
HAL Id: hal-01072533
https://hal.science/hal-01072533v1

Submitted on 8 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Probabilistic CP-nets from Observations of
Optimal Items

Damien Bigot, Jérôme Mengin, Bruno Zanuttini

To cite this version:
Damien Bigot, Jérôme Mengin, Bruno Zanuttini. Learning Probabilistic CP-nets from Observations
of Optimal Items. 7th Starting AI Researcher Symposium (STAIRS 2014), Aug 2014, Prague, Czech
Republic. pp.81-90, �10.3233/978-1-61499-421-3-81�. �hal-01072533�

https://hal.science/hal-01072533v1
https://hal.archives-ouvertes.fr

Learning Probabilistic CP-nets from Observations
of Optimal Items

Bigot Damien 1
and Mengin Jéróme 2

and Zanuttini Bruno3

Abstract. Modelling preferences has been an active re-
search topic in Artificial Intelligence for more than fifteen
years. Existing formalisms are rich and flexible enough to de-
scribe the behaviour of complex decision rules. However, for
being interesting in practice, these formalisms must also per-
mit fast elicitation of a user’s preferences, involving a reason-
able amount of interaction only. Therefore, it is interesting
to learn not a single model, but a probabilistic model that
can compactly represent the preferences of a group of users
– this model can then be finely tuned to fit one particular
user. Even in contexts where a user is not anonymous, her
preferences are usually ill-known, because they can depend
on the value of non controllable state variable. In such con-
texts, we would like to be able to answer questions like “What
is the probability that o is preferred to o′ by some (unknown)
agent?”, or “Which item is most likely to be the preferred
one, given some constraints?”

We study in this paper how Probabilistic Conditional Pref-
erence networks can be learnt, both in off-line and on-line
settings. We suppose that we have a list of items which, it is
assumed, are or have been optimal for some user or in some
context. Such a list can be, for instance, a list of items that
have been sold. We prove that such information is sufficient
to learn a partial order over the set of possible items, when
these have a combinatorial structure.

1 Introduction

The development of recommender systems and other interac-
tive systems for supporting decision-making has highlighted
the need for models capable of using a user’s preferences to
guide her choices. Modelling preferences has been an active
research topic in Artificial Intelligence for more than fifteen
years. In recent years, several formalisms have been proposed
that are rich enough to describe in a compact way complex
preferences of a user over combinatorial domains. When the
user’s preferences are qualitative, and have a “simple” struc-
ture, conditional preference networks (CP-nets, [6]) and their
variants [5, 7] are popular representation frameworks. In par-
ticular, CP-nets come with efficient algorithms for finding
most preferred items (item optimisation problem).

1 Institut de Recherche en Informatique de Toulouse, France, email:
dbigot@irit.fr

2 Institut de Recherche en Informatique de Toulouse, France, email:
mengin@irit.fr

3 GREYC,Université de Caen Basse-Normandie, France, email:
zanuttini@grec.fr

Existing formalisms are rich and flexible enough to describe
the behaviour of complex decision rules. However, for be-
ing interesting in practice, these formalisms must also permit
fast elicitation of a user’s preferences, involving a reasonable
amount of interaction only. Anonymous recommendation sys-
tems, preference-based search [18], or configuration of combi-
natorial products in business-to-customer problems [16] are
good examples of decision problems in which the user’s pref-
erences are not known a priori. In such applications, a single
interaction with the user must typically last at most 0.25 s,
and the whole session must typically last at most 20 minutes,
even if the item to be recommended to the user is searched
for in a combinatorial set.

Recently there have been several interesting proposals for
learning preferences, many of them presented in [12]. The
approaches range from learning numerical ranking functions
[13, 19, 1] to learning qualitative, structured preference rules
[14, 11, 15, 2]. These works assume that a set of rankings or
pairwise comparisons is given or elicitated, in order to build
one model that generalises these rankings or comparisons.

However, in several settings, it is interesting to learn not
a single model, but a probabilistic model that can compactly
represent the preferences of a group of users – this model
can then be finely tuned to fit one particular user. Even in
contexts where a user is not anonymous, her preferences are
usually ill-known, because they can depend on the value of
non controllable state variable. In such contexts, we would
like to be able to answer questions like “What is the proba-
bility that o is preferred to o′ by some (unknown) agent?”,
or “Which item is most likely to be the preferred one, given
some constraints?”

Probabilistic Conditional Preference networks (or PCP-nets
for short) [10, 9] enable to compactly represent a probabil-
ity distribution over some partial orderings and answer such
queries. Specifcially, a PCP-net specifies a probability distri-
bution over a family of CP-nets. There is a close connection
between CP-nets and Bayesian networks: [8] proves that the
problem of finding the most probably optimal item is similar
to an optimisation problem in a Bayesian network. However, a
CP-net encodes a probability distribution over partial orders,
not just on a list of items.

We study in this paper how PCP-nets (PCP nets) can be
learnt, both in off-line and on-line settings. Appart from the
probabilistic approach, one difference with the works men-
tionned above is that we do not assume that we have, or
elicitate, a set of rankings or pairwise comparisons. Instead,
we suppose that we have a list of items which, it is assumed,

are or have been optimal for some user or in some context.
Such a list can be, for instance, a list of items that have been
sold. We prove that such information is sufficient to learn a
partial order over the set of possible items, when these have
a combinatorial structure.

The elicitation of probabilistic CP-nets is evoked by [17].
However, the authors did not give a precise semantics to their
CP-nets.

The next section sums up the main properties of CP-nets
and PCP-nets. We then describe how it is possible to learn
PCP-nets, off-line and on-line. Finally, we show the results of
some experiments that simulate an on-line learning setting.

2 Background on probabilistic
CP-nets

CP-nets We consider combinatorial objects defined over
a set of n variables V. Variables are denoted by uppercase
letters A,B,X,Y, In this paper, we suppose that variables
are Boolean; we consistently write x and x for the two values
in the domain X of X.

For a set of variables U⊆V , U denotes the Cartesian prod-
uct of their domains. Elements of V are called items, denoted
by o,o′, Elements of U for some U⊆V are denoted by
u,u′, Given two sets of variables U,V ⊆V and v∈V , we
write v[U] for the restriction of v to the variables in U ∩ V .

Preferences are encoded in CP-nets using rules of the form
X,u :>, where X∈V, u is an instanciation of variables in a set
U⊆V that does not contain X, and > is a total strict order
over the domain of X: either x>x or x>x. Informally, the
rule X,u :x>x can be read:“Whenever u is the case, then x is
preferred to x, ceteris paribus (all other things being equal)”.

A ruleX,u :>, with u∈U , indicates that the preference over
the values of X depends on the values of the variables in U .
Associated to every CP-net is a directed graph G over V: there
is an edge (Y,X) whenever the preference over the values of
X depends on the values of Y ; G is called the structure of the
CP-net. We write pa(X) for the set of variables on which the
order over X depends, called the parents of X: pa(X)={Y ∈
V |(Y,X)∈G}. It is generally assumed that a CP net contains
a rule (X,u :>) for every X∈V and every u∈pa(X); the set of
the rules that order the domain of X is called the conditional

preference table, or CPT, for X. When X is clear from the
context, we write u :> instead of (X,u :>)

A CP-net specifies a partial ordering≻ over the set of items:
≻ is the transitive closure of the set of the pairs of items
(o,o′) such that there is a rule (X,u :>) with o[X]>o′[X] and
o[U]=o′[U] and o[Y]=o′[Y] for every Y /∈U ∪ {X}. When
needed, we will distinguish the partial ordering associated
with a particular CP-net N using a subscript: ≻N .

CP-nets are most interesting when there is no cyclic pref-
erential dependency between the variables, that is, when the
graph G does not contain any (directed) cycle. In this case,
[6] proved that the relation ≻ is a (partial) strict order.

Example 1 An example of an acyclic CP-net over 4 binary

variables A,B,C,D is:

A

a>a

B

a :b>b

a :b>b

C

ab :c>c
other :c>c

D

c :d>d

c :d>d

The rule ab :c>c implies that abcd≻abcd and abcd≻abcd. We

also have that abcd≻abcd because of the rule c :d>d, thus, by
transitivity, abcd≻abcd.

Optimization can be done in time linear in the size of an
acyclic CP-net: choose an ordering X1, . . . ,Xn of the vari-
ables in V that is compatible with the dependency graph (if
Xi∈pa(Xj) then i<j), and assign in turn to everyXj its most
preferred value, given the values that have already been cho-
sen for its parents. The resulting item is the unique optimal
(undominated) item of the ordering specified by the CP-net.
For instance, the order represented by the CP-net above has
exactly one optimal / most preferred / non dominated item,
which is abcd.

The forward sweep procedure above can also be used to
find an item that is optimal among those that verify a given
conjunction of constraints of the form Yk=yk – one only has to
find, for each Xi, the optimal admissible value given the value
of its parents. For instance, the most optimal item, among
those that have b as value for B, is abcd. Conversely, if we
know the structure of a CP-net and the optimal item o, then
we can immediately induce some of the rules of the CP-net:
for every X∈V, the CP-net contains the rule (X,o[pa(X)] :
o[X]>o[X]).

Note that the dominance problem, that is deciding, given a
CP-net and two items o and o′, if o≻o′, is an NP-hard prob-
lem, even for acyclic CP-nets. Yet, a weaker ordering query

can be answered in time linear in the number of variables
as follows: given an acyclic CP-net and two items o and o′,
choose again an ordering X1, . . . ,Xn that is compatible with
G, and consider the variables in turn while o[Xi]=o′[Xi]; let
now i be the first i such that o[Xi] 6=o′[Xi]: if o[Xi]>o′[Xi]
(resp. o[Xi]<o′[Xi]) given the values of the parents of Xi in
o and o′, then o′ 6≻o (resp. o 6≻o′).

Probabilistic CP-nets Uncertainty about the ordering
over the items can be represented by associating probabili-
ties to a given preference structure G [10, 9]: for each pair
(X,u), with X∈V and u∈pa(U) a probability distribution is
defined over the set of possible orderings over X; in the case of
boolean variables, this distribution is entirely defined by the
probability that the ordering is x>x. In the sequel, we write
p(X,u :x>x) for this probability. A probabilistic CP-net, or
PCP-net for short, is entirely defined by its structure G and
the probabilities p(X,u :x>x).

Example 2 A probabilistic CP-net with the same structure

as the CP-net of Example 1:

A

a>a,0.3

B

a :b>b,0.1

a :b>b,1

C

ab :c>c,0.5
other :c>c,0.4

D

c :d>d,0.7

c :d>d,0.3

Suppose that a PCP-net is given, with structure G. Assum-
ing that the orderings over the domains of the variables are
probabilistically independent from one another, the probabil-
ity that a given CP-net N , with the same structure G, occurs,
can be defined as:

P (N)=
∏

(X,u)

p(X,u :>N
X,u)

where the product is taken over all variables X∈V and as-
signments u∈pa(X), and where >N

X,u denotes the ordering
over X that occurs in N when u is the case.

So, a PCP-net N is not intended to represent a preference
relation. Rather, it represents a probability distribution over
a set of (deterministic) CP-nets, namely, those which have the
same structure as N : we say that they are compatible with the
PCP-net. We will write N∝N to indicate that the CP-net N
has the same structure as N .

Note that, in a PCP-net, the probabilities of the rules are
independent from one another. So, for instance, it would not
be possible to represent with a PCP-net a probability distri-
bution over CP-nets with the structure of Example 2 if the
rules over for instance B and C were dependent; if, for in-
stance, the preferred values for B and C were always b and c
together, or b and c. An important topic for further research
is to generalize the approach to allow for such dependencies.

Given a PCP-net N , which represents a probability dis-
tribution on a set of deterministic CP-nets, reasoning tasks
consist in computing probabilities associated with interesting
events.

Probabilistic optimization Let, for any item o, “opt=o”
denote the set of compatible CP-nets that have o as unique
optimal item. Then P (opt=o) is, by definition, the sum of
the probabilities P (N) of the CP-nets N that are compatible
with N and such that o is optimal for N .

Interestingly, considering acyclic CP-nets, we mentioned
earlier that an item o is optimal in N if and only if for every
variable X, N contains the rule o[pa(X)] :o[X]>o[X], there-
fore

P (opt=o)=
∏

X∈V

p(X,o[pa(X)] :o[X]>o[X]).

This formula indicates that the probabilities of optimality can
be encoded in a Bayesian Network associated to N [9]: let us
note BN(N) this network, it structure is the same oriented
graph as that of N , and, for every binary variable X and
assignement u∈pa(X), the conditional probability table for
X contains p(x |u)=p(X,u :x>x). (For non binary variables,
p(x |u) would be the sum of the probabilities of the local or-
derings that have x at the top.) For instance, the probabilities
of optimality of the PCP-net of Example 2 are encoded in the
following Bayesian network:

A

p(a)=0.3

B

p(b |a)=0.1
p(b |a)=1

C

p(c |ab)=0.5
p(c |other)=0.4

D

p(d |c)=0.7
p(d |c)=0.3

In particular, computing the item that has the highest prob-
ability of being optimal is a #P-hard problem; [10] show how
to compute it in linear time in the case where G is a tree,
using a bottom-up procedure.

Also, we can express the probability that a given value x
for one variable X∈V appears in the optimal item as follows:

P (opt[X]=x)=
∑

u∈pa(U)

p(X,u :x>x)× P (opt[U]=u)

where opt[U]=u denotes the event that the optimal item has
values u for the variables in U . More generally, the probability

that a partial assignment is optimal in terms of the probabil-
ities of the rules of the PCP-net is:

P (opt[U]=u)
=∑

a∈asc(U)

a[U]=u

∏

Y ∈asc(U)

p(Y,a[pa(Y)] :a[Y]>a[Y]) (1)

where asc(U) denotes the set of ascendants of the variables
in U , including U . (More precisely, asc(U) is the smallest set
that contains U and all the parents of each of its elements.)
This equation does not give a practical mean of computing
P (opt[U]=u) unless the number of parents and the height of
the PCP-nets are bounded, since the size of asc(U) is expo-
nential in the size of asc(U).

Probability of dominance Let, for any two items o,o′,
“o≻o′” denote the set of compatible CP-nets N such that
o≻N o′. Then P (o≻o′) is, by definition, the sum of the prob-
abilities P (N) of the CP-nets N that are compatible with N
and such that o≻N o′. [10] show that computing this probabil-
ity is #P-complete, even when considering acyclic PCP-nets
or polytrees.

3 Learning a PCP-net from
probabilities of optimality

In many settings, like a recommender system, the system can
record a list of items that can be assumed to have been opti-
mal for some user at some point. It can be, for instance, a list
of sold / rented items. Let L denote this list. Assuming that
the users’ preferences correspond to some PCP-net N , the
frequencies of the items in this list correspond to the proba-
bilities of optimality of items in the corresponding Bayesian
network. This suggests that this PCP-net can be induced from
this list of sold items.

3.1 Off-line learning

Learning the parameters Let us assume that we know
the structure of the hidden PCP-net, and that we want to
estimate the probabilities in the tables. When the variables
are binary, these probabilities are exactly the probabilities
that appear in the tables of the Bayesian network that encodes
the probabilities of optimality.

In particular, observing the probabilities of optimality can
be sufficient to estimate the probabilities of the rules: for any
binary variable X∈V, for every u∈pa(X), we have:

p(X,u :x>x)=P (opt[X]=x |opt[U]=u)
∼|{o∈L,o[UX]=ux}|/|{o∈L,o[U]=u}|

when {o∈L,o[U]=u} is not empty, that is, when P (opt[U]=
u) 6=0 in the hidden PCP-net.

More generally, we can use methods that have been used
for Bayesian networks to learn these probabilities.

If P (opt[U]=u)=0, we may still be able to estimate p(X,u :
x>x) from the probabilities of sub-optimal items, if we have a
list of items that have been chosen by some users under some
constraint, for instance a list of items sold during a period of
a time where some options were not available. Assuming that

the preferences of the user remain the same, the only effect
of such constraint is to restrict the domain of some variables,
but does not change the probabilities of other variables for the
remaining combinations of values of the parents. Let LV =v be
a list of items optimal under the constraint V =v for some V ⊆
asc(U) and v∈V such that v(U)=u(V), and let “optV =v[U]=
u” denote the event that the item that is optimal among those
that have values v for the variables in V , has values u for the
variables in U , then

p(X,u :x>x)=P (optV =v[X]=x |optV =v[U]=u)
∼|{o∈LV =v,o[UX]=ux}|/|{o∈LV =v,o[U]=u}|

For instance, consider a PCP-net that has the same struc-
ture as the PCP-net of Example 2. The probability of the rule
D,c :d>d can be estimated as follows:

1. if P (opt[C]=c) 6=0:

p(D,c :d>d)∼|{o∈L,o[CD]=cd}|/|{o∈L,o[C]=c}|;

2. if P (opt[C]=c)=0, which is the case for instance if
p(a>a)=p(b>b)=1 and p(ab :c>c)=0:

p(D,c :d>d) ∼|{o∈LC=c,o[D]=d}|/|LC=c|;

3. or, still if P (opt[C]=c)=0, but p(ab :c>c) 6=0:

p(D,c :d>d)
∼|{o∈LA=a,o[CD]=cd}|/|{o∈LA=a,o[C]=c}|;

Eq. 2 and 3 above give two different ways of computing
p(D,c :d>d) when the probability of having C=c in a optimal
item is zero, corresponding to two different observations: 2.
corresponds to the observation of optimal items when C=c is
forced, and 3. to the observation of optimal items when A=a
is forced.

Learning the structure Here again, methods used to
learn Bayesian networks can be used. A major hurdle, how-
ever, is that several PCP-nets with different structures may
give rise to the same probabilities of optimality: this is linked
to the fact that the preferential dependencies encoded in PCP-
net are oriented, whereas, in a Bayesian network, probabilistic
dependencies are symetric. Consider for instance the Bayesian
network that encodes the probabilities of optimality for the
PCP-net of Example 2: it also encodes the probabilities of op-
timality of the PCP below, obtained from that of Example 2
by reversing the edge between A and B.

A

b :a>a,0.041

b :a>a,1

B

b>b,0.73

C

ab :c>c,0.5
other :c>c,0.4

D

c :d>d,0.7

c :d>d,0.3

Therefore, methods for learning Bayesian networks will not
completely identify a hidden PCP-net. However, quite a lot of
information is obtained in this way. If a topological ordering of
the otherwise unknown PCP-net is known, then the correct
direction of each edge can be inferred, and the parameters
of the hidden PCP net can be computed from the Bayesian
network. Observe that there are natural situations in which
such a general, total order might be known in advance. In
particular, it is the case of interactive configuration, if the

order of the variables to be configured is fixed (the system
asks to choose a value for X1, then one for X2, etc.), then
one can assume that the preferences will be expressed wrt
this order, or at least, it makes sense to approximate these
preferences on this order.

Otherwise, the correct direction of the edges can be elicited,
as described in the next section.

3.2 On-line learning

Structure elicitation Assuming that a Bayesian network
encoding the probabilities of optimality has been computed,
in an active learning setting some queries can lead to a quick
identification of the correct orientation of the edges of the
PCP-net. Assume for instance that the Bayesian network has
an edge between variables X and Y : either the preferences
over the domain of X depend on the value of Y , or the other
way round (but not both, since we assume an acyclic PCP
net). In order to find out, one can submit to users the queries
x :y?y and x :y?y, if the frequencies of the two possible an-
swers to these queries converge to a common value over time,
then y is preferentially independent of X. Otherwise, the pref-
erences over the values of Y depend on the value of X, and
X must be preferentially independent of Y .

Parameters update Finally, assume that a system has a
current PCP net (maybe learnt from a list of past optimal
items), and can now observe some users and their optimal
items: it may be sensible to update the parameters (probabil-
ities) of the PCP net according to what is being observed.

For instance, if the current PCP net corresponds to a group
of past users, and a new user connects to the system, her pref-
erences may not be exactly that of the group, and we may
want to modify the parameters of the PCP net so that it fits
better the preferences of this particular user. Or it may be
the case that the PCP net represents probabilities of prefer-
ences at a given time, or in a given location, and that these
probabilities need to be updated in a new context.

Since the probabilities that we want to update directly cor-
respond to probabilities of some items being optimal, the ob-
servations made by the system must be about optimality. Ev-
ery time our system is presented with an optimal item o, it will
update its parameters, that is, the probabilities of its current
PCP-net N as follows:

For every observed optimal item o do:
for every X∈V do:

1. let u=o[pa(U)];

2. let Xo=1 if o[X]=x, 0 otherwise;

3. p(X,u :x>x) += ηt(Xo − p(X,u :x>x)).

Note that we only update the probabilities of some of the
rules (step 1.): the rules that make the given item optimal.
The update rule is common in such a stochastic learning set-
ting (see e.g. [3]). The parameter ηt is the learning rate, it may
vary over time, generally decrease in order to ensure conver-
gence: convergence is guaranteed if

∑
t
ηt=∞ and

∑
t
η2
t <∞.

In our experiments we took ηt=1/k(t,X,u) where k(t,X,u) is
the number of times the rule corresponding to (X,u) has been
updated so far (making the learning rate a function of the pair
(X,u)). In this case, at any time, p(X,u :x>x) is just the fre-

0 100 200

10−1

10−0.5
15 vars.
10 vars.
5 vars.

First protocol:
Sum of squared diff. of param.

0 500 1,000

10−2

10−1

Second protocol:
Sum of squared diff. of param.

0 500 1,000

10−2

100

102

Second protocol – KL divergence

Figure 1. Plots showing the evolution, as the number of observations of optimal outcomes grows (x-axis), of a measure of the distance
between the target PCP-net and the learnt one (y-axis)

quency with which optimal items o with o[U]=u and o[X]=x
have been encountered so far.

4 Experiments

We ran some experiments to evaluate the update rule that we
proposed for an on-line learning setting. We assume a given
acyclic structure over a given set of n variables. We have some
hidden PCP-netN ∗ with this structure, and start from an ini-
tial PCP-net with the same structure, where the probabilities
of all rules are 1/2. At each step, we update some rules of the
current PCP-net N .

We observed how the distance between the target PCP-net
N ∗ and the current one N evolved. As measures of distances
we used:

• the sum of the squared differences of the parameters

d2(N ,N ∗)=
∑

(X,u)

(pN (X,u :x>x)− pN∗(X,u :x>x))2;

• the Kullback-Leibler divergence, or relative entropy, of the
two probability distributions of optimality defined by N
and N ∗:

dKL(N‖N ∗)
=∑

o∈V

log(PN (opt=o)/PN∗(opt=o))×PN (opt=o).

In fact, we computed an estimate of this distance by sam-
pling the set of items, assuming a uniform distribution.

We have experimented with two protocols to generate op-
timal items at each time step.

First protocol The idea is to simulate an interactive set-
ting, in which, for some pair of items o1 and o2, we observe
for a while which is most frequently optimal, and update our
current PCP-net if it does not give the same result. More pre-
cisely, for each new period we generate two items as follows:
we generate two CP-nets N1 and N2 according to the distri-
bution defined by our current hypothesis N (this is achieved
by choosing, for each combination (X,u), the rule X,u :x>x
according to the current probability p(X,u :x>x); let o1 and
o2 be the respective optimal items of N1 and N2. Generat-
ing the two items in this manner will favor rules that are

more probable so far. We can compute the probabilities that
o1 and o2 are optimal according to our current PCP-net N :
let pi=PN (opt=oi). We then “observe” which of o1 and o2 is
most frequently optimal according to the hidden PCP-netN ∗:
in fact, we compute p∗i =PN∗(opt=oi). Eventually, if p1>p2
whereas p∗2>p∗1, we update N so as to increase the probability
that o2 is optimal: we use the update algorithm above with
o=o2.

Second protocol Here we just simulate the update of our
PCP-net after each newly observed chosen item, assuming
that it is optimal for some user: we increase the probabilities
of the rules that make this item optimal. Therefore, at each
time step, we generate a “user” / PCP-net N according to the
target distribution represented by the target PCP-net N ∗,
compute its optimal item o, and run the update algorithm
with o.

Results We have run 500 trials with random target PCP-
nets with 5, 10 and 15 variables. For each trial, we generated
a target PCP-net, ran our experimental protocol and learn-
ing algorithm, and measured the distance between the learnt
PCP-net and the target one, every 10 observations of an op-
timal item. The plots in figure 1 depict the evolution of this
distance: each point is an average over the 500 trials for each
number of variables.

As can be noticed, a good approximation of the target PCP-
net is reached after around 70 observations.

5 Conclusion

We have described in this paper how it is possible to learn
a probabilistic representation of the preferences of a group
of users over a combinatorial domain, or how we can fine-
tune such preferences to fit more precisely one particular user.
Since CP-nets in general are good at finding most preferred
items, our learning method supposes that the learner can be
presented with a list of past most preferred items: we showed
how a probabilistic CP-net can be learnt from such informa-
tion.

REFERENCES

[1] D. Bigot, H. Fargier, J. Mengin, and B. Zanuttini. Using and
learning gai-decompositions for representing ordinal rankings.

In J. Fürnkranz and E. Hüllermeyer, editors, Proc. ECAI
workshop on Preference Learning, pages 5–10, 2012.

[2] R. Booth, Y. Chevaleyre, J. Lang, J. Mengin, and C. Sombat-
theera. Learning conditionally lexicographic preference rela-
tions. In H. Coelho, R. Studer, and M. Wooldridge, editors,
Proc. Eur. Conf. on Artificial Intelligence, volume 215, pages
269–274. IOS Press, 2010.

[3] L. Bottou. Stochastic learning. In O. Bousquet, U. von
Luxburg, and G. Rätsch, editors, Advanced Lectures on Ma-
chine Learning, Machine Learning Summer Schools, volume
3176 of Lecture Notes in Computer Science, pages 146–168.
Springer, 2003.

[4] C. Boutilier, editor. Proc. 21st Int. Joint Conf. on Artificial
Intelligence, 2009.

[5] C. Boutilier, F. Bacchus, and R. I. Brafman. UCP-networks:
A directed graphical representation of conditional utilities. In
J. S. Breese and D. Koller, editors, Proc. Conf. Uncertainty in
Artificial Intelligence, pages 56–64. Morgan Kaufmann, 2001.

[6] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and
D. Poole. CP-nets: a tool for representing and reasoning with
conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21:135–191, 2004.

[7] R. I. Brafman and C. Domshlak. Introducing variable impor-
tance tradeoffs into CP-nets. In Proc 18th Conf. on Uncer-
tainty in Artificial Intelligence, pages 69–76, 2002.

[8] C. Cornelio. Dynamic and probabilistic cp-nets. Master’s
thesis, University of Padua, 2012.

[9] C. Cornelio, J. Goldsmith, N. Mattei, F. Rossi, and K. B.
Venable. Updates and uncertainty in CP-nets. In S. Crane-
field and A. C. Nayak, editors, Proc. 26th Australasian Joint
Conf. on Advances in Artificial Intelligence, volume 8272 of
LNCS, pages 301–312. Springer, 2013.

[10] D. D. Bigot, H. Fargier, J. Mengin, and B. Zanuttini. Proba-
bilistic conditional preference networks. In A. Nicholson and
P. Smyth, editors, Proc 29th Conf. on Uncertainty in Artifi-
cial Intelligence, juillet 2013.

[11] Y. Dimopoulos, L. Michael, and F. Athienitou. Ceteris
paribus preference elicitation with predictive guarantees. In
Boutilier [4].

[12] J. Fürnkranz and H. Hüllermeier, editors. Preference learn-
ing. Springer, 2011.

[13] T. Joachims. Optimizing search engines using clickthrough
data. In Proc. 8th ACM SIGKDD Conf. on Knowledge Dis-
covery and Data Mining, pages 133–142. ACM, 2002.

[14] F. Koriche and B. Zanuttini. Learning conditional preference
networks with queries. In Boutilier [4].

[15] J. Lang and J. Mengin. The complexity of learning separable
ceteris paribus preferences. In Boutilier [4], pages 848–853.

[16] D. Mailharro. A classification and constraint-based frame-
work for configuration. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 12(4):383–397, 1998.

[17] S. S. de Amo, M. Bueno, G. Alves, and N. Silva. CPrefMiner:
An algorithm for mining user contextual preferences based
on bayesian networks. In Proc. 24th Int. Conf. on Tools for
Artificial Intelligence, volume 1, pages 114–121. IEEE, 2012.

[18] P. Viappiani, B. Faltings, and P. Pu. Preference-based search
using example-critiquing with suggestions. Journal of Artifi-
cial Intelligence Research, 27:465–503, 2006.

[19] J. Xu and H. Li. Adarank: a boosting algorithm for infor-
mation retrieval. In W. Kraaij, A. P. de Vries, C. L. A.
Clarke, N. Fuhr, and N. Kando, editors, Proc. 30th ACM SI-
GIR Conf. on Information Retrieval, pages 391–398. ACM,
2007.

