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The Canonical Polyadic tensor decomposition (CPD), also known as Candecomp/Parafac, is very useful in numerous scientific disciplines. Structured CPDs, i.e. with Toeplitz, circulant, or Hankel factor matrices, are often encountered in signal processing applications. As subsequently pointed out, specialized algorithms were recently proposed for estimating the deterministic parameters of structured CP decompositions. A closed-form expression of the Cramér-Rao bound (CRB) is derived, related to the problem of estimating CPD parameters, when the observed tensor is corrupted with an additive circular i.i.d. Gaussian noise. This CRB is provided for arbitrary tensor rank and sizes. Finally, the proposed CRB expression is used to asses the statistical efficiency of the existing algorithms by means of simulation results in the cases of third-order tensors having three circulant factors on one hand, and an Hankel factor on the other hand.

INTRODUCTION

An increasing number of signal processing applications deal with multidimensional data like polarimetric STAP [START_REF] Boizard | A new tool for multidimensional low-rank STAP filter: Cross HOSVDs[END_REF], multidimensional harmonic retrieval [START_REF] Haardt | Higher-order SVDbased subspace estimation to improve the parameter estimation accuracy in multidimensionnal harmonic retrieval problems[END_REF][START_REF] Boyer | Multidimentional harmonic retrieval: Exact, asymptotic and modified Cramér-Rao bounds[END_REF][START_REF] Boyer | Deterministic asymptotic cramér-rao bound for the multidimensional harmonic model[END_REF] or tensor coding [START_REF] Favier | Tensor space time (TST) coding for MIMO wireless communication systems[END_REF]. Multilinear algebra [START_REF] Landsberg | Tensors: Geometry and Applications[END_REF] provides a good framework to exploit these data [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF][START_REF] Haardt | Higher-order SVDbased subspace estimation to improve the parameter estimation accuracy in multidimensionnal harmonic retrieval problems[END_REF] by conserving the multidimensional structure of the information. Nevertheless, generalizing matrix-based algorithms to the multilinear algebra framework is not a trivial task. In particular, there exist several multilinear extensions of the Singular Value Decomposition (SVD), each enjoying only some properties of the matrix SVD.

The Canonical Polyadic decomposition (CPD), also sometimes referred to as Candecomp/Parafac and defined in Section 1.2, may be seen as one possible extension of the Singular Value Decomposition (SVD) to the multilinear case; see [START_REF] Comon | Tensors: a brief introduction[END_REF] and references therein. It decomposes a tensor into a sum of R rank-one tensors, which can also be written as matrix factors. In addition, unlike SVD, it is essentially unique under mild conditions. Therefore, it is naturally well suited for the analysis of data sets constituted by observations of a function of multiple discrete indices, as encountered in signal processing [START_REF] Sidiropoulos | Blind PARAFAC receivers for DS-CDMA systems[END_REF][START_REF] Fernandes | Blind channel identification algorithms based on the Parafac decomposition of cumulant tensors: the single and multiuser cases[END_REF][START_REF] Favier | Nonlinear system modeling and identification using Volterra-PARAFAC models[END_REF], data mining [START_REF] Bader | Discussion tracking in enron email using PARAFAC[END_REF] and biomedical engineering [START_REF] Acar | Multiway analysis of epilepsy tensors[END_REF] ; see [START_REF] Comon | Tensors: a brief introduction[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF] for other examples.

The factors entering the CPD are usually not assumed to be structured and all their elements have to be estimated. However, practical problems are encountered where the factor matrices have a structure [START_REF] Nion | A block component model based blind DS-CDMA receiver[END_REF][START_REF] Kibangou | Non iterative solution for Parafac with a Toeplitz factor[END_REF][START_REF] De Almeida | Parafacbased unified tensor modeling for wireless communication systems with application to blind multiuser equalization[END_REF] such as Toeplitz, circulant, Hankel or Vandermonde. In order to fill this gap, several algorithms have been proposed, including non iterative [START_REF] Kibangou | Non iterative solution for Parafac with a Toeplitz factor[END_REF][START_REF] Comon | Decomposing tensors with structured matrix factors reduces to rank-1 approximations[END_REF] or iterative, e.g. exploiting a circulant structure [START_REF] Goulart | An algebraic solution for the Candecomp/Parafac decomposition with circulant factors[END_REF].

It seems interesting to evaluate this kind of algorithms in the presence of Gaussian white noise by comparing them to their Cramér-Rao Bound [START_REF] Kay | Fundamentals Of Statistical Signal Processing: Estimation Theory[END_REF]. The CPD Cramér-Rao bound has been derived for unstructured factor matrices [START_REF] Liu | Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays[END_REF], and for specific applications in antenna array processing [START_REF] Sahnoun | Tensor polyadic decomposition for antenna array processing[END_REF]. Yet, the presence of structure in factor matrices not only reduces the number of indeterminacies, but also the number of parameters to estimate. The calculation of the CRB hence needs additional tools, and specific algorithms can be used for estimating the parameters.

In this paper, we derive the CRB for tensor CP decomposition with both structured (Hankel, Toeplitz and Toeplitz circulant) and unstructured factors. First, a model corresponding to this configuration is introduced. The identifiability conditions of this model are quoted. Two algorithms dedicated to the CP computation with structured factors are presented. Then, the CRB is derived, and especially a closed-form expression is proposed. Finally, some numerical simulations, which show the validity of our formula, are presented.

Notations

We assume the following notation throughout the paper: scalars are denoted by lowercase letters, e.g. θi or aij, vectors by lowercase boldface, e.g. θ or aj, matrices by boldface capitals, e.g. B or A (n) , and higher order arrays by calligraphic letters, e.g. X. We use the superscripts T for transposition, † for pseudo-inverse, and denote the Kronecker and Khatri-Rao products, respectively, and ⊗ stands for the (tensor) outer product. For our purpose, a tensor X of order N will be assimilated to its array of coordinates, which is indexed by N indices. Its entries will be denoted by xi 1 ,...,i N .

CP decomposition

Let X be a tensor of order N . Its Canonical Polyadic (CP) decomposition is defined by:

X = R r=1 a (1) r ⊗ a (2) r ⊗ . . . ⊗ a (N ) r (1) 
where a

(n) r is the r th column of A (n) ∈ R In×R . The minimal value of R such that X can be written as in [START_REF] Boizard | A new tool for multidimensional low-rank STAP filter: Cross HOSVDs[END_REF] is called the rank of X. The CP decomposition may be seen as one possible extension of the Singular Value Decomposition (SVD) of matrices; see [START_REF] Comon | Tensors: a brief introduction[END_REF] and references therein.

ANALYTICAL OXCRB FOR CP MODEL WITH

(UN)STRUCTURED FACTORS

Alternative expression for the CP decomposition with (un)structured factors

We consider a third-order tensor1 Y ∈ R I 1 ×I 2 ×I 3 , following model (1) up to an additional noise tensor N with circular i.i.d. Gaussian entries of variance σ 2 :

Y = X + N. (2) 
The factor matrices of X are denoted

A (n) = [a (n) 1 , . . . , a (n) R ] ∈ R In×R , 1 ≤ n ≤ N = 3.
The aim of this section is to derive the CRB of this model when some factors are structured. Throughout the rest of the paper, the equivalent vector model will be considered:

y = vec(Y) = vec(X) + vec(N) = x(θ) + n, (3) 
where

x(θ) = R r=1 a (1) r a (2) r a (3) 
r . A model corresponding to this case is proposed in the following proposition. Lemma 2.1 Let X ∈ R I 1 ×I 2 ×I 3 be a third-order tensor, and x = vec(X). The matrices A (1) , A (2) and A (3) are assumed to be unknown and some of them may be structured (Hankel, Toeplitz or Toeplitz circulant). Also denote by θ the vector containing the parameters of interest, which can be written as:

θ T = θ T 1 , θ T 2 , θ T 3 , (4) 
with θn ∈ R Un , where Un is the number of free parameters describing matrix A (n) (which depends on the structure of the matrix, see table 1). Because the matrices we consider (unstructured, Hankel, Toeplitz or Toeplitz circulant) form a linear space, it is always possible to write each column a

(n) r of A (n) , as follows:

a (n) r = S (n) r θn, (5) 
where S

(n) r ∈ R In×Un depends on the structure of A (n) (see Table 1).

Then it is possible to rewrite x(θ) as follows

x(θ) = R r=1 S (1) r S (2) r S (3) r Φ (θ1 θ2 θ3) f (θ)
.

Note that the above Lemma means that any CP model can be rewritten as a linear model with respect to f (θ). This compact expression allows to considerably simplify the derivation of the presented MSE lower bound.

Identifiability

Even when the CP decomposition is unique, in the sense that there is a unique R-uplet of rank-1 tensors satisfying (1), there generally exist infinitely many ways of writing a rank-1 tensor as an outer product of vectors. In fact, there generally exist N p=1 Ip -1 scaling indeterminacies, each represented by a R ×R diagonal matrix. It turns out that these indeterminacies can be partly fixed by the structure of factor matrices. For instance, since the structures we are interested in are not preserved by post-multiplication by invertible matrices, one 

Hankel

In + R -1 0 In×(r-1) Ψn(:, 1 :

Un -r + 1) with Ψn = I In 0 In ×(Un -In) Toeplitz In + R -1 0 In ×(r-1) Λ In 0 In ×(R-r)
where Λ In is the In × In matrix with ones on its anti-diagonal and zeros elsewhere.

Circulant

In

-1 Π r-1 n = 0 1 I In -1 0 r-1
can impose one entry in each factor matrix A (n) to be equal to one [START_REF] Comon | Decomposing tensors with structured matrix factors reduces to rank-1 approximations[END_REF]. And because of the structure, this fixes other entries as well.

If Pn denotes the number of known elements in A (n) , the vector of unknown parameters is now denoted θ ∈ R Ũ1 + Ũ2 + Ũ3 , where Ũ1 = U1 -P1, Ũ2 = U2 -P2 and Ũ3 = U3 -P3. It can be related to the vector θ, which contains all model parameters thanks to a selection matrix

B ∈ R ( Ũ1 + Ũ2 + Ũ3) ×(U 1 +U 2 +U 3 ) : θ = Bθ. ( 6 
)
Local identifiability of the parameter θ is ensured if the Jacobian of the corresponding log-likelihood is full rank, or equivalently, if the Fisher information matrix is invertible. In this respect, Cramér-Rao bounds indicate how far we are from the identifiability limit.

Remark. Since the order in which rank-1 terms are added in (1) does not matter, the columns of factor matrices A (n) can be affected by a common permutation. This indeterminacy is not part of the model identifiability. On the other hand, it must be taken into account in computer experiments to access performances.

CP computation with structured factor matrices

Non iterative algorithm

In this section, we briefly describe how to compute the CP decomposition in a non iterative manner when one factor matrix, say A (3) , is structured, and when R is not too large, the upper bound being given by [START_REF] Comon | Decomposing tensors with structured matrix factors reduces to rank-1 approximations[END_REF]:

I3R ≥ R 2 + U3 -1.
By unfolding tensor X properly into a I3 × I1I2 matrix X3, we have the well known relation

X3 = A (3) (A (2) A (1)
) T . On the other hand, relating this to its SVD X3 = UΣV H leads to two equations, in which matrix N is unknown invertible:

N -1 ΣV H = (A (2) A (1)
) T and UN = A (3) .

The point is that the second equation can be solved for both N and A (3) if matrix A (3) is structured. In fact, since A (3) is linearly structured, it can be written as

A (3) = E1 + U 3 =2 γ E , where {E } U 3
=1 is a given basis. Then, it suffices to solve the linear system of I3R equations in R 2 + U3 -1 unknowns:

M vec(N) γ = -vec(E1)
where M = [-IR U, vec(E2), . . . vec(EU 3 )], and γ denotes the vector of dimension U3 -1 whose entries are γ . Once N and γ have been obtained, the first equation allows to compute matrices A (1) and A (2) via R successive rank-1 matrix approximations. To see this, let F = (N -1 ΣV H ) T . Matrix F is now known, and F = A (2) A (1) . This means that if we unfold each column fr of F, we should have a rank-one matrix:

Unvec(fr) = a (2) r a (1)T r
In other words, the R columns of matrices A (1) and A (2) can be obtained by R successive rank-one matrix approximations. The algorithm hence terminates within a finite number of steps.

Iterative CALS algorithm

Now, when all factor matrices are structured, the previous algorithm cannot be executed, and we must resort to an iterative procedure. Let us consider circulant matrix factors A (n) ∈ R In×R defined as

A (n) = θn Πnθn . . . Π R-1 n θn , (7) 
where θn ∈ R In is its generating vector, Πn is the In × In permutation matrix defined in the last row of Table 1, and

S (n) r = Π r-1
n . A circulant-constrained ALS (CALS) algorithm was derived in [START_REF] Goulart | An algebraic solution for the Candecomp/Parafac decomposition with circulant factors[END_REF] by considering a particular basis {E 

m of R In as generating vector of E (n) m . Defining E (n) = vec E (n) 1 . . . vec E (n) In ∈ R RIn×In , the CALS algorithm is summarized below. Inputs: X ∈ R I 1 ×I 2 ×I 3 , rank R and initial generating vectors θ (0) 1 , θ (0) 2 , θ (0) 
3 . Outputs: Circulant In×R complex matrix factors A (1) , A (2) , A (3) . Recursion until convergence:

θ (i) 1 = 1 R E (1) T (IR X1) vec A (3) i-1 A (2) i-1 T † θ (i) 2 = 1 R E (2) T (IR X2) vec A (3) i-1 A (1) i T † θ (i) 3 = 1 R E (3) T (IR X3) vec A (2) i A (1) i T †
where Xi, i ∈ {1, 2, 3}, denotes the mode-i matrix unfolding of X , and the estimate A

(n) i of A (n) at iteration i is formed in replacing θn by θ (i)
n in [START_REF] Sidiropoulos | Parallel factor analysis in sensor array processing[END_REF].

Closed-form expression of the CRB

In this section, we derive the deterministic CRB for the vectorized model given in (3) for the parameters of interest given in (4). We follow the ideas introduced in [START_REF] Scharf | Geometry of the Cramér-Rao bound[END_REF]. Let C(θ) be the CRB matrix, the global Mean Square Error of any (locally) unbiased estimator, θ(y), admits the following lower bound [START_REF] Kay | Fundamentals Of Statistical Signal Processing: Estimation Theory[END_REF]:

E θ -θ(y) 2 ≥ Tr(C(θ)) = 3 n=1 Un k=1 CRB(θn(k)) (8)
where CRB(θn(k)) is given by the diagonal terms of matrix C(θ). Using the assumptions on the noise probability density function (pdf) and Lemma 2.1, the observation vector pdf is also Gaussian according to y ∼ N (Φf (θ), σ 2 I). According to the Slepian-Bangs formula (see [START_REF] Stoica | Spectral Analysis of Signals[END_REF], equation B.3.3), the CRB matrix can be given with respect to the Jacobian matrix of x(θ) = Φf (θ) according to

C(θ) = σ 2 J(θ) T J(θ) -1 (9) 
where

J(θ) = [J1(θ) J2(θ) J3(θ)] , (10) 
with Jn(θ) contains the derivative of x(θ) with respect to θn(k).

More precisely, we obtain

J1(θ) = Φ (IU 1 θ2 θ3) , (11) 
J2(θ) = Φ (θ1 IU 2 θ3) , (12) 
J3(θ) = Φ (θ1 θ2 IU 3 ) . (13) 
To provide against a singular CRB matrix [START_REF] Ben-Haim | On the constrained Cramér-Rao bound with a singular Fisher information matrix[END_REF], we have to take into account the indentifiability conditions introduced in section 2.2. In the next Lemma, we present some relation of the Jacobian with respect to selection and permutation matrices. 

k θ = [ θn(k) θn(1) . . . θn(k - 1) θn(k + 1) . . . θn( Ũn) θT n θT n ] T with 1 ≤ n = n = n ≤ 3. (n) 

The relation between the Jacobian considered for vector

Π (n) k θ and θ is given by J Π (n) k Bθ = J θ Π (n) k T ( 14 
)
where J θ = J(θ)B T .

Proof. The proof is straightforward. It is clear that B and Π (n) k will remove and permute the columns of J similarly to the elements of θ. 

where the CRB for the k th element of vector θn is given by

CRB( θn(k)) = σ 2 P ⊥ G k,n g k,n 2 , ( 16 
)
where

P ⊥ G k,n = II 1 I 2 I 3 -G k,n G † k,n with J Π (n) k Bθ = g k,n G k,n (17) 
the partitioned Jacobian matrix.

Proof. The crux of the proof relies on the use of the permutation matrix Π (n) k . First note that using the invariance of the trace operator to any permutations, the trace of C( θ) is equal to the trace of the permuted matrix Π

(n) k T C( θ)Π (n)
k . Now, using expression (9) for vector θ, we have

Π (n) k T C( θ)Π (n) k = σ 2 Π (n) k T J( θ) T J( θ) -1 Π (n) k (18) = σ 2 J( θ)Π (n) k T J( θ)Π (n) k -1 ( 19 
) (a) = σ 2 J Π (n) k Bθ T J Π (n) k Bθ -1 (20) 
= C(Π

(n) k Bθ) (21) 
where to obtain equality (a) we use Lemma 2.2. Finally, using the partition of the Jacobian (see [START_REF] De Almeida | Parafacbased unified tensor modeling for wireless communication systems with application to blind multiuser equalization[END_REF]) in expression [START_REF] Kay | Fundamentals Of Statistical Signal Processing: Estimation Theory[END_REF], we obtain

CRB( θn(k)) = C(Π (n) k Bθ) 11 (22) = σ 2 g k,n 2 g T k,n G k,n G T k,n g k,n G T k,n G k,n -1 11 . ( 23 
)
So, the CRB for θn(k) given in ( 16) is obtained by using the inverse of the block-matrix ( 23) with respect to its (1, 1)-th element. Using ( 18)-( 23 

Three Toeplitz circulant matrices

In this case, the three matrices A (1) , A (2) and A (3) are Toeplitz circulant. All the dimensions are equal to 5. In order to ensure identifiability, the following parameters are assumed to be known: θ1(1) = θ2(1) = 1. The results are presented in Figure 1, and show the validity of our formula since the CRB and the MSE match perfectly for low noise variance. For the lowest values, there is a gap, which is normal since the CRB is only valid for low noise variance.

One Hankel matrix and two unstructured matrices

In this case, the matrix A (3) is Hankel structured and the matrices A (1) and A (2) have no structure. The parameters are: I3 = 10, I2 = 11, I1 = 12 and R = 3. In order to ensure identifiability, the first element of θ3 is assumed to be known and equal to θ3(1) = 1 (that is, the main anti diagonal of the Hankel matrix is formed of ones), and all elements of the first line of A (1) are equal to one, without restricting the generality. The results are presented in Figure 2. They show the validity of our formula since the CRB and the MSE match perfectly for high values of 1 σ 2 . 

CONCLUSION

In this paper, we derived a closed-form CRB expression for the estimation of structured (Hankel, Toeplitz or Toeplitz circulant) or unstructured factors involved in the CP decomposition of arbitrary rank and sizes. The derived bound is useful as a touchstone against which the efficiency of the iterative and non-iterative algorithms dedicated to the estimation of structured factors in the CP model. This work has set the basis for several developments. A more general model, taking into account random amplitudes in the CP decomposition would allow to derive an Hybrid CRB and to consider other applications like parameter estimation of Wiener-Hammerstein models from their associated Volterra kernels [START_REF] Goulart | An algebraic solution for the Candecomp/Parafac decomposition with circulant factors[END_REF] and blind channel identification using output cumulant tensors [START_REF] Fernandes | Blind channel identification algorithms based on the Parafac decomposition of cumulant tensors: the single and multiuser cases[END_REF].

  In m=1 for the subspace of circulant In × R matrices, with the canonical basis vector e (n)
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  ), we conclude that Tr C( θ) = Tr C(Π (k)). (24) 3. NUMERICAL SIMULATIONS In order to illustrate our theoretical results, we compute the CRB for two cases: (i) three factors are Toeplitz circulant and (ii) one factor is Hankel and two factors are unstructured. More precisely, for the two cases the CRB is compared to the associated global MSE given by the algorithms presented in Section 2.3. The global MSE are computed thanks to Monte-Carlo simulations with Nrea = 1000 realizations for several values of σ 2 .
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 152 Fig. 1. Global MSE and oxCRB versus 1 σ 2 for three Toeplitz circulant matrices, I1 = I2 = I3 = R = 5
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 1 Characteristics of the matrix A (n) for several structures.

	Un	S (n)
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Unstructured

RIn 0 In×In(r-1) I In 0 In ×In (R-r)

In this paper, we will only consider the real case. All the results presented in this work can easily be extended to the complex case.
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