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ABSTRACT

The Canonical Polyadic tensor decomposition (CPD), also known
as Candecomp/Parafac, is very useful in numerous scientific disci-
plines. Structured CPDs, i.e. with Toeplitz, circulant, or Hankel fac-
tor matrices, are often encountered in signal processing applications.
As subsequently pointed out, specialized algorithms were recently
proposed for estimating the deterministic parameters of structured
CP decompositions. A closed-form expression of the Cramér-Rao
bound (CRB) is derived, related to the problem of estimating CPD
parameters, when the observed tensor is corrupted with an additive
circular i.i.d. Gaussian noise. This CRB is provided for arbitrary ten-
sor rank and sizes. Finally, the proposed CRB expression is used to
asses the statistical efficiency of the existing algorithms by means of
simulation results in the cases of third-order tensors having three cir-
culant factors on one hand, and an Hankel factor on the other hand.

Index Terms— Multilinear Algebra, Tensor Decomposition,
Performance Analysis, Cramér-Rao bound, Structured matrix

1. INTRODUCTION

An increasing number of signal processing applications deal with
multidimensional data like polarimetric STAP [1], multidimensional
harmonic retrieval [2, 3, 4] or tensor coding [5]. Multilinear alge-
bra [6] provides a good framework to exploit these data [7, 2] by
conserving the multidimensional structure of the information. Nev-
ertheless, generalizing matrix-based algorithms to the multilinear al-
gebra framework is not a trivial task. In particular, there exist several
multilinear extensions of the Singular Value Decomposition (SVD),
each enjoying only some properties of the matrix SVD.

The Canonical Polyadic decomposition (CPD), also sometimes
referred to as Candecomp/Parafac and defined in Section 1.2, may be
seen as one possible extension of the Singular Value Decomposition
(SVD) to the multilinear case; see [8] and references therein. It de-
composes a tensor into a sum of R rank-one tensors, which can also
be written as matrix factors. In addition, unlike SVD, it is essentially
unique under mild conditions. Therefore, it is naturally well suited
for the analysis of data sets constituted by observations of a func-
tion of multiple discrete indices, as encountered in signal processing
[9, 10, 11], data mining [12] and biomedical engineering [13] ; see
[8, 14] for other examples.

The factors entering the CPD are usually not assumed to be
structured and all their elements have to be estimated. However,
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practical problems are encountered where the factor matrices have a
structure [15, 16, 17] such as Toeplitz, circulant, Hankel or Vander-
monde. In order to fill this gap, several algorithms have been pro-
posed, including non iterative [16, 18] or iterative, e.g. exploiting a
circulant structure [19].

It seems interesting to evaluate this kind of algorithms in the
presence of Gaussian white noise by comparing them to their
Cramér-Rao Bound [20]. The CPD Cramér-Rao bound has been
derived for unstructured factor matrices [21], and for specific ap-
plications in antenna array processing [22]. Yet, the presence of
structure in factor matrices not only reduces the number of inde-
terminacies, but also the number of parameters to estimate. The
calculation of the CRB hence needs additional tools, and specific
algorithms can be used for estimating the parameters.

In this paper, we derive the CRB for tensor CP decomposition
with both structured (Hankel, Toeplitz and Toeplitz circulant) and
unstructured factors. First, a model corresponding to this configu-
ration is introduced. The identifiability conditions of this model are
quoted. Two algorithms dedicated to the CP computation with struc-
tured factors are presented. Then, the CRB is derived, and especially
a closed-form expression is proposed. Finally, some numerical sim-
ulations, which show the validity of our formula, are presented.

1.1. Notations

We assume the following notation throughout the paper: scalars are
denoted by lowercase letters, e.g. θi or aij , vectors by lowercase
boldface, e.g. θ or aj , matrices by boldface capitals, e.g. B or
A(n), and higher order arrays by calligraphic letters, e.g. X. We use
the superscripts T for transposition, † for pseudo-inverse, � and �
denote the Kronecker and Khatri-Rao products, respectively, and ⊗
stands for the (tensor) outer product. For our purpose, a tensor X
of order N will be assimilated to its array of coordinates, which is
indexed by N indices. Its entries will be denoted by xi1,...,iN .

1.2. CP decomposition

Let X be a tensor of order N . Its Canonical Polyadic (CP) decom-
position is defined by:

X =
R∑
r=1

a(1)
r ⊗ a(2)

r ⊗ . . .⊗ a(N)
r (1)

where a
(n)
r is the rth column of A(n) ∈ RIn×R. The minimal value

of R such that X can be written as in (1) is called the rank of X.
The CP decomposition may be seen as one possible extension of
the Singular Value Decomposition (SVD) of matrices; see [8] and
references therein.



2. ANALYTICAL OXCRB FOR CP MODEL WITH
(UN)STRUCTURED FACTORS

2.1. Alternative expression for the CP decomposition with
(un)structured factors

We consider a third-order tensor1 Y ∈ RI1×I2×I3 , following model
(1) up to an additional noise tensor N with circular i.i.d. Gaussian
entries of variance σ2:

Y = X+N. (2)

The factor matrices of X are denoted A(n) = [a
(n)
1 , . . . ,a

(n)
R ] ∈

RIn×R, 1 ≤ n ≤ N = 3. The aim of this section is to derive the
CRB of this model when some factors are structured. Throughout
the rest of the paper, the equivalent vector model will be considered:

y = vec(Y) = vec(X) + vec(N) = x(θ) + n, (3)

where x(θ) =
∑R
r=1 a

(1)
r � a

(2)
r � a

(3)
r . A model corresponding to

this case is proposed in the following proposition.

Lemma 2.1 Let X ∈ RI1×I2×I3 be a third-order tensor, and x =
vec(X). The matrices A(1), A(2) and A(3) are assumed to be un-
known and some of them may be structured (Hankel, Toeplitz or
Toeplitz circulant). Also denote by θ the vector containing the pa-
rameters of interest, which can be written as:

θT =
[
θT1 ,θ

T
2 ,θ

T
3

]
, (4)

with θn ∈ RUn , where Un is the number of free parameters de-
scribing matrix A(n) (which depends on the structure of the matrix,
see table 1). Because the matrices we consider (unstructured, Han-
kel, Toeplitz or Toeplitz circulant) form a linear space, it is always
possible to write each column a

(n)
r of A(n), as follows:

a(n)
r = S(n)

r θn, (5)

where S
(n)
r ∈ RIn×Un depends on the structure of A(n) (see Table

1).
Then it is possible to rewrite x(θ) as follows

x(θ) =

(
R∑
r=1

S(1)
r � S(2)

r � S(3)
r

)
︸ ︷︷ ︸

Φ

(θ1 � θ2 � θ3)︸ ︷︷ ︸
f(θ)

.

Note that the above Lemma means that any CP model can be
rewritten as a linear model with respect to f(θ). This compact ex-
pression allows to considerably simplify the derivation of the pre-
sented MSE lower bound.

2.2. Identifiability

Even when the CP decomposition is unique, in the sense that there is
a unique R-uplet of rank-1 tensors satisfying (1), there generally ex-
ist infinitely many ways of writing a rank-1 tensor as an outer prod-
uct of vectors. In fact, there generally exist

∑N
p=1 Ip − 1 scaling in-

determinacies, each represented by aR×R diagonal matrix. It turns
out that these indeterminacies can be partly fixed by the structure of
factor matrices. For instance, since the structures we are interested in
are not preserved by post-multiplication by invertible matrices, one

1In this paper, we will only consider the real case. All the results pre-
sented in this work can easily be extended to the complex case.

Table 1. Characteristics of the matrix A(n) for several structures.

Un S(n)
r

Unstructured RIn
[
0In×In(r−1) IIn 0In×In(R−r)

]
Hankel In +R− 1

[
0In×(r−1) Ψn(:, 1 : Un − r + 1)

]
with Ψn =

[
IIn 0In×(Un−In)

]
Toeplitz In +R− 1

[
0In×(r−1) ΛIn 0In×(R−r)

]
where ΛIn is the In × In matrix with

ones on its anti-diagonal and zeros
elsewhere.

Circulant In − 1 Πr−1
n =

[
0 1

IIn−1 0

]r−1

can impose one entry in each factor matrix A(n) to be equal to one
[18]. And because of the structure, this fixes other entries as well.

If Pn denotes the number of known elements in A(n), the vector
of unknown parameters is now denoted θ̃ ∈ RŨ1+Ũ2+Ũ3 , where
Ũ1 = U1 − P1, Ũ2 = U2 − P2 and Ũ3 = U3 − P3. It can be
related to the vector θ, which contains all model parameters thanks
to a selection matrix B ∈ R(Ũ1+Ũ2+Ũ3)×(U1+U2+U3):

θ̃ = Bθ. (6)

Local identifiability of the parameter θ̃ is ensured if the Jacobian
of the corresponding log-likelihood is full rank, or equivalently, if the
Fisher information matrix is invertible. In this respect, Cramér-Rao
bounds indicate how far we are from the identifiability limit.

Remark. Since the order in which rank-1 terms are added in
(1) does not matter, the columns of factor matrices A(n) can be af-
fected by a common permutation. This indeterminacy is not part of
the model identifiability. On the other hand, it must be taken into
account in computer experiments to access performances.

2.3. CP computation with structured factor matrices

2.3.1. Non iterative algorithm

In this section, we briefly describe how to compute the CP decompo-
sition in a non iterative manner when one factor matrix, say A(3), is
structured, and whenR is not too large, the upper bound being given
by [18]:

I3R ≥ R2 + U3 − 1.

By unfolding tensor X properly into a I3×I1I2 matrix X3, we have
the well known relation X3 = A(3)(A(2) �A(1))T . On the other
hand, relating this to its SVD X3 = UΣVH leads to two equations,
in which matrix N is unknown invertible:

N−1ΣVH = (A(2) �A(1))T and UN = A(3).

The point is that the second equation can be solved for both N and
A(3) if matrix A(3) is structured. In fact, since A(3) is linearly
structured, it can be written as A(3) = E1 +

∑U3
`=2 γ`E`, where

{E`}U3
`=1 is a given basis. Then, it suffices to solve the linear system

of I3R equations in R2 + U3 − 1 unknowns:

M

[
vec(N)

γ

]
= −vec(E1)

where M = [−IR � U, vec(E2), . . . vec(EU3)], and γ denotes
the vector of dimension U3 − 1 whose entries are γ`. Once N and
γ have been obtained, the first equation allows to compute matrices
A(1) and A(2) via R successive rank-1 matrix approximations. To



see this, let F = (N−1ΣVH)T . Matrix F is now known, and F =

A(2)�A(1). This means that if we unfold each column fr of F, we
should have a rank-one matrix:

Unvec(fr) = a(2)
r a(1)T

r

In other words, the R columns of matrices A(1) and A(2) can be
obtained by R successive rank-one matrix approximations. The al-
gorithm hence terminates within a finite number of steps.

2.3.2. Iterative CALS algorithm

Now, when all factor matrices are structured, the previous algorithm
cannot be executed, and we must resort to an iterative procedure. Let
us consider circulant matrix factors A(n) ∈ RIn×R defined as

A(n) =
[
θn Πnθn . . . ΠR−1

n θn
]
, (7)

where θn ∈ RIn is its generating vector, Πn is the In × In per-
mutation matrix defined in the last row of Table 1, and S

(n)
r =

Πr−1
n . A circulant-constrained ALS (CALS) algorithm was de-

rived in [19] by considering a particular basis {E(n)
m }Inm=1 for the

subspace of circulant In × R matrices, with the canonical ba-
sis vector e

(n)
m of RIn as generating vector of E

(n)
m . Defining

E(n) =
[
vec
(
E

(n)
1

)
. . . vec

(
E

(n)
In

)]
∈ RRIn×In , the CALS

algorithm is summarized below.

Inputs: X ∈ RI1×I2×I3 , rank R and initial generating vectors
θ
(0)
1 ,θ

(0)
2 ,θ

(0)
3 .

Outputs: Circulant In×R complex matrix factors A(1),A(2),A(3).
Recursion until convergence:

θ
(i)
1 =

1

R
E(1)T (IR � X1) vec

{[(
A

(3)
i−1 �A

(2)
i−1

)T ]†}

θ
(i)
2 =

1

R
E(2)T (IR � X2) vec

{[(
A

(3)
i−1 �A

(1)
i

)T ]†}

θ
(i)
3 =

1

R
E(3)T (IR � X3) vec

{[(
A

(2)
i �A

(1)
i

)T ]†}

where Xi, i ∈ {1, 2, 3}, denotes the mode-i matrix unfolding of X ,
and the estimate A

(n)
i of A(n) at iteration i is formed in replacing

θn by θ
(i)
n in (7).

2.4. Closed-form expression of the CRB

In this section, we derive the deterministic CRB for the vectorized
model given in (3) for the parameters of interest given in (4). We
follow the ideas introduced in [23]. Let C(θ) be the CRB matrix,
the global Mean Square Error of any (locally) unbiased estimator,
θ̂(y), admits the following lower bound [20]:

E
∥∥∥θ − θ̂(y)

∥∥∥2 ≥ Tr(C(θ)) =
3∑

n=1

Un∑
k=1

CRB(θn(k)) (8)

where CRB(θn(k)) is given by the diagonal terms of matrix C(θ).
Using the assumptions on the noise probability density function
(pdf) and Lemma 2.1, the observation vector pdf is also Gaussian
according to y ∼ N (Φf(θ), σ2I). According to the Slepian-Bangs

formula (see [24], equation B.3.3), the CRB matrix can be given
with respect to the Jacobian matrix of x(θ) = Φf(θ) according to

C(θ) = σ2
(
J(θ)TJ(θ)

)−1

(9)

where
J(θ) = [J1(θ) J2(θ) J3(θ)] , (10)

with Jn(θ) contains the derivative of x(θ) with respect to θn(k).
More precisely, we obtain

J1(θ) = Φ (IU1 � θ2 � θ3) , (11)
J2(θ) = Φ (θ1 � IU2 � θ3) , (12)
J3(θ) = Φ (θ1 � θ2 � IU3) . (13)

To provide against a singular CRB matrix [25], we have to take
into account the indentifiability conditions introduced in section 2.2.
In the next Lemma, we present some relation of the Jacobian with
respect to selection and permutation matrices.

Lemma 2.2 Let θ̃ =
[
θ̃
T

1 θ̃
T

2 θ̃
T

3

]T
be the vector of unknown

model parameters, B the associated selection matrix and Π
(n)
k ∈

R(Ũ1+Ũ2+Ũ3)×(Ũ1+Ũ2+Ũ3) the permutation matrix which moves
the kth element of θ̃n such as Π

(n)
k θ̃ = [θ̃n(k)θ̃n(1) . . . θ̃n(k −

1)θ̃n(k + 1) . . . θ̃n(Ũn) θ̃
T

n′ θ̃
T

n′′ ]
T with 1 ≤ n 6= n′ 6= n′′ ≤ 3.

The relation between the Jacobian considered for vector Π
(n)
k θ̃

and θ is given by

J
(
Π

(n)
k Bθ

)
= J

(
θ̃
)

Π
(n)
k

T
(14)

where J
(
θ̃
)
= J(θ)BT .

Proof. The proof is straightforward. It is clear that B and Π
(n)
k

will remove and permute the columns of J similarly to the elements
of θ.

Proposition 2.1 The closed-form expression of the lower bound on
the global MSE is given by

E
∥∥∥θ̃ − ˆ̃θ(y)

∥∥∥2 ≥ 3∑
n=1

Ũn∑
k=1

CRB(θ̃n(k)) (15)

where the CRB for the kth element of vector θ̃n is given by

CRB(θ̃n(k)) =
σ2

‖P⊥Gk,n
gk,n‖2

, (16)

where P⊥Gk,n
= II1I2I3 −Gk,nG†k,n with

J
(
Π

(n)
k Bθ

)
=
[
gk,n Gk,n

]
(17)

the partitioned Jacobian matrix.

Proof. The crux of the proof relies on the use of the permutation
matrix Π

(n)
k . First note that using the invariance of the trace operator

to any permutations, the trace of C(θ̃) is equal to the trace of the



permuted matrix Π
(n)
k

T
C(θ̃)Π

(n)
k . Now, using expression (9) for

vector θ̃, we have

Π
(n)
k

T
C(θ̃)Π

(n)
k = σ2Π

(n)
k

T
(
J(θ̃)TJ(θ̃)

)−1

Π
(n)
k (18)

= σ2

((
J(θ̃)Π

(n)
k

)T (
J(θ̃)Π

(n)
k

))−1

(19)

(a)
= σ2

(
J
(
Π

(n)
k Bθ

)T
J
(
Π

(n)
k Bθ

))−1

(20)

= C(Π
(n)
k Bθ) (21)

where to obtain equality (a) we use Lemma 2.2. Finally, using the
partition of the Jacobian (see (17)) in expression (20), we obtain

CRB(θ̃n(k)) =
[
C(Π

(n)
k Bθ)

]
11

(22)

= σ2

[[
‖gk,n‖2 gTk,nGk,n

GT
k,ngk,n GT

k,nGk,n

]−1
]
11

.(23)

So, the CRB for θ̃n(k) given in (16) is obtained by using the
inverse of the block-matrix (23) with respect to its (1, 1)-th element.
Using (18)-(23), we conclude that

Tr
(
C(θ̃)

)
= Tr

(
C(Π

(n)
k Bθ)

)
=

3∑
n=1

Ũn∑
k=1

CRB(θ̃n(k)). (24)

3. NUMERICAL SIMULATIONS

In order to illustrate our theoretical results, we compute the CRB
for two cases: (i) three factors are Toeplitz circulant and (ii) one
factor is Hankel and two factors are unstructured. More precisely,
for the two cases the CRB is compared to the associated global MSE
given by the algorithms presented in Section 2.3. The global MSE
are computed thanks to Monte-Carlo simulations withNrea = 1000
realizations for several values of σ2.

3.1. Three Toeplitz circulant matrices

In this case, the three matrices A(1), A(2) and A(3) are Toeplitz
circulant. All the dimensions are equal to 5. In order to ensure
identifiability, the following parameters are assumed to be known:
θ1(1) = θ2(1) = 1. The results are presented in Figure 1, and
show the validity of our formula since the CRB and the MSE match
perfectly for low noise variance. For the lowest values, there is a gap,
which is normal since the CRB is only valid for low noise variance.

3.2. One Hankel matrix and two unstructured matrices

In this case, the matrix A(3) is Hankel structured and the matrices
A(1) and A(2) have no structure. The parameters are: I3 = 10,
I2 = 11, I1 = 12 and R = 3. In order to ensure identifiability, the
first element of θ3 is assumed to be known and equal to θ3(1) = 1
(that is, the main anti diagonal of the Hankel matrix is formed of
ones), and all elements of the first line of A(1) are equal to one,
without restricting the generality. The results are presented in Figure
2. They show the validity of our formula since the CRB and the MSE
match perfectly for high values of 1

σ2 .

Fig. 1. Global MSE and oxCRB versus 1
σ2 for three Toeplitz circu-

lant matrices, I1 = I2 = I3 = R = 5

Fig. 2. Global MSE and oxCRB versus 1
σ2 for one Hankel matrix

and two unstructured matrices.

4. CONCLUSION

In this paper, we derived a closed-form CRB expression for the es-
timation of structured (Hankel, Toeplitz or Toeplitz circulant) or un-
structured factors involved in the CP decomposition of arbitrary rank
and sizes. The derived bound is useful as a touchstone against which
the efficiency of the iterative and non-iterative algorithms dedicated
to the estimation of structured factors in the CP model. This work
has set the basis for several developments. A more general model,
taking into account random amplitudes in the CP decomposition
would allow to derive an Hybrid CRB and to consider other appli-
cations like parameter estimation of Wiener-Hammerstein models
from their associated Volterra kernels [19] and blind channel identi-
fication using output cumulant tensors [10].
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