Introduction

This report is an appendix of a research work which will be published soon. A fault detection, isolation and adaptation (FDIA) formalism is introduced and this report demonstrates the two rules of non isolability.

The proposed FDIA framework assumes that one system observation produces two estimates of the same quantity: G and N . These estimates are stored in FDIA memory. K observations of the system are made.

Faults aecting G i and N i cause their value to be dierent from the true one P i . The index i stands for the i th observation. The state of G i (resp. N i ) of being faulty or not is denoted by the boolean variable f G i (resp. f N i ). For instance, f G i = 1 means that a fault aects G i then G i = P i . At the K th observation, the faulty states of every estimate is summarised by e called the set of faulty states. The purpose of FDIA is to isolate (i.e. determine) e which means to ascertain the faulty state of the estimates G i and N i for every observation i ≤ K.

FDIA is based on the use of the residual vector R(e). The terms of R are the results of boolean operations between the faulty states f G i and f N i . Some sets of faulty states produce unique residuals, isolation is then possible. However, some residuals are generated by several sets of faulty states, isolation is not possible.

The aim of this report is to prove the conditions on f G i and f N i for e to be not isolable. These are stated by two rules in Proposition 1: Proposition 1. A set of faulty states is not isolable if and only if, it complies with one of the following rules:

1. f N i = 1 , ∀i ∈ {1, . . . , K} and ∃!j ∈ {1, . . . , K} such as

f G j = 0 2. f G i = 1 , ∀i ∈ {1, . . . , K}
In other words it is not possible to isolate faults if:

1. Every estimates N is faulty and there is a unique true G.

Every G is faulty.

Section 2 introduces the notations required for the demonstration. Section 3 deduces mathematical properties of the proposed formalism. According to these properties, Section 4 reformulates the problem and demonstrate the proposition. Finally Section 5 concludes the demonstration.

Notations

A set of faulty states e is dened as e

= (f G i , f N i ) 1≤i≤K ∈ {0, 1} 2K for some K 1.
Let E be the set of sets of faulty states e.

e ∈ E

(2.1)

R is the function that associates a residual to a set of faulty states. R (e) is the residual of

e. R = r G i G j , r N i N j , r GpNq 1≤i,j,p,q≤K , i =j with r G i G j = f G i ∨ f G j , ∀i, j ∈ {1, . . . , K} , i > j (2.2) r G i N j = f G i ∨ f N j , ∀i, j ∈ {1, . . . , K} (2.3) r N i N j = f N i ⊕ f N j , ∀i, j ∈ {1, . . . , K} , i > j
(2.4) where ∨ and ⊕ are boolean or and exclusive or respectively. σ K is the set of permutations of {1, . . . , K} I stands for the set of isolable sets of faulty states.

I ⊂ E
(2.5) I c is the complement of I (i.e. the set of non-isolable sets of faulty states) C l,m is the set of sets of faulty states e = (f G i , f N i ) 1≤i≤K such as there are l f

G i = 1 and m f N i = 1.
Given a set of faulty states e ∈ E and two permutations σ, σ ∈ σ K , the set of faulty states obtained by permuting variables f G i (with σ) and variables

f N i (with σ ) is denoted by σ, σ • e = (f Gσ -1 i , f N σ -1 i ) 1≤i≤K
(2.6) where σ -1 (resp. σ -1 ) stands for the inverse permutation of σ (resp. σ ).

e l,m stands for canonical form of e ∈ C l,m .

e lm = (f G i , f N i ) 1≤i≤K with        f G i = 1, . . . , 1 l , 0, . . . , 0 K-l f M i = 1, . . . , 1 m , 0, . . . , 0 K-m
(2.7) Reciprocally, if σ -1 , σ -1 • e / ∈ I, then there exists σ -1 , σ -1 • e ∈ E such as σ -1 , σ -1 • e = σ -1 , σ -1 • e and R σ -1 , σ -1 • e = R σ -1 , σ -1 • e . One can apply the same permutation (σ, σ ) to those sets of faulty states. 

C l,m C l,m , 1 ≤ l, m ≤ K is a partition of E. Let denote by Ẽ the disjoint union of C l,m where (l, m) = (K -1, K) and (l, m) = (K, K) Ẽ = 1≤l,m≤K C l,m | (l, m) = (K -1, K) and (l, m) = (K, K) (3 
σ, σ • σ -1 , σ -1 • e = σ, σ • σ -1 , σ -1 • e and R σ, σ • σ -1 , σ -1 • e = R σ, σ • σ -1 , σ -1 • e =⇒ e =

New problem statement

According to the previous developments, studying isolability of a set of faulty states is equivalent to evaluating the isolability of the canonical set of faulty states of every class. The residuals are calculated using boolean operations between f G and f N variables. As stated in Section 2, the OR operator is used for f G f G and f G f N pairs combination and Exclusive OR is used for f N f N combination. The canonical sets of faulty states of class C l,m are represented in the Tables 5.2a, 5.2b and 5.2c. For f G (resp. f N ), the l (resp. m) ones are written rst and the K -l (resp. K -m) zeros are written then. The the result of the boolean operation is written in the table which forms the residual.

These tables oer the advantage of showing clearly the consequence of the parameters l and m on the residual of a set of faulty states. It has been shown previously that the isolability of a canonical set of faulty states is the same as the class it belongs to. The isolability study of a class is made by looking at the number of zeros in the tables with respect to l and m.

4.1 If l, m < K If l < K and m < K, there is a rectangle of zeros in Table 5.2c of size n c = (K -l) • (K -m) > 0.
Assume that e ∈ E is another set of faulty states with the same residual as e l,m . Looking at Table 5.2c we see that the K -l last variables f G i and the K -m last variables N i are necessarily 0. Then, because of the two sub-tables made of 1, we see that all the others variables are 1. In other words, e = e l,m . As a consequence, we have: 5.2b is the only one which can make a dierence in the residual. Moreover, N i ⊕ N j = N i ⊕ N j ∀i = j. Thus, for all m ∈ {1, ..., K} and e = (f G i , f N i ) ∈ C l,m , replacing N i by N i doesn't change the residual of e. Hence:

C K,m ⊂ I c , ∀m ∈ {1, . . . , K} (4.2)
If m = K and for all l, the Table 5.2b is full of zeros and the Table 5.2c is full of ones. Then the most signicant table is Table 5.2a.

It must be noticed rst that, l = K and l = K -1 makes Table 5.2a be full of ones. C K,K and C K-1,K have therefore the same residual. Then:

C K,K ⊂ I c (4.3) C K-1,K ⊂ I c (4.4) Secondly, if l ≤ K -2, there are (K -l) 2 -(K -l) > 0 zeros in Table 5.2a.
Assume that e is a set of faulty states with the same residual as e l,K . For the same reasons as in the case 4.1, this implies that the l rst variables f G i are 1 and the others are 0: the variables f G i of e are the same as f G i of e l,K . Moreover, in view of Table 5.2c, we see that all the variables f N i of e are 1 or else a 0 would appear in Table 5.2a corresponding to the residual of e. So, e = e l,K and we have shown that e l,K is isolable. This is sucient to obtain the following inclusion: 

I c = C K-1,K ∪ K l=0 C K,l
(5.1)

In other words, a set of faulty states is not isolable if and only if, it complies to one of the following rules:

• N j = 1 , ∀j ∈ {1, . . . , K} and ∃!i ∈ {1, . . . , K} such as G i = 0

• G i = 1 , ∀i ∈ {1, . . . , K}

  .1) Proposition 3. If e ∈ E and σ, σ ∈ σ K then e ∈ I ⇐⇒ σ, σ • e ∈ I (3.2) Proof. e / ∈ I =⇒ ∃e = e | R (e ) = R (e). For a pair of permutations σ, σ ∈ σ K , then (σ, σ ) • e = (σ, σ ) • e and R ((σ, σ ) • e) = R ((σ, σ ) • e ) ; then (σ, σ ) • e / ∈ I.

  e and R e = R (e) =⇒ e / ∈ I If a set of faulty states e of E is isolable, then every permutation of e is isolable. More precisely, the following proposition holds : Corollary 1. For all e ∈ C l,m , e ∈ I ⇐⇒ C l,m ∈ I This is true in particular for the canonical set of faulty states e l,m of class C l,m . The canonical set of faulty states describes it entire class in terms of isolability.
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  l,m ⊂ I , ∀l, m ∈ {1, . . . , K -1} (4.1) 4.2 If l = K If l = K, Tables 5.2a and 5.2c are full of ones for all m and Table

(

  C l,K ⊂ I , ∀l ∈ {1, . . . , K -2}

3

  PropertiesProposition 2. The class C l,m contains all the permutations of the canonical set of faulty states e l,m :C l,m = {(σ, σ ) • e l,m |σ, σ ∈ σ K } Proof. The permutation σ (resp. σ ) doesn't change the number of f G i (resp. f N i ) equals to one. Thus, if e ∈ C l,m and σ, σ ∈ σ K then (σ, σ ) • e ∈ C l,m .Reciprocally, every set of faulty states e ∈ C l,m can be obtained by permuting the variables f G i and f N i and the proposition follows.

	Remark 1. E =
	1≤l,m≤K