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Multicomponent reactions (MCRs),
1 

eco-friendly solvents
2
 

and catalysis
3
 have been central themes in green chemistry. 

Incorporation of these principles into the formation of new C-C 

and C-X bonds paves the way towards the preparation of new 

chemicals and products in agrochemicals, pharmaceuticals and 

materials in an economical fashion. In particular, the use of 

recyclable and reusable solvents are gaining prominence for 

organic reactions.4 In this direction, we have demonstrated in our 

early studies that PEG-400 is a preferred solvent medium wherein 

the expensive metals and their complex could be recovered and 
reused effectively without loss of activity.

5
 

Since the first synthesis of “pyrrole” ring by Knorr way back 

in 1884, the preparation of pyrroles has come a long way over the 

past century.6 Several approaches viz, [3+2] cycloadditions,7  

[4+1] approach,
8
 [2+2+1] approach

9
 and intramolecular versions

10 

have been developed for the synthesis of pyrroles. These 
approaches are compiled in excellent reviews by Ferreira

11 
and 

Menendez.12 Recently, a novel three-component method for 

pyrrole synthesis has been reported by the Beller’s group using 

ruthenium catalysis, assisted by Xantphos as ligand, in a [2+2+1] 

strategy for pyrrole formation.
13

 This work combined with our 

experience in using PEG-400 as a solvent medium,5 prompted us 

to look at the recyclability of expensive Ru-catalyst in such a 

pyrrole synthesis.  

 
 

Scheme 1. Synthesis of substituted pyrroles in PEG-400 

________________________ 

*Corresponding author. Tel.: +91 40 27193210; fax: +91 40 27160512. 

E-mail address: srivaric@iict.res.in (S. Chandrasekhar). 

The results pertaining to Ru-catalyzed three-component pyrrole 

synthesis with a recyclable medium (Ru and PEG-400) are 
reported herein (Scheme 1). Furthermore, a significant advantage 

of the described method is that the expensive ligand (xantphos) is 

avoided since the PEG-400 acts as external ligand.
14

  

     In the first instance, cyclopentanone 1a, cyclohexylamine 2a 
and ethylene glycol 3 were chosen as partners in the [2+2+1] 

condensation process (Table 1, entry 1). The reaction in PEG-400 
in the presence of 1 mol% [RuCl2(p-cymene)]2 and 20 mol%  t-

BuOK catalytic system was successful and the 1,2,3-trisubstituted 
pyrrole 4a was isolated in 75% yield, after a routine work-up 

process.
5k, 15

 With this observation on hand, the reaction 
generality was studied by performing experiments with various 

substrates. Keeping cyclopentanone 1a and ethylene glycol 3 as 
the common partners, 4-methoxybenzylamine 2b (Table 1, entry 

2) and n-butyl amine 2c (Table 1, entry 3) as variable amine 

counterparts, the pyrroles 4b, 4c were obtained in decent yields. 

To understand the patterns for aryl ketones, phenylethylketone 1b 
and ethylene glycol 3 as common partners were treated with 

benzyl amine 2d, 4-methoxy aniline 2e, (R)-(+)-1-(1-

naphthyl)ethyl amine 2f, cyclohexylamine 2a, n-butyl amine 2c to 

give the trisubstituted pyrroles 4d-h respectively in satisfactory 
yields (Table 1, entries 4-8). In addition, other ketones such as 

acetophenone 1c with benzyl amine 2d and cyclopropylamine 2g 

gave disubstituted pyrroles 4i and 4j respectively in acceptable 

yields (Table 1, entries 9 and 10). The cyclohexanone 1d 

provided bicyclic fused pyrroles 4k-n with (S)-phenylethylamine 
2h, butylamine 2c, benzylamine 2d, aniline 2i consistently well 

(Table 1, entries 11-14). Another ketone, �-tetralone 1e was 
attempted with butylamine 2c, 4-chlorobenzylamine 2j, 

benzylamine 2d, cyclopropylamine 2g providing angular tricyclic 

pyrroles 4o-r respectively in the 75-85% yield range (Table 1, 

entries 15-18). For direct comparision of present method with 
Beller’s protocol, the experiments were performed with 2-

phenylethylamine (2k) as one of the partners (Table 1, entries 19 

and 20). The observations reveal that the yields obtained with the 
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 2
new system are marginally lower, however offers an additional 

advantage that the external ligand is not required. 

Table 1:  Ruthenium-catalyzed synthesis of substituted pyrroles 
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      Further, the efficacy of the developed method by recycle and 

reuse
12

  of expensive ruthenium catalyst, has been demonstrated. 

Towards this, entry 13 (Table 1) has been chosen as 

representative example. Thus, 1d and 2d were condensed with 

ethylene glycol 3 in the presence of t-BuOK for over five times 

using the same PEG-400 and ruthenium catalyst with good yields 

without significant loss of catalytic activity (Table 2). Also, the 

cross over experiments performed with three different ketones 

(Table 3) demonstrated that the products could be completely 

extracted from PEG and no detectable contaminations were 

observed. However, due the aqueous work-up process, 20 mol% 

t-BuOK has to be added after each run. Here also, an addition of 

0.2 mol% [RuCl2(p-cymene)]2 allowed us to improve the yields in 

next runs. 

Table 2: Recyclability of catalyst in PEG-400 
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3
Table 3: Recyclability of catalyst and solvent in crossover 

experiments 

 

Based on these findings, it may be inferred that the [2+2+1] 

condensation for pyrrole synthesis proceeds smoothly in PEG, 

even in the absence of any added ligand, via imine formation 

between ketone and amine, followed by dehydrogenation of 

ethylene glycol to an in situ generated dialdehyde for further 

condensation to form pyrrole.
11

 

    Disappointingly, the substituted vicinal diols viz, 2,3-

butanediol, 1,2-diphenylethane-1,2-diol, cyclohexane-1,2-diol and 

2-phenylethane-1,2-diol did not participate in the pyrrole 

synthesis. However, �-hydroxyacetone 5 when subjected to the 

coupling protocol with ketones 1d or 1e and n-butylamine 

(Scheme 2) provided the pyrroles 4s and 4t in moderate yields.   

 

 

Scheme 2. Synthesis of �-methyl substituted pyrroles in PEG-400. 
 

      These results endorse that the developed methodology follows 

the major principles of green chemistry wherein catalyst and 

solvent are recyclable. This MCR is well tolerated in PEG-400, 

with H2 and H2O as byproducts, and additionally the molecules 

obtained, especially the tricyclic pyrroles, are potentially useful in 

bioorganic and medicinal chemistry. 

In conclusion, we have successfully synthesized substituted 

pyrroles using readily accessible ketones, amines and ethylene 

glycol using [Ru(p-cymene)Cl2]2 as catalyst and potassium tert-

butoxide as base in PEG-400 without using any extra ligand.  In 

the process, the catalyst along with PEG solvent was recycled up 

to five times with the same ketone, as well as with different 

ketones. 
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