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Properties of Fisher information for Rician

distributions and consequences in MRI

Jérôme Idier, Member, IEEE, Guylaine Collewet

Abstract

In magnetic resonance imaging, it is usual to perform several repeated acquisitions in order to reduce the impact

of the noise on the evaluation of the average signal intensity. The main goal of this paper is to examine whether it is

preferable to consider the magnitude of each complex measurement, or the single magnitude of the averaged data at

each voxel. A thorough information theoretic study is proposed, which shows that the second option is preferable in

all cases. In order to reach such a conclusion, several properties of the Fisher information of Rician distributions are

proved, the main mathematical result being that it is an increasing function of the signal intensity, at constant noise

level, when the latter is known. The case of an unknown noise level is also considered, with essentially the same

conclusion. We also propose a more empirical comparison involving maximum likelihood estimation from simulated

data, which is in agreement with the information theoretic analysis. Finally, an extension to imaging systems where

multiple-receiver coils are employed is considered.

Index Terms

Magnetic resonance imaging (MRI), Rician distribution, Fisher information, Cramér-Rao lower bound, maximum

likelihood estimation, multiple-receiver coils

I. INTRODUCTION

In the field of magnetic resonance imaging (MRI), the Gaussian law is a widely accepted model to describe the

random character of the complex-valued data. However, incidental phase variations are observed in the acquired

signal at different locations. Typically, all voxels in a homogeneous region share a common average signal intensity,

whereas the assumption of a common average phase is not valid, because of inhomogeneities of the magnetic field.

It is usually admitted that working with magnitude data allows to get rid of incidental phase variations. Since

the magnitude of a complex-valued circular Gaussian random variable is known to follow a Rician law, magnetic

resonance (MR) magnitude images are governed by such a distribution [1].

In a view to reduce the noise, it is common to acquire repeated measurements. N independent complex-

valued observations M1, . . ., MN are then obtained for each voxel. Such a raw dataset will be called dataset

(a). A usual preprocessing procedure consists in computing the so-called magnitude data as the magnitude of

the averaged complex data |M1 + · · ·+MN | /N . It is understood here that no significant phase variation occurs

through repetitions at a given voxel, which is a valid assumption according to our own practical experiments. Such

magnitude data will be called dataset (b). It amounts to a single data point per voxel. An alternate preprocessing

step would be to collect the magnitude data |M1| , . . . , |MN | separately. Up to the fact that N separate fast Fourier

transforms are then needed (instead of a single one in the usual procedure), such a way to proceed is perfectly

practicable. The corresponding magnitude data will be called dataset (c).

The primary goal of this paper is to determine which dataset is the most informative regarding the quantity of

interest, i.e., the magnitude A of the statistical mean of the data Mn. Indeed, we will mainly concentrate on a

comparison between the inference from (b) versus (c), while many pros and cons of directly inferring from the

complex data (a) can already be found in the literature (specifically, [2] is a reference paper in this respect). One

important issue will be to evaluate the Fisher information related to A, and to compare the obtained expressions.
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Let us recall that the inverse of the Fisher information yields the CRLB, i.e., a lower bound on the variance

of any unbiased estimator. Asymptotically efficient estimators such as the maximum likelihood solution reach the

CRLB asymptotically (e.g., when the number of repeated measurements grows to infinity). However, far from the

asymptote, the bias often plays an important role, especially at low signal to noise ratio. Therefore, additional

comparisons will be performed to check that the performance of maximum likelihood estimation (MLE) in terms

of mean-squared error (MSE) corroborates the analysis based on Fisher information, even when the maximum

likelihood is significantly biased.

With a view to compare Fisher information values, an acknowledged difficulty is the lack of closed-form

expressions for Rician-distributed data [2–6]. While previous contributions rely on numerical evaluations of the

available integral expressions to analyze the informational content of magnitude datasets, the present paper proposes

a mathematical study based on analytic properties of the Fisher information. Most of the obtained results are original

and of stand-alone interest. Our main contribution is a monotony property of the Fisher information for the Rician

distribution as a function of the so-called noncentrality parameter. We thoroughly study the case where the noise

level is known, but we also consider the more difficult case where it is unknown. Moreover, we extend our main

results to generalized Rician laws, which arise when multiple-receiver coils are employed and the resulting data

are combined using the sum-of-squares method [7]. Concerning MLE, we put forward that the neg-log-likelihood

is convex up to a simple change of variable, and we contribute to the practical computation of MLE by proposing

a simple and rapidly converging Majorization-Minimization (MM) algorithm.

The rest of the paper is organized in five sections and an appendix. Section II provides a short mathematical

reminder about the Rician probability, the Fisher information and the CRLB. Section III formulates the specific

conclusions that can be drawn in the field of MRI from the proposed mathematical study, the latter being postponed

to Section IV. A specific part of Section III considers magnitude estimation in each voxel using the MLE principle.

Finally, Section V contains a concluding discussion. Such an organization allows different types of reading. Readers

only interested by practical aspects of data acquisition and processing in the field of MRI could skip Section IV

and the appendix, whereas readers primarily motivated by the mathematical side of the contribution can focus their

attention on Section IV and on the accompanying appendix, which contain the most technical proofs.

II. THE FISHER INFORMATION OF THE RICIAN LAW RELATED TO ITS NONCENTRALITY PARAMETER

A. Generalities

Let us define the Rician probability density (over R+) of parameters η > 0, α > 0 as

R(x ; η, α) =
x

α2
exp

(

−x
2 + η2

2α2

)

I0

(ηx

α2

)

. (1)

Here, η will be called the noncentrality parameter. A fundamental result from which the Rician law originates is as

follows [8, p.100]. Let X1, X2 be independent, identically distributed (iid) centered real-valued Gaussian variables

of standard deviation α, and let

M1 = η cosφ+X1, M2 = η sinφ+X2, (2)

where η and φ are two real constants, and η > 0. Then, X =
√

M2
1 +M2

2 is a Rician random variable of parameters

η, α, for any value of the angle parameter φ. In particular, it follows that the magnitude of MRI measurements

acquired from single-coil is Rician distributed [1]. For the same reason, the Rician distribution also plays an

important role in several other fields such as radar, sonar [9] and radio communications [10].

The Fisher information that an observable random variable X with probability density p carries about an unknown

scalar parameter θ is defined by

Iθ = E

[

(

∂

∂θ
log p(X; θ)

)2
]

.

The inverse of the Fisher information is the CRLB, i.e., a lower bound for the variance of any unbiased estimator

of parameter θ [11, chap. 12]. In the case of a multivariate parameter θ = (θj)j=1,...,J , the Fisher information
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becomes a positive semi-definite matrix:

Iθ = E

[

(

∂ log p(X; θ)

∂θ

)(

∂ log p(X; θ)

∂θ

)t
]

and the CRLB related to a given component θj is given by the jth diagonal entry of I−1
θ .

In the complex Gaussian case (2), the Fisher information related to η is easy to derive as

Iη(M1,M2) =
1

α2
. (3)

In the Rician case of X =
√

M2
1 +M2

2 , several authors provide expressions of the Fisher information. A very

complete study can be found in [3]. In the MRI context, the noncentrality parameter η is the parameter of interest,

since it identifies with the image intensity, so we will only focus on the Fisher information related to η, akin to

previous contributions such as [2, 5, 6]. Moreover, the two cases where α is known or unknown will be addressed.

B. Case of known parameter α

The Fisher information related to η when α is a known parameter reads [2, 3, 5, 6]:

Iη =

∫ ∞

0

x3

α6
exp

(

−x
2 + η2

2α2

)

I21
(ηx
α2

)

I0
(ηx
α2

) dx− η2

α4
. (4)

Unfortunately, the integral term does not admit a closed-form expression. However, the simple change of variable

y = ηx/α2 allows to reduce the remaining integral to a univariate function [3, 5, 12], since we have:

Iη =
Ψ(ρ)

α2
(5)

where ρ = η2/α2 and

Ψ(ρ) =

∫ ∞

0

y3

ρ2
exp

(

−y
2

2ρ
− ρ

2

)

I21 (y)

I0(y)
dy − ρ. (6)

C. Case of unknown parameter α

1) Case of a single Rician variable: As found for instance in [2, 5, 6], the expression of the Fisher information

matrix related to (η, α) reads:

Iη,α =

(

Iη Iη,α
Iη,α Iα

)

where Iη is defined above,

Iη,α =
2

α2

√
ρ (1−Ψ(ρ)), (7)

Iα =
4

α2
(ρΨ(ρ)− ρ+ 1). (8)

The determinant of Iη,α is

∆(ρ) = IηIα − I2
η,α =

4

α4
((ρ+ 1)Ψ(ρ)− ρ).

By explicit matrix inversion, one can deduce:

I−1
η,α =

(

Jη Jη,α

Jη,α Jα

)

=
1

∆(ρ)

(

Iα −Iη,α
−Iη,α Iη

)

for all ρ such that ∆(ρ) > 0. In particular, Ĩη = J −1
η gives the Fisher information related to the estimation of η

when α is unknown:

Ĩη =
∆(ρ)

Iα
=

1

α2
Ψ̃(ρ)

where

Ψ̃(ρ) = Ψ(ρ)− ρ(1−Ψ(ρ))2

ρΨ(ρ)− ρ+ 1
(9)
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2) Case of several Rician variables: The previsous case is of limited applicability in the MRI context, since it

either corresponds to a standard deviation that would be different for each voxel, or to an image (or a region) where

the intensity would be known to be constant. In a more realistic context, we must rather consider a whole volume,

where each voxel has its own average intensity, while the noise characteristics are common to all voxels [5]. In

order to describe such a situation, let us assume that L independent random variables X = (X1, . . . , XL) are

observed, each Xℓ being a Rician variable with parameters (ηℓ, α), ηℓ > 0.

Because the laws of variables Xℓ have the unknown parameter α in common, the estimation of the noncentrality

parameters ηℓ becomes a coupled problem. Let us denote Ĩηℓ
the Fisher information related to the estimation of

ηℓ when α and η = (η1, . . . , ηL) are unknown. The evaluation of Ĩηℓ
is substantially more complex than that of

Ĩη. However, the derivation follows the same lines, starting from the expression of the Fisher information matrix

related to (η, α):

Iη,α =











Iη(ρ1) 0 Iη,α(ρ1)
0

. . .
...

Iη(ρL) Iη,α(ρL)
Iη,α(ρ1) . . . Iη,α(ρL)

∑

ℓ Iα(ρℓ)











.

where Iη(ρℓ), Iη,α(ρℓ), and Iα(ρℓ) are respectively defined by (5), (7), and (8) at value ρ = ρℓ = η2ℓ /α
2. Let

us remark that the L × L upper left corner of Iη,α is diagonal. We can then deduce Ĩηℓ
as the reciprocal of the

(ℓ, ℓ) entry of I−1
η,α, using the partitioned matrix inversion lemma [13]. The resulting expression can be written as

follows:

Ĩηℓ
=

1

α2
Ψ̃ℓ(ρ) (10)

where ρ = (ρ1, . . . , ρL) with ρℓ = η2ℓ /α
2, and

Ψ̃ℓ(ρ) = Ψ(ρℓ)−
ρℓ(1−Ψ(ρℓ))

2

Dℓ(ρ)
(11)

with Dℓ(ρ) = ρℓΨ(ρℓ)− ρℓ + fℓ(ρ) and

fℓ(ρ) = 1 +
∑

i 6=ℓ

(

ρi + 1− ρi
Ψ(ρi)

)

. (12)

The mathematical study of Section IV shows that limρ→0Ψ(ρ)/ρ = Ψ′(0) = 1, so that any voxel i 6= ℓ of null

intensity has a vanishing contribution to fℓ(ρ). It also yields that Dℓ(ρ) > 0 for all ρ. Therefore, Ψ̃ℓ(ρ) can be

defined for all componentwise nonnegative ρ.

A comparison between (11) and (9) indicates that Ψ̃ℓ(ρ) and Ψ̃(ρℓ) only differ by the presence of the additional

partial sum in the expression of fℓ(ρ). As expected, the two quantities coincide when L = 1.

III. APPLICATION TO MRI

For each voxel ℓ, let us assume that N repeated MR measures Mℓ1, . . . ,MℓN have been acquired, which form

dataset (a) of iid complex-valued Gaussian variables of mean Aℓe
iφℓ (Aℓ > 0) and common standard deviation σ.

As a consequence,

(P1) |Mℓ1 + · · ·+MℓN | /N (i.e., dataset (b)) is a Rician variable of parameters (Aℓ, σ/
√
N).

(P2) |Mℓ1| , . . . , |MℓN | (i.e., dataset (c)) is a set of N iid Rician variables with parameters (Aℓ, σ).

A. Estimation of the magnitudes Aℓ when the noise level σ is known

In this case, there is no coupling between voxels, unless specific spatial regularity is accounted for, which is not

considered here. Hence, for the sake of simplicity, we drop the voxel subscript ℓ in the present subsection, all the

handled quantities being implicitly related to a generic voxel. Let Ia
A, Ib

A, and Ic
A denote the Fisher information

related to the dataset (a) and to the sets of transformed data (b) and (c), respectively.
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On the one hand, we have

Ia
A =

N

σ2
(13)

according to (3). Let us remark that the single data point made of the sample mean (M1 + · · ·+MN ) /N would

contain the same amount of information than dataset (a), since it is a sufficient statistics for the statistical mean in

the Gaussian case.

On the other hand, (5), (P1), and (P2) yield

Ib
A =

N

σ2
Ψ

(

NA2

σ2

)

, (14)

Ic
A =

N

σ2
Ψ

(

A2

σ2

)

. (15)

According to expressions (13)-(15) and to general information theoretic principles, we can readily claim that:

• A smaller noise level σ increases the information contained in dataset (a).

• A larger number N of repetitions increases the information contained in datasets (a) and (c).

• The information contained in dataset (a) does not depend on the intensity value A, in contrast with the other

two datasets.

• We have Ia
A > Ib

A and Ia
A > Ic

A, since the processing of a dataset cannot lead to an increase of the Fisher

information, according to the data-processing inequality [14].

• Comparing the informational content of datasets (b) and (c) is equivalent to comparing two single magnitude

data points at a constant noise level, the signal intensity being multiplied by a factor N in the case of (b).

On the other hand, it seems intuitive that Ib
A does not decrease when N grows, but the mathematical validity

of such an assertion clearly depends on the monotonicity of function Ψ. In the same way, a comparison between

Ib
A and Ic

A requires a better knowledge of the variations of Ψ. Theorem 2 of Section IV brings the missing piece,

i.e., that function Ψ is an increasing function. We can thus compare datasets (b) and (c) and draw some other

conclusions, according to the following proposition.

Proposition 1 For all A > 0, σ > 0 and N > 1,

i) the inequalities Ia
A > Ib

A > Ic
A hold,

ii) Ib
A and Ic

A are increasing functions of A, 1/σ, and N ,

iii) for arbitrary small values of A, Ib
A and Ic

A vanish,

iv) for arbitrary large values of A, Ib
A and Ic

A become equivalent to Ia
A.

Let us remark that the last point corresponds to the convergence of the Rician distribution towards a Gaussian in

the large magnitude regime [15]. On the other hand, the fact that Ib
A and Ic

A vanish for A → 0 means that an

unbiased estimator of A would have an unbounded variance when A becomes arbitrary small, as remarked in [16].

B. Estimation of the magnitudes Aℓ when the noise level σ is unknown

In this case, there is a possible coupling between voxels through the estimation of σ, so we cannot examine each

voxel separately. Let Ĩa
Aℓ

, Ĩb
Aℓ

, and Ĩc
Aℓ

denote the Fisher information related to Aℓ when σ is unknown. On the

one hand, we have Ĩa
Aℓ

= Ia
Aℓ

= N/σ2 [2]. On the other hand, according to (10), (P1), and (P2), we have

Ĩb
Aℓ

=
N

σ2
Ψ̃ℓ

(

NA2

σ2

)

(16)

Ĩc
Aℓ

=
N

σ2
Ψ̃ℓ

(

A2

σ2

)

(17)

where Ψ̃ℓ is defined by (11) and A2 = (A2
1, . . . , A

2
L).

It is clear that Ψ̃ℓ(ρ) 6 Ψ(ρℓ) for all ρ since Dℓ is positive, so that Ĩb
Aℓ

6 Ib
Aℓ

and Ĩc
Aℓ

6 Ic
Aℓ

(each inequality

being strict for any strictly positive intensity). The differences Ib
Aℓ

− Ĩb
Aℓ

and Ic
Aℓ

− Ĩc
Aℓ

quantify the loss of



6

information on Aℓ when σ is unknown. It is also clear that any additional voxel contributing to the dataset

increases the amount of information on the average intensities Aℓ at all other voxels, since fℓ(ρ) will increase, and

consequently, Ψ̃ℓ(ρ) too. This is an intuitive result since any additional voxel will contribute to the estimation of

σ, which is coupled to the estimation of Aℓ for all ℓ.

A far less easy task is to establish a “tilded” counterpart of Proposition 1. Specifically, the main issue is to

compare Ĩb
Aℓ

and Ĩc
Aℓ

. Given (16)-(17), it relies on the variations of Ψ̃ℓ(µρ) as a function of a positive scalar µ,

for any componentwise nonnegative vector ρ. In Subsection IV-B, it is established that Ψ̃ℓ(µρ) is increasing with

µ if the following inequality holds for all ρ > 0:

ρΨ′(ρ) > Ψ(ρ)(1−Ψ(ρ)). (18)

The latter is numerically plausible, but it remains a conjecture.

The following proposition gathers the mathematical properties that can be deduced from Subsection IV-B.

Proposition 2 The last two items of Proposition 1 hold when Ia
A, Ia

A, and Ib
A are replaced by Ĩa

Aℓ
, Ĩb

Aℓ
, and Ĩc

Aℓ
,

for all N > 1, L > 1, A > 0 (in the componentwise sense), and σ > 0. It is also true for the first two, with the

proviso that (18) holds.

C. Compared performance of MLE in terms of MSE

As already mentionned, dataset (a) cannot be less informative than datasets (b) and (c) according to the data-

processing inequality [14]. In Sijbers and den Dekker’s thorough study [2], such a general fact is corroborated

by Figs. 1 and 4 therein. At the same time, an important and somewhat reversed finding is empirically obtained

in [2], that MLE from magnitude data is preferable to MLE from complex data. Such a conclusion is obtained

by comparing MSE values in practical situations, MLE from complex data being more strongly biased at low or

moderate SNR. Let us also mention that an interesting study about bias reduction in the MRI context can be found

in [16].

Akin to [2], we have found useful to complement our Fisher information study by an empirical evaluation of the

statistical performance of MLE, in order to check whether it confirms the previous information based comparison

between (b) and (c). It is the main goal of the present section. As a subsidiary contribution, we also propose an

efficient iterative algorithm to maximize the likelihood of both datasets (b) and (c).

1) Maximization of the likelihood: Let us first consider the neg-loglikelihood (NLL) of dataset (c):

J(A, σ) = −
∑

ℓ,n

logR(Yℓn;Aℓ, σ)

where A = (A1, . . . , AL), and Yℓn is a compact notation for |Mℓn|. In a more explicit way,

J(A, σ) =
∑

ℓ

Jℓ(Aℓ, σ) + log σ2LN (19)

with

Jℓ(Aℓ, σ) =
NA2

ℓ

2σ2
+
∑

n

(

Y 2
ℓn

2σ2
− log I0

(

AℓYℓn
σ2

)

− log Yℓn

)

. (20)

When the noise level σ is known, the maximum likelihood of A from dataset (c) is obtained as the minimizer

Â = (Â1, . . . , ÂL) of J , where each Âℓ separately minimizes the corresponding component Jℓ. When the noise

level σ is unknown, joint minimization with respect to A and σ must be considered, which provides a couple (Â, σ̂).
In all cases, the minimization of (19) has no closed-form solution, so it must be performed numerically using an

iterative procedure. Several contributions have already addressed this problem, among which [3, 17]. However, none

of them has highlighted the following strict convexity property.

Proposition 3 The NLL function (20) is a strictly convex function of
√
Aℓ.
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Proof: The proof immediatly derives from the fact that log I0(
√
x) is a strictly concave function of x, or

equivalently that the noncentral chi-square distribution with two degrees of freedom has a strictly log-concave

density (provided that its noncentrality parameter is positive) [18].

A consequence of Proposition 3 is that Jℓ is a unimodal function of Aℓ, i.e., it admits a unique minimizer and

no local minimum. The situation is more complex when J is considered as a function of (A, σ). Further studies

would be needed to examine whether J is a unimodal function of (A, σ).

With a view to minimize J with respect to A and possibly to σ, another useful property is that log I0(x) is

a strictly convex function of x [19, 20]. Therefore, − log I0(x) is majorized by its tangent, with equality at the

considered point. As recently published in [21], such a property allows to build a fast and converging Majorization-

Minimization (MM) algorithm to minimize J with respect to A. MM schemes consist in iterately minimizing a

majorizing approximation of the objective function. Such schemes intrinsically produce a non-increasing sequence

of objective function values. For a more complete overview of the MM principle and its general convergence

properties, the reader may consult [22].

When σ is known, it can be shown [17] that Aℓ = 0 is the minimizer of Jℓ if and only if

1

N

∑

n

Y 2
ℓn 6 2σ2.

No iterative scheme is then required to minimize Jℓ. Otherwise, the following MM iteration is an efficient way to

converge to the minimizer:

Aℓk+1 =
1

N

∑

n

r0

(

AℓkYn
σ2

)

Yn, (21)

where r0(x) is the ratio between I1(x) and I0(x).

When σ is unknown, let us stress that the same MM principle remains applicable. From the majorization of

− log I0(x) by its tangent, we first deduce the following majorizing approximation of J at (Ak, σk):

K(A, σ;Ak, σk) =
∑

ℓ

Kℓ(Aℓ, σ;Aℓk, σk) + log σ2LN ,

up to an additive constant, with

Kℓ(Aℓ,σ;Aℓk, σk) =
NA2

ℓ

2σ2
+
∑

n

(

Y 2
ℓn

2σ2
− r0

(

AℓkYℓn
σ2k

)

AℓYℓn
σ2

)

.

It is then possible to obtain the joint minimizer of K with respect to (A, σ) under the following form:

∀ℓ, Aℓk+1 =
1

N

∑

n

r0

(

AℓkYℓn
σ2k

)

Yℓn (22)

σ2k+1 =
1

2L

∑

ℓ

(

1

N

∑

n

Y 2
ℓn −A2

ℓk+1

)

(23)

which constitutes a joint MM scheme to minimize J with respect to (A, σ). Let us mention that a comparable

algorithm has been derived in the Expectation-Maximization (EM) framework for fMRI data processing in [23].

In practice, the initial point (A0, σ0) must be chosen in the positive orthant, given the following proposition.

Proposition 4 Let us assume that for each voxel ℓ, at least one data point Yℓn is positive. Then the whole sequences

(Aℓk) and (σk) are strictly positive provided Aℓ0 > 0 for all ℓ and σ0 > 0. Conversely, for any ℓ, k, Aℓk = 0
implies Aℓk+1 = 0.

Proof: Let us assume Aℓk > 0 for all ℓ and σk > 0. Function r0(x) is strictly increasing from r0(0) = 0 to

r0(∞) = 1 [24]. Thus, 0 6 Aℓk+1 6 mℓ for all ℓ, where mℓ denotes the empirical mean mℓ =
1
N

∑

n Yℓn, and the

two bounds are strict unless Yℓn cancels for all n. Moreover,

σ2k+1 >
1

2L

∑

ℓ

(

1

N

∑

n

Y 2
ℓn −m2

ℓ

)

> 0,
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Fig. 1. Upper line: theoretical CRLB and MSE, variance, and bias of maximum likelihood for sets (b) and (c) in the cases when σ is known

or unknown (L = 10) for A = 0.5 and σ = 1. Lower line: same for A = 2

the first inequality being strict if there is at least one couple (ℓ, n) for which Yℓn > 0. Finally, the last implication

holds since r0(0) = 0.

A rigorous mathematical convergence study of (22)-(23) remains to be made. General properties of MM schemes

ensure that (J(Aℓk, σk)) is a nonincreasing sequence. Based on [25], it is reasonable to assume that (22)-(23)

converges towards a stationary point of J .

So far, we have designed a minimization scheme to compute the MLE solution in the case of dataset (c). Since

it corresponds to observing a single Rician variable of parameters (Aℓ, σ/
√
N) at each voxel, dataset (b) can be

processed using the same MM algorithm with a single data point for each voxel, up to a trivial multiplicative

correction (by a factor
√
N ) on the second parameter. However, it happens that the MLE solution becomes trivial,

only in the case where σ is unknown. Indeed, it can be shown mathematically that the likelihood is not upper bounded

in case (b), and that it becomes infinite at the MLE solution defined by σ̂ = 0, and Âℓ = |Mℓ1 + · · ·+MℓN | /N for

all ℓ. Such a behavior would not occur if we considered regions of constant intensity, akin to [2, Eq. (46)]. Another

possibility would be to add a noninformative penalization term to the likelihood in order to obtain a bounded

criterion. In both cases, the proposed MM scheme (22)-MM2b would remain valid, up to simple adaptations.

Anyway, the obtained intensity estimator is not a pathological one, so we proceed with it in the next subsection.

2) Statistical performance of MLE: We have simulated simple MRI data using the Rician model with noncen-

trality parameter values A = 0.5 and A = 2, and noise standard deviation σ = 1. In both cases, we have evaluated

the theoretical CRLB, i.e., I−1
A or Ĩ−1

A , whether σ is assumed known or not. In the latter case, a region of L = 10
voxels of equal intensity has been considered. We have applied the proposed MM algorithms to repeatedly simulated

data to evaluate the MLE solutions and to deduce empirical evaluations of the MSE, variance, and bias, as functions

of the number N of repetitions, between 1 and 10.

Fig. 1 displays the results for A = 0.5 and A = 2. When N = 1, the two datasets (b) and (c) coincide, so the

couples of corresponding curves coincide as well. For all N > 1, dataset (b) yields a lower value of CRLB than

dataset (c) (which illustrates that Ib
A > Ic

A and Ĩb
A > Ĩc

A). The difference is less sensible for larger intensity values,

which is easily explained by the last point of Proposition 1 and by its equivalent in Proposition 2.

The main information given by Fig. 1 is that MLE statistically performs better from dataset (b) than from dataset
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(c) in terms of MSE. Let us stress that neither the variance nor the MSE is directly comparable to the CRLB,

because of the effect of the bias at low signal-to-noise ratio. As already pointed out and commented in [16], the

MSE becomes smaller than the CRLB in this regime for small values of N . However, it remains true that dataset

(b) always provides more accurate MLE results than dataset (c), both in terms of bias and variance.

We also remark that in several cases, a lower MSE is obtained from assuming that σ is unknown rather than

known. Such an empirical observation is rather counterintuitive, but it is not in contradiction with statistical theory.

Indeed, we can observe that a lower MSE value comes with a larger bias magnitude, which is typical of the usual

bias-variance tradeoff.

D. Extension to phased array magnitude MR images

An interesting extension is to consider the case of data following a generalized Rician distribution of positive

integer degree. Such data can be found in phased array magnitude MR images, where multiple-receiver coils are

employed, when sum-of-squares images are considered [7, 26, 27]. It is also the case in phase contrast MR images

[26, 28, 29]. From C iid couples of complex data (Mc1,Mc2) defined by

Mc1 = ηc cosφ+Xc1, Mc2 = ηc sinφ+Xc2,

where (X11, X12, . . . , XC1, XC2) are iid centered real-valued Gaussian variables of standard deviation α > 0,

one obtains that X =
√

∑C
c=1(M

2
c1 +M2

c2) is a generalized Rician variable of parameters (η, α) and of degree

q = C − 1, with η =
√

∑C
c=1 η

2
c . The corresponding probability density is given by (29).

Most results presented in the single receiver coil case can be extended to this generalized context. In particular,

we have Iη = Ψq(ρ)/α
2, with

Ψq(ρ) =

∫ ∞

0

yq+3

ρq+2
exp

(

−y
2

2ρ
− ρ

2

)

I2q+1(y)

Iq(y)
dy − ρ.

Subsection IV-C shows that Ψq remains an increasing function between 0 and 1 for all positive values of q, so that

Proposition 1 remains valid. More specifically, for each voxel, the magnitude of the average of the collected data

over N repetitions
(

C
∑

c=1

(

N
∑

n=1

M2
c1,n +

N
∑

n=1

M2
c2,n

))1/2

contains more information regarding the intensity parameter η, than the set of N magnitudes

(

C
∑

c=1

(

M2
c1,n +M2

c2,n

)

)1/2

,

when the noise level is known. The case where the noise level is unknown remains to be explored, but it is fairly

conceivable that Proposition 2 also admit a direct extension.

As concerns MLE in the multiple-receiver coil case, the expression of the NLL of dataset (c) becomes

J(A, σ) =
∑

ℓ

Jℓ(Aℓ, σ)− log σ2LN(q−1) (24)

with

Jℓ(Aℓ, σ) =
NA2

ℓ

2σ2
+ logANq

ℓ +
∑

n

(

Y 2
ℓn

2σ2
− log Iq

(

AℓYℓn
σ2

)

+ log Y q−1
ℓn

)

. (25)

where Yℓn combines the data acquired at all coils at voxel ℓ for the nth repetition. The MM algorithm proposed

in Subsection III-C admits a natural extension, based on the fact that x−qIq(x) is strictly log-convex for all

q > −1/2 [20]. More specifically, the update equation (21) becomes

Aℓk+1 =
1

N

∑

n

rq

(

AℓkYn
σ2

)

Yn, (26)
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with a preserved non-decreasing effect on the likelihood. Moreover, Proposition 3 can be extended to the NLL (25)

since noncentral chi-square distributions of more than two degrees of freedom have a strictly log-concave density

(if their noncentrality parameter is positive) [18]. Therefore, the NLL (24) is a unimodal function of Aℓ.

The numerical study proposed in Subsection III-C should be extended to check if the performance of MLE in

terms of bias and variance remains in conformity with the analysis based on Fisher information.

IV. MATHEMATICAL ANALYSIS

A. Estimation of η when α is known

The Fisher information Iη is expressed through (4). Unfortunately, the remaining integral in (4) does not have a

closed form, which complicates the analytical study of Iη. In order to overcome the obstacle, the present contribution

concentrates on the univariate function Ψ defined by (6). Firstly, lower and upper bounds are exhibited for Ψ. Then,

a refined study allows us to conclude that Ψ is an increasing function of parameter ρ = η2/α2.

Theorem 1 Function Ψ is bounded below and above according to

max {ΨL1(ρ),ΨL2(ρ)} 6 Ψ 6 ΨU(ρ) (27)

where

ΨL1(ρ) =
ρ

ρ+ 1
, (28)

ΨL2(ρ) =
πρ
(

I0
(ρ
4

)

+ I1
(ρ
4

))2

8(2 + ρ)e
ρ

2 − π
(

(2 + ρ)I0
(ρ
4

)

+ ρI1
(ρ
4

))2

ΨU(ρ) = min {ρ, 1} .

Proof: See Appendix A.

Fig. 2 illustrates the behavior of function Ψ. Let us remark that ΨL2 provides a very tight approximation of Ψ.

It can be numerically checked that it is larger than ΨL1 except for small values of ρ (the crossing between ΨL1

and ΨL2 is around ρ0 ≃ 0.6).

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

ρ

 

 

ΨU(ρ)
Ψ(ρ)
ΨL2(ρ)
ΨL1(ρ)

Fig. 2. Behavior of function Ψ(ρ) = α2
Iη and of its bounds according to Theorem 1.

In what follows, we manipulate statistical averages with respect to a so-called generalized Rician law of degree

1. More generally, let us define the generalized Rician law of degree q by its density

Rq(x ; η, α) =
xq+1

α2ηq
exp

(

−x
2 + η2

2α2

)

Iq

(ηx

α2

)

(29)
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over R
+, with η > 0, α > 0, and the range of q being extensible to (−1,∞). The same probability law is also

known as the noncentral chi distribution of degree ν = 2(q + 1) when α = 1 [15]. Moreover, let Eq [·] denote the

expectation operator relative to the generalized Rician law of degree q, and let rq = Iq+1/Iq.

Proposition 5 The Fisher information Iη admits the following expression:

Iη = E1

[

ηX

α4

(

r0

(

ηX

α2

)

− r1

(

ηX

α2

))]

. (30)

Proof: The first part of the expectation is an obvious, alternate expression for the integral term in (4). On the

other hand, we have

E1

[

ηX

α4
r1

(

ηX

α2

)]

=
1

α6

∫ ∞

0
x3 exp

(

−x
2 + η2

2α2

)

I2

(ηx

α2

)

dx =
η2

α4

given general integration results related to the confluent hypergeometric function of the first kind [24]. Thus,

expression (30) identifies with (4).

Let us remark that the Turán-type inequality I2q (x) > Iq−1(x)Iq+1(x) for all x > 0, q > −1 [30–32], also reads

rq−1(x) > rq(x), which makes it apparent that Iη > 0. Of course, the nonnegativity of the Fisher information

holds by definition, but other Turán-type inequalities will be helpful to study additional properties of Iη.

In (30), the expectation is relative to the density R1(· ; η, α). As a consequence, Y = ηX/α2 is distributed

according to the single parameter density

R1(y ; ρ,
√
ρ) =

y2

ρ2
exp

(

−y
2

2ρ
− ρ

2

)

I1(y), (31)

where ρ = η2/α2. Therefore, according to (30), we have Ψ(ρ) = α2Iη = E[ψ(Y )] with

ψ(y) = y (r0(y)− r1(y)). (32)

This is a key expression to derive the following theorem.

Theorem 2 Function Ψ is increasing and is such that

lim
ρ→0

Ψ(ρ) = 0, lim
ρ→0

Ψ′(ρ) = 1, lim
ρ→∞

Ψ(ρ) = 1. (33)

Proof: See Appendix B.

It is worth mentioning that the proof of Proposition 2 manipulates stochastic order properties to establish

a monotonicity property of an information metric, akin to [33] in the context of performance evaluation of

communication channels. The latter paper considers the case of Rician fading channels, where the received signal

amplitude follows a Rician distribution. However, Proposition 2 is not a consequence of results contained in [33],

and the proof of Proposition 2 is not adapted from [33].

Let us remark that the increasing character of Ψ implies that Ψ(ρ) is strictly lower than 1 for all ρ. Let us also

mention that direct differentiation under the integral sign in (6) provides

Ψ′(ρ) =
1

2ρ4

∫ ∞

0
y5 exp

(

−y
2

2ρ
− ρ

2

)

I21 (y)

I0(y)
dy − 4 + ρ

2ρ3

∫ ∞

0
y3 exp

(

−y
2

2ρ
− ρ

2

)

I21 (y)

I0(y)
dy − 1.

Given E
[

Y 2
]

= ρ(ρ+ 4), the following remarkable identity can be obtained:

Ψ′(ρ) =
1

2ρ2
(

E
[

Y 2ψ(Y )
]

− E
[

Y 2
]

E [ψ(Y )]
)

. (34)

Therefore, Theorem 2 expresses that the correlation between variables Y 2 and ψ(Y ) is positive.
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B. Estimation of ηℓ when α is unknown in the case of several Rician variables

The purpose of the present subsection is to examine some mathematical properties of function Ψ̃ℓ defined by (11),

and more specifically the variations of Ψ̃ℓ(µρ) as a function of µ > 0.

Proposition 6 For any intensity vector ρ and any voxel ℓ,

Ψ(ρℓ) > Ψ̃ℓ(ρ) > Ψ̃(ρℓ), (35)

lim
µ→0

Ψ̃ℓ(µρ) = 0, (36)

lim
µ→∞

Ψ̃ℓ(µρ) = 1. (37)

Moreover, Ψ̃ℓ(µρ) is an increasing function of µ if inequality (18) holds.

Proof: See Appendix C

Numerical evaluations indicate that inequality (18) holds (see Fig. 3 for an illustration). Unfortunately, we have

been unable to prove it mathematically. Let us remark that it corresponds to a stronger condition than the increasing

character of Ψ, which is the main result of Theorem 2.

10
−2

10
−1

10
0

10
1

10
−2

10
−1

ρ

 

 

ρΨ
′(ρ)

Ψ(1−Ψ)

Fig. 3. Numerical evaluation of (18), in log-log scale.

C. Extension to the generalized Rician case

Theorem 1, Proposition 5 and Theorem 2 naturally extend to positive values of q. In particular, we have Ψq(ρ) =
E[ψq(Y )], where Y is distributed according to Rq+1(y ; ρ,

√
ρ), and ψq(y) = y (rq(y)− rq+1(y)). Inequalities (39)

allow us to conclude that ψq and Ψq take values between 0 and 1 for all q > 0. Moreover, along the same lines as

the proof of Proposition 5, we obtain that ΨqL(ρ) 6 Ψq(y) 6 ΨqU(ρ) with

ΨqL(ρ) =
ρ

ρ+ q + 1
, ΨqU(ρ) = min

{

ρ

q + 1
, 1

}

.

Let us indicate that ΨqL = ΨL1. It also seems possible to derive an generalized expression of ΨL2, but we have

not pursued in this direction.

On the other hand, Theorem 2 has a direct extension. In particular, Ψq is an increasing function for all q > 0,

the proof of Appendix B being directly applicable. Moreover, (34) admits the following generalization:

Ψ′
q(ρ) =

1

2ρ2
(

E
[

Y 2ψq(Y )
]

− E
[

Y 2
]

E [ψq(Y )]
)

.

We can thus conclude that Y 2 and ψq(Y ) are positively correlated. Finally, we have the following proposition.

Proposition 7 Ψq(x) is a nonincreasing function of q for all x > 0, q > −1.
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Proof: Let χν,η denote the noncentral chi distribution of noncentrality parameter η and of degree ν. Function

Ψq(ρ) is the Fisher information of a variable X ∼ χν,η with ν = 2(q+1) and η =
√
ρ, related to the estimation of

η. Noncentral chi-squared distributions are reproductive under convolution [15], so that X ′ =
√
X2 +D2 ∼ χν+d,η

if D ∼ χd,0, d > 0, D being independent from X . Consequently, the Fisher information of X ′ related to η is

Ψq′(ρ) with q′ = q + d/2. According to the data-processing inequality [14], the Fisher information of X ′ is not

larger than the Fisher information of X , since D conveys no information about η, which allows to conclude.

Fig. 4 illustrates the nonincreasing character of Ψq(x) as a function of q.
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0.8
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ρ

Ψ
q
(ρ
)

 

 

q = −0.5
q = 0
q = 0.5
q = 1
q = 2

Fig. 4. Numerical evaluation of Ψq(x) for several values of q > −1. Let us remind that Ψ = Ψ0.

V. CONCLUSION

When several repeated MRI acquisitions are performed, the standard procedure consists in relying on the

magnitude of the mean of the complex data available at each voxel. Our study leads to the conclusion that such a

preprocessing step is preferable to considering the magnitude of each data separately, from the information theoretic

standpoint. The key mathematical result underlying our study is the fact that, for Rician distributions, the Fisher

information with respect to the noncentrality parameter is an increasing function, at constant noise level. We have

obtained such a result by combining stochastic order properties of Rician distributions, with inequalities involving

modified Bessel functions. Let us stress that the exact evaluation of the Fisher information is impossible in this

context, since its expression involves modified Bessel functions within an integral term that can only be approximated

numerically. Previous studies devoted to MRI such as [2, 4, 16] already displayed (numerical approximations of)

the Fisher information, and empirically noticed or implicitely assumed its monotonous behavior. The present paper

provides a rigorous validation of such a behavior. Moreover, the validity of the latter is extended to the case

of multiple-coil MR acquisition systems coupled with sum-of-squares reconstruction. We have also studied the

single-coil case when the noise level is unknown, with essentially the same conclusion, although our mathematical

treatment is not fully complete in this case.

A significant part of the paper has focused on the maximum likelihood solution. In particuler, we have empirically

checked that the effect of the bias at low signal to noise ratio does not modify the previous conclusion. We have also

proposed an efficient way of computing the maximum likelihood estimator, based on a majorization-minimization

algorithm, and we have shown that it remains applicable in a wide range of situations.

Finally, let us stress that our study is devoted to an MRI problem, but its information theoretic content may

be also of interest in several engineering domains where Rician distributions also play an important role, such as

ultrasound imaging, radar signal processing, and digital communications.
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APPENDIX

A. Proof of Theorem 1

The first lower bound ΨL1(ρ) 6 Ψ is a direct consequence of the Cramér-Rao inequality [11, 12.333]

var (T ) >
1

Iη

(

∂E [T ]

∂η

)2

(38)

applied to the biased estimator T = X2. Indeed, we have ∂E [T ] /∂η = 2η since E
[

X2
]

= 2α2 + η2, and also

E
[

T 2
]

= E
[

X4
]

= 8α4 + 8α2η2 + η4, thus var (T ) = 4α4 + 4α2η2. The expected result then follows from (38).

In the same manner, the second lower bound ΨL2(ρ) 6 Ψ derives from the application of (38) to T = X . The

obtained expression is more complex, resulting from the fact that the expectation of the Rician law reads [4, 26,

28]:

E[X] =
√
2π
α

4
e−ρ/4

(

(2 + ρ)I0

(ρ

4

)

+ ρI1

(ρ

4

))

.

The calculation of ΨL2 makes use of the identities I ′0(x) = I1(x) and I ′1(x) = I0(x)− I1(x)/x.

The fact that Ψ 6 1 can be derived using the data-processing inequality [11, 14], which states that data processing

cannot increase the information content of a given dataset. On the one hand, (3) expresses the Fisher information

related to η carried by the Gaussian couple (Y1, Y2). On the other hand, the data-processing inequality yields

Iη(Y 2
1 + Y 2

2 ) 6 Iη(Y1, Y2), which allows to conclude since X =
√

Y 2
1 + Y 2

2 .

Finally, Ψ 6 ρ results from the Turán-type inequality [30, 32, 34] (which holds for all q > −1, y > 0)

I2q (y)− Iq−1(y)Iq+1(y) 6
1

q + 1
I2q (y),

applied to q = 1, i.e., I21 (y) 6 2I0(y)I2(y) for all y > 0. Given (6), the expected upper bound is readily obtained

from the fact that
∫ ∞

0

y3

ρ2
exp

(

−y
2

2ρ
− ρ

2

)

I2(y) dy = ρ.

B. Proof of Theorem 2

Let us observe that the values of ψ lie between 0 and 1, according to the inequalities [31]

0 < rq(y)− rq+1(y) <
1

y
(39)

where q > 0 and y > 0. We thus obtain that Ψ(ρ) lies also between 0 and 1, which we already known according

to Theorem 1.

The limit values (33) are immediate consequences of the bounds of Theorem 1. It remains to show that function

Ψ is increasing. To derive such a property, we will establish that

(i) the single parameter density pρ = R1(· ; ρ,
√
ρ) defines a univariate stochastically ordered family [35, 36], for

which the stochastic ordering is strict in the sense of [37].

(ii) function ψ defined by (32) is increasing.

The conclusion will then be a direct consequence of [37, Propositions A.1 and A.2].

Given two real valued random variables X , X ′, X is smaller than X ′ in the usual stochastic order if the following

inequality holds between their cumulative distributions:

P (X 6 x) > P (X ′
6 x) (40)

for all x. Moreover, X is strictly stochastically smaller than X ′ if (40) holds, and P (X 6 x∗) < P (X ′ 6 x∗) for

some x∗ [37]. In order to prove statement (i), let us first remark that the cumulative distribution of Y can be put

into the following form: P (Y 6 y) = 1−Q2

(√
ρ, y/

√
ρ
)

, where Qν(a, b) is the generalized Marcum Q-function.

Statement (i) is then easily deduced from known properties of Qν(a, b), and more specifically from the fact that
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Qν(a, b) is strictly increasing in a for all a > 0 and b, ν > 0 and strictly decreasing for all a, b > 0 and ν > 0
[38, Theorem 1(a)].

The proof of statement (ii) is less straightforward. On the one hand, according to [32, 34],

(yrq(y)− yrq+1(y))
′ = y

rq−1(y) rq+1(y)− r2q(y)

rq−1(y) rq(y)

for all q and all y > 0. On the other hand, rν(x) is a log-convex function of ν, for all ν > −1 and all x > 0 [39],

which implies the Turán type inequality

rq−1(y) rq+1(y)− r2q(y) > 0 (41)

for all q > 0 and all y > 0. The result we need is (41) for q = 0. However, according to the Gale-Klee-Rockafellar

theorem [40], the log-convexity of rν(x) also holds at ν = −1 since rν(x) is a continuous function of ν, which

allows us to conclude that (41) holds1 for q = 0 and y > 0 (which is equivalent to r1(y) > r30(y) for all y > 0,

i.e., I30 (y)I2(y) > I41 (y)). Hence, ψ(y) = y (r0(y)− r1(y)) is increasing for all y > 0.

C. Proof of Proposition 6

Let us first remark that fℓ defined by (12) also reads fℓ(ρ) = 1 +
∑

i 6=ℓ(ρi + 1) (1−ΨL1(ρi)/Ψ(ρi)) where

ΨL1 is defined by (28). Since Ψ > ΨL1 > 0, we have fℓ(ρ) > 1, so that Ψ̃ℓ(ρ) > Ψ̃(ρℓ) for all ρ. We have also

Dℓ(ρ) > 0 for all ρ, so we can deduce Ψ(ρℓ) > Ψ̃ℓ(ρ) from (11) (the inequality being strict for all ρℓ > 0 since

Ψ < 1 according to Theorem 2).

Since Ψ(ρℓ) > Ψ̃ℓ(ρ) > 0 and limρ→0Ψ(ρ) = 0, it is immediate to obtain (36). On the other hand, we have

1 > Ψ(ρℓ) > Ψ̃ℓ(ρ) > Ψ̃(ρℓ) for all ρ. In order to conclude that (37) holds, let us prove limρ→∞ Ψ̃(ρ) = 1.

According to Theorem 1, ΨL2 is a lower bound of Ψ. Moreover, an asymptotic expansion of ΨL2 for large values

of ρ gives ΨL2(ρ) = 1 − 1/2ρ + o (1/ρ) , and hence, limρ→∞(ρΨL2 − ρ + 1) = 1/2. Therefore, for any small

positive constant c and for sufficiently large values of ρ, we have

Ψ̃(ρ) = 1− 1−Ψ(ρ)

ρΨ(ρ)− ρ+ 1
> 2Ψ(ρ)− 1− c,

which allows to conclude that (37) holds by considering that the value of c can be chosen arbitrary small.

Finally, let us show that (18) implies that Ψ̃ℓ(ρ) is coordinatewise increasing, and hence that the last assertion

of Proposition 6 is true. For all j 6= ℓ, given (11), it suffices to show that fℓ(ρ) is an increasing function of ρj .
The conclusion is immediate since

∂fℓ(ρ)

∂ρj
=
ρjΨ

′(ρj)−Ψ(ρj)(1−Ψ(ρj))

Ψ2(ρj)
.

It remains to show that Ψ̃ℓ(ρ) is also an increasing function of ρℓ if (18) holds. Straightforward calculations provide

∂fℓ(ρ)

∂ρℓ
=

fℓ(ρ)

D2
ℓ (ρ)

(

fℓ(ρ)Ψ
′(ρℓ)− (1−Ψ(ρℓ))

2
)

,

which is positive for all ρ since fℓ > 1 and Ψ(ρ)(1−Ψ(ρ)) > ρ(1−Ψ(ρ))2 for all ρ > 0.

1Rigorously, we first conclude that inequality (41) holds in the wide sense for q = 0 and all y > 0. The strict inequality can then be

checked by contradiction: for some x > 0, assume that r
−1(x) r1(x) = r20(x). rν(x) would then be a linear function of ν for ν ∈ (−1, 1],

a contradiction with the strict log-convexity of rν(x) in (−1, 1].
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