0002
PronomOfTheme pronominal%nonpronominal -0.1168 [-0.1377,-0.0959] 0.0000
AccessOfRec new%accessible -0.3824 [-0.5458,-0.2189] 0.0000

given%accessible 0.0411 [-0.0149,0.0971] 0.1506
AccessOfTheme new%accessible -0.0782 [-0.1100,-0.0463] 0.0000

given%accessible -0.0415 [-0.0673,-0.0157] 0.0016
SemanticClass t%a 0.1152 [0.0548,0.1755] 0.0002

p%a -0.0928 [-0.1532,-0.0324] 0.0026
f%a -0.1471 [-0.1946,-0.0997] 0.0000
c%a 0.1657 [0.1238,0.2077] 0.0000

Table 1: Estimated effects of the categorical information variables. For each such contextual
information (named in the first column) and each comparison (possibly several, identified in the
second column), we report the corresponding estimated effect(s), 95%-confidence interval(s) and
p-value(s) when testing whether the parameter is equal to 0 or not (in the third, fourth and fifth
columns, respectively).

variable component estimate CI p-value
LengthOfRecipient 1 -0.9781 [-1.3324,-0.6238] 0.0000

w 0.1297 [-0.0659,0.3253] 0.1937
w2 0.0011 [-0.0209,0.0231] 0.9237

LengthOfTheme 1 0.1457 [-0.3658,0.6571] 0.5767
w -0.2133 [-0.3287,-0.0979] 0.0003
w2 0.0054 [0.0007,0.0101] 0.0248

Table 2: Estimated effects of the integer valued information variables. For each such contextual
information (named in the first column) and each component of the related parameter (identified
in the second column), we report the corresponding estimated effect(s), 95%-confidence interval(s)
and p-value(s) when testing whether the parameter is equal to 0 or not (in the third, fourth and
fifth columns, respectively).
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Figure 1: Representing the effects of the integer valued information variables.
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A Appendix

A.1 A lemma

We claimed in Section 3.2.2 that Ψ1(P0) = EP
1

0

{Y 1
1 } − EP

1

0

{Y 1
0 }. Formally, the following result

holds:

Lemma 1. Assume that (4) can be extended to (5). Assume moreover that U1 is conditionally inde-
pendent from V given (U2, . . . , Ud). The first assumption is met for instance if P0(W

1 = 1|W−1) ∈
]0, 1[ almost surely, i.e. if W 1 takes both the values 0 and 1 with positive conditional probability
given W−1, for almost every W−1. This can be tested on data sampled from P0 whereas the second
assumption, dubbed the “randomization assumption”, cannot. Then Ψ1(P0) = EP

1

0

{Y 1
1 }−EP

1

0

{Y 1
0 }.

Proof. The conditional independence of U1 and V given (U2, . . . , Ud) implies the conditional in-
dependence of W 1 and (Y 1

0 , Y
1
1 ) given W

−1 under P1
0. This justifies the second equality below:

EP0
{P0(Y = 1|W 1 = 1,W−1)} = EP

1

0

{P1
0(Y

1
1 = 1|W 1 = 1,W−1)} = EP

1

0

{P1
0(Y

1
1 = 1|W−1)}.

Now, the tower rule (which states that E(E(A|B)) = E(A) for any pair of random variables (A,B))
and the fact that P1

0(Y
1
1 = 1|W−1) = EP

1

0

(Y 1
1 |W−1) imply the equality EP0

{P0(Y = 1|W 1 =

1,W−1)} = EP
1

0

{Y 1
1 }. By symmetry, we also have EP0

{P0(Y = 1|W 1 = 0,W−1)} = EP
1

0

{Y 1
0 }.

Combining these two equalities yields the claimed result.

A.2 A few details on the super-learner

A.2.1 The super-learner performs almost as well as the best algorithm in the library.
The theoretical study of the super-learner’s performances is easier when using the loss L charac-
terized by L(q,O) = (Y −q(W ))2, when the algorithms Q̂1, . . . , Q̂K produce functions mapping W
to [0, 1], and when the meta-learner is sought under the form of a convex combination. Formally,
for every δ > 0, there exists a constant C(δ) such that

EP0

{

1

V

V
∑

ν=1

[

RL
P0
(Q̂αn

(Pn,T (ν)))−RL
P0
(Q(P0))

]

}

≤ (1 + δ)EP0

{

min
α∈A

1

V

V
∑

ν=1

[

RL
P0
(Q̂α(Pn,T (ν)))−RL

P0
(Q(P0))

]

}

+ C(δ)
V log(n)

n
.

In the above display, the outer expectations EP0
{(. . .)} apply to O1, . . . , On. In words, the super-

learner performs as well as the oracle best algorithm in the library, up to a factor (1 + δ) and to
the additional term C(δ)V log(n)/n, which quickly goes to 0 as n grows.

A.2.2 Specifics of our super-learner. The inference ofQ(P0) is carried out by super-learning,
as presented in Section 4.1. This is made easy thanks to the SuperLearner package (Polley and
van der Laan, 2011) for the statistical programming language R and to the statistical community
as a whole for many contributed packages. The library of algorithms that we rely on consists
of estimation procedures based on generalized linear models (glm function), classification and re-
gression trees (package rpart by Therneau et al. (2014)), random forests (package randomForest
by Liaw and Wiener (2002)), multivariate adaptive polynomial spline regression (polymars func-
tion from the package polspline by Kooperberg (2013)), and the NDL predicting methodology
(ndlClassify function from the package ndl by Antti Arppe et al. (2014)).
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Incidentally, the minimizer αn of the cross-validated risk (14) assigns 22% mass on the glm

algorithm with main terms only, 38% mass on the randomForest algorithm with main terms
only, and 40% on the polymars algorithm with main terms only. The mass assigned to the other
algorithms is essentially zero.

A.3 A few details on TMLE

A.3.1 Differentiability of the parameters. Let us consider Ψ1 as an example. Heuristically,
for each P ∈ M there exists a function ∇Ψ1(P ) mapping W ×{0, 1} to R such that, if the law Pε

approaches P from direction s as the real number ε goes to 0, then the R → R function ε 7→ Ψ1(Pε)
is (classically) differentiable at ε = 0 with a derivative equal to EP {∇Ψ1(P )(O)×s(O)}. Here, s can
be (basically almost) any real valued, bounded function defined on W × {0, 1}, and “approaching
from direction s” means that the log-likelihood function under Pε, ǫ 7→ logPε(O), is a real valued
function differentiable at ε = 0 with a derivative equal to s(O). Similar statements hold for Ψ2

and Ψ3. It is known (see van der Laan and Rose, 2011, Chapter 5, for instance) that ∇Ψ1 is
characterized by

∇Ψ1(P )(O) = Q(P )(1,W−1)−Q(P )(0,W−1)−Ψ1(P )

+(Y −Q(P )(W ))

(

1{W 1 = 1}
P (W 1 = 1|W−1)

− 1{W 1 = 0}
P (W 1 = 0|W−1)

)

. (21)

Similarly, ∇Ψ2 is characterized by ∇Ψ2(P )(O) = (∇Ψ2
k(P )(O) : 1 ≤ k ≤ K) with

∇Ψ2
k(P )(O) = Q(P )(W 1, k,W 3, . . . ,W d)−Q(P )(W 1, 0,W 3, . . . ,W d)−Ψ2

k(P )

+(Y −Q(P )(W ))

(

1{W 2 = k}
P (W 2 = k|W−2)

− 1{W 2 = 0}
P (W 2 = 0|W−2)

)

. (22)

As for ∇Ψ3, it is such that ∇Ψ3(P )(O) equals a 3 × 3 (deterministic) normalizing matrix times
the (random) vector

∇̃Ψ3(P )(O) =
∑

w∈W3

h(w)
(

Q(P )(W 1,W 2, w,W 4, . . . ,W d)− fΨ3(P )(w)
)

(1, w, w2)⊤

+
∑

w∈W3

h(w)(Y −Q(P )(W ))
1{W 3 = w}

P (W 3 = w|W−3)
(1, w, w2)⊤ (23)

(Rosenblum and van der Laan, 2010; Rosenblum, 2011). Note that there is actually one single
non-zero term in the second sum of the RHS of (23), which is the term corresponding to w =W 3.

A.3.2 Fluctuating the initial estimators. Let us first describe here the different fluctua-
tions that we use to target Qinit

n toward our parameters of interest. Let g1n(1|W−1), g2n(k|W−2)
and g3n(w|W−3) be estimators of P0(W

1 = 1|W−1), P0(W
2 = k|W−2) and P0(W

3 = w|W−3),
respectively, for all 0 ≤ k ≤ K, w ∈ W3 andW ∈ W. For our specific application, these estimators
are based on logistic and multinational regression models with main terms only. Their fitting is
carried out by using the glm and multinomial functions in R.

The fluctuations for Ψ1 and Ψ2 are very much alike. To target Ψ(P0), we rely on Q1,init
n,ε

characterized, for all ε ∈ R, by

logit
(

Q1,init
n,ε (W )

)

= logit
(

Qinit
n (W )

)

+ ε

(

1{W 1 = 1}
g1n(1|W−1)

− 1{W 1 = 0}
1− g1n(1|W−1)

)

. (24)

Likewise, we target Ψ2(P0) by relying on Q2,init
n,ε characterized, for all ε ∈ RK , by

logit
(

Q2,init
n,ε (W )

)

= logit
(

Qinit
n (W )

)

+

K
∑

k=1

εk

(

1{W 2 = k}
g2n(k|W−2)

− 1{W 2 = 0}
g2n(0|W−2)

)

. (25)
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As for the targeting toward Ψ3(P0), we choose to rely on Q3,init
n,ε characterized, for all ε ∈ R3, by

logit
(

Q3,init
n,ε (W )

)

= logit
(

Qinit
n (W )

)

+
h(W )

g3n(W
3|W−3)

(ε1 + ε2W
3 + ε3(W

3)2). (26)

We refer the interested reader to (van der Laan and Rose, 2011, Chapter 5) and (Rosenblum, 2011)
for further details.

Let us now turn to the next fundamental issue, which pertains to estimating the specific ele-
ments Q1,targ

n = Qinit
n,ε1n

, Q2,targ
n = Qinit

n,ε2n
and Q3,targ

n = Qinit
n,ε3n

among these collections that better

target, each, the corresponding parameter of interest. This is easy. The optimal parameters can
be characterized as the following solutions to three different optimization problems:

ε1n = argmax
ε∈R

n
∑

i=1

[

Yi log(Q
1,init
n,ε (Wi)) + (1− Yi) log(1−Q1,init

n,ε (Wi))
]

,

ε2n = argmax
ε∈RK

n
∑

i=1

[

Yi log(Q
2,init
n,ε (Wi)) + (1− Yi) log(1−Q2,init

n,ε (Wi))
]

,

ε3n = argmax
ε∈R3

n
∑

i=1

[

Yi log(Q
3,init
n,ε (Wi)) + (1− Yi) log(1−Q3,init

n,ε (Wi))
]

.

These optimization problems can be solved routinely in R with the glm function for the fitting of
generalized linear models on data. Interestingly, the fluctuations (24), (25) and (26) can be coded
by defining logit(Qinit

n (W )) as an offset and the factors of each component of ε as covariates upon
which to regress Y .

A.3.3 Solving (15) and (19). The numerical computation of the substitution estimators
ψ3,init
n and its targeted counterpart ψ3,targ

n , see (15) and (19), can also be solved routinely us-
ing R. Firstly, we create a new data set, each observation Oi contributing card(W) rows, one
for every possible value of W 3

i , where each row consists of three entries. For the ith observa-
tion, w ∈ W3 is associated with (Q3,init

n (W 1
i ,W

2
i , w,W

4
i , . . . ,W

d
i ), w, h(w)) for the computation of

ψ3,init
n and (Q3,targ

n (W 1
i ,W

2
i , w,W

4
i , . . . ,W

d
i ), w, h(w)) for the computation of ψ3,targ

n . Secondly, we
regress the first column of the data set on fθ(w) based on its second column using the glm function
with binomial family, logit link, weights from the third column, and the formula encoding our
working model (11). Even though the new “outcome” is not binary, the fact that it takes values
in ]0, 1[ guarantees that the glm function computes the desired iteratively reweighted least squares
solutions, provided that the algorithm converges (Rosenblum, 2011).

A.3.4 Including speaker-related dependency. The key to including speaker-related depen-
dency is weighting.

We attach a weight to each observation. This weight is the inverse of the number of construc-
tions contributed by the same speaker in the data set. The observations that we originally noted
O1, . . . , On are now regrouped in M = 1327 bigger observations O∗

1 , . . . , O
∗
M . Here, M is the num-

ber of different speakers and each O∗
m decomposes as O∗

m = (Om,1, . . . , Om,Jm
), where every Om,j

uniquely coincides with one observation among O1, . . . , On.

We may now assume that O∗
1 , . . . , O

∗
M are independently sampled from a distribution P ∗

0 , and
that conditionally on the number Jm of constructions contributed by speaker m, the dependent
observations Om,1, . . . , Om,Jm

have the same marginal distribution, which coincides with our P0.
Under this assumption, the weighted version of our method accommodates for dependency.

A.3.5 Confidence intervals. We build our confidence intervals by relying on the assumed
asymptotic normality of our targeted estimators and their limit standard deviations inferred as
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the standard deviations of the corresponding efficient influence curves, see (21), (22), (23). The
theory provides us with a set of mathematical assumptions which guarantee that this approach
does yield conservative confidence intervals. Some of them can be checked as they only depend on
choices we make, such as the algorithms which join forces in the super-learner, see Section A.2.2.
Some of them cannot, as they depend on the true, unknown distribution P0. Thus, we acknowledge
that our confidence intervals are valid if the sample size n is large enough and, for instance, if the
parametric models upon which the estimation of the conditional probabilities P0(W

j |W−j) (all
1 ≤ j ≤ d) are correctly specified. This condition is quite stringent. It is actually possible to
weaken it considerably by adding another layer of targeting, as recently shown by van der Laan
(2014). This, however, is beyond the scope of this article.
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