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Abstract The Cassini Synthetic Aperture Radar has been acquiring images of Titan’s surface since
October 2004. To date, 59% of Titan’s surface has been imaged by radar, with significant regions imaged
more than once. Radar data suffer from speckle noise hindering interpretation of small-scale features and
comparison of reimaged regions for change detection. We present here a new image analysis technique
that combines a denoising algorithm with mapping and quantitative measurements that greatly enhance
the utility of the data and offers previously unattainable insights. After validating the technique, we
demonstrate the potential improvement in understanding of surface processes on Titan and defining global
mapping units, focusing on specific landforms including lakes, dunes, mountains, and fluvial features. Lake
shorelines are delineated with greater accuracy. Previously unrecognized dissection by fluvial channels
emerges beneath shallow methane cover. Dune wavelengths and interdune extents are more precisely
measured. A significant refinement in producing digital elevation models is shown. Interactions of fluvial
and aeolian processes with topographic relief is more precisely observed and understood than previously.
Benches in bathymetry are observed in northern sea Ligeia Mare. Submerged valleys show similar depth
suggesting that they are equilibrated with marine benches. These new observations suggest a liquid level
increase in the northern sea, which may be due to changes on seasonal or longer timescales.

1. Introduction

The data provided by Cassini-Huygens have been used to identify dune fields, mountains, rivers, and seas
[Elachi et al., 2005; Stofan et al., 2006]. As on Earth and ancient Mars, Titan is known to possess an active
hydrologic cycle, including lacustrine/marine, fluvial, and pluvial processes [Stofan et al., 2007; Hayes et al.,
2008; Turtle et al., 2011]. While isolated small lakes may be fed by atmospheric direct precipitation and sub-
surface flow, larger seas with associated channel networks require surface runoff and thus offer analogues
to terrestrial drainage systems.

The Cassini RADAR operates in multiple modes: (i) as an imaging SAR (Synthetic Aperture RADAR), (ii) an
altimeter, (iii) a radiometer, and (iv) a scatterometer [Elachi et al., 2005]. The imager mode (SAR) provides a
spatial sampling up to about 300 m, offering the highest spatial resolution available by Cassini. While oper-
ating in SAR mode, the RADAR imaged fluvial networks with tributaries merging and draining into lakes
and seas at high latitudes [Langhans et al., 2011; Burr et al., 2012]. While fluvial features have been observed
on SAR data with a global distribution, many of them are associated with polar lakes [Lorenz et al., 2008;
Langhans et al., 2011; Burr et al., 2012].

The Visual and Infrared Mapping Spectrometer (VIMS) data indicate the presence of specific spectral units
accumulated along the borders of some dry/empty lakes south of Ligeia Mare as well as surrounding
Ontario Lacus in the southern hemisphere [Barnes et al., 2009], suggesting that evaporation alters the base-
line lake level over time. The lake shorelines and associated drainage patterns present an opportunity to
observe and understand interactions of fluvial processes with topography on a world with active geologic
processes analogous to Earth’s.
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As of 14 October 2013, up to swath T95, 59% of Titan’s surface has been imaged by radar (including SAR
and HiSAR modes, 44.5% for SAR only), and ∼25% has been imaged more than once (∼12% excluding data
acquired in HiSAR mode). Radar images suffer from speckle noise. This results from random fluctuations
caused by coherent processing of the return signal from multiple distributed targets. This multiplicative
noise hinders interpretation of small-scale features and comparison of reimaged regions for change detec-
tion at the resolution scale [Goodman, 1976; Lee, 1986; April and Harvy, 1991; Hervet et al., 1998; Schulze and
Wu, 1995; Polzehl and Spokoiny, 2006].

We present herein a new processing technique using a nonlocal algorithm for denoising SAR images with an
appropriate multiplicative noise model, enabling mapping and quantitative analysis of the images, enhanc-
ing the utility of the data, and offering previously unattainable insights on the geology and hydrology of
Titan. The denoising technique, tests, and analysis we performed on synthetic images and Cassini RADAR
images is described in section 2. We then demonstrate the potential improvement in understanding sur-
face processes on Titan and definition of global mapping units, focusing on specific features including
dunes, mountains, and lacustrine terrain. New insights into the geology and hydrology using both SAR
and denoised SAR images are provided in section 3, emphasizing the potential of the denoising technique
in better understanding Titan’s surface. Lake shorelines are delineated with greater accuracy. Previously
unrecognized dissection by fluvial channels emerges beneath a shallow hydrocarbons cover, indicating sub-
marine channels. Dune wavelengths and interdune extents are more precisely measured. Interactions of
fluvial and aeolian processes with topographic relief is more precisely observed and understood than previ-
ously. Furthermore, substantial quantitative improvements are accomplished in computing elevations from
radargrammetry. Our enhanced DEM (digital elevation model) allows improved analysis of the topography,
with an identification of a clear shoulder in the histogram of elevations, suggesting that fluvial and/or lacus-
trine processes have affected the distribution by creating a topographic bench in the terrain. Finally, we offer
some discussion of Titan’s geology and surface processes.

2. Nonlocal Algorithm for Denoising Cassini SAR Images
2.1. Algorithm Description
As stated previously, speckle noise hinders analysis and interpretation of the Cassini SAR images. The noise
terms are properties of the surface scatter that are inherent to radar processing. Additionally, additive noise
sources are associated with the instrument itself. Instrument noise is here assumed to be negligible as com-
pared to speckle noise. Hence a well-adapted denoising pipeline is valuable. While local filters (moving
average filters), Lee filters or Frost filters lead to smoothing (i.e., resolution loss) [Lee, 1981; Frost et al., 1982],
the nonlocal means (NLM) proposed by Buades et al. [2005] efficiently reduce noise and preserve struc-
tures. Instead of combining neighboring pixels, the NLM averages pixels in a similar context. NLM assume
there are enough redundant pixels (pixels having identical noise-free value) in the image to reduce the
noise significantly. An extension of NLM for SAR images has been proposed by Deledalle et al. [2009] as
described hereafter.

Let A(x) be the observed amplitude at pixel x and R̂(x) its reflectivity. The reflectivity R̂(x) corresponds to the
expectation of the square of A(x) over different speckle realizations. The nonlocal estimate of the reflectivity
R̂(x) can be obtained using an iterative weighted maximum likelihood estimator as introduced in Polzehl and
Spokoiny [2006], leading to:

R̂t+1(x) =
∑

x′ wt+1(x, x′)A2(x′)∑
x′ wt+1(x, x′)

, (1)

where t is the iteration index, x′ is a pixel index belonging to the search window centered on x, whose size is
typically |W| = 21 × 21 [Buades et al., 2005], and w(x, x′) is a data-driven weight depending on the similarity
between pixels with index x and x′.

Pixel similarity can be evaluated by comparing surrounding neighborhoods around x and x′ with the use
of a criterion based on the joint marginal probability that two noisy regions share an identical underlying
value. This leads to the following weight estimator:

wt+1(x, x′)=exp

[
− 1

h2

∑
𝜏

log

(
A(x+𝜏)
A(x′+𝜏)

+ A(x′ + 𝜏)
A(x+𝜏)

)
− 1

T

∑
𝜏

(R̂t(x+𝜏) − R̂t(x′+𝜏))2

R̂t(x+𝜏)R̂t(x′+𝜏)

]
, (2)
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where 𝜏 is a relative displacement vector such that x + 𝜏 and x′ + 𝜏 spanned the pixels of the neighborhoods
of x and x′, respectively (i.e., these similarity windows are typically of size |Δ| = 7 × 7), and h2 and T are two
filtering parameters used to balance the trade-off between the noise reduction and the estimation fidelity.
While h2 controls the fidelity to the noisy amplitudes and hence acts on the noise reduction level, T controls
the fidelity to the preestimation R̂t obtained at the previous iteration. Discussion on relative effects of these
parameters can be found in Polzehl and Spokoiny [2006] and Deledalle et al. [2009], specific examples are
given in Text S1 in the supporting information.

SAR images are commonly considered to be corrupted by a multiplicative noise with either a Rayleigh
distribution (for amplitude images) or an exponential distribution (for intensity images) [Goodman, 1976;
Hervet et al., 1998; Schulze and Wu, 1995]. Multilook SAR images are expected to follow a gamma distribu-
tion according to Lee [1986] and April and Harvy [1991]. We consider these noise distributions in the analysis
below and demonstrate the robustness of the technique against various distributions. Although in Cassini
SAR data the number of looks varies along the swath, the current algorithm is designed for single looks [see
Deledalle et al., 2009] but efforts to quantify the effects of variable numbers of looks are discussed in Text S1.

2.2. Synthetic Tests
In order to evaluate the utility and fidelity of the denoising process, we tested various distributions of
multiplicative noise on a synthetic image. The synthetic image is a periodic signal (sine function) with an
exponential decay in amplitude in both directions, so as to obtain a varying signal to noise ratio in the
image. Three noise models were tested with exponential, Rayleigh, and gamma distributions (i.e., for the
gamma distribution, we used three as a typical value for the number of looks, unless specified).

Figure 1a illustrates our various tests and shows how the different distributions of noise affect the synthetic
image. Visual inspection reveals the denoised image resembles the original (noise-free) image in qualita-
tive appearance: structures observed in the noise-free image for the three types of noise distributions are
retrieved in the denoised image. Structures obscured by speckle noise can be retrieved with the denoising
process (i.e., the brightness contrasts and oscillations from the original noise-free image are recovered).

Quantitatively, the probability distribution function (PDF) of the noise distribution removed has the same
characteristics (mean and variance) as the noise initially introduced, without providing any prior information
on noise characteristics, for all three tested noise distributions (see Figure 1b). The noise distributions that
were removed had RMS values that were close to the RMS of the introduced distributions; the RMS values
differed by −7%, −2%, and 4%, for the exponential, Rayleigh, and gamma distributions, respectively.

Cross sections along the diagonal (Figure 1a) illustrate the accuracy of the denoising process in retrieving
the original noise-free brightness amplitude and structures. Oscillations from the noise-free image are cor-
rectly retrieved after denoising in all tested noise distributions. Specifically, when compared to the known
original image, the variance of the residual of the denoised images are 2 orders of magnitude smaller than
the noisy images. Comparable results are obtained for all three noise distributions that were tested. This
shows that without providing a prior assumption on the noise distribution, the technique is able to remove
noise and that the removed component has characteristics similar to the noise effectively present in the
signal over a wide range of noise characteristics. Figure 2 illustrates a more complex case but show similar
performances of the techniques (see also Text S1 for further tests).

2.3. Application to Cassini SAR Images
The synthetic tests guide the optimization of the choice of adaptive denoising parameters and apply the
algorithm to the Cassini Radar SAR images. Evaluated ranges for the parameters are h2 ∈ [1; 15], T ∈ [1; 15],
t ∈ [1; 4], |W| ∈ [11 × 11; 41 × 41], and |Δ| ∈ [5 × 5; 11 × 11]. We introduce a denoised data set we
call NLDSAR (Nonlocal Denoised SAR) hereafter. Figure 3 shows three regions with different morphological
characteristics (mountainous region, large sea shorelines, and dune field) from swaths T17 and T28. Our tests
show that these three regions have different characteristics, described below.

Figure 3a shows that the removed multiplicative noise in this mountainous region resembles a Rayleigh (or
gamma) distribution with an RMS of 0.933. Edges of mountains are preserved but plains appear smoother
compared to the noisy SAR image. The noise distribution in the lake area (Figure 3b) is similar to the previous
case with an RMS of 1.106. When examining the image, shorelines are better defined and easier to iden-
tify. The unimodal distribution of the backscatter values over the dune field (Figure 3c) indicates that slopes
of each of the dune faces varies gradually (in contrast to, for example, a bimodal distribution) indicating a
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Figure 1. (a) Synthetic tests of denoising image affected by multiplicative noise, respectively, with exponential, Rayleigh,
and gamma distributions. (b) Distribution functions of the synthetic exponential, Rayleigh, and gamma noises and
their removed counterparts. Cross sections along diagonal (upper left, lower right) of images of synthetic tests for
(c) exponential noise, (d) Rayleigh noise, and (e) gamma noise.

varying slope on each face of the dune. The noise distribution is different from the previous two examples
with a larger fraction of low noise values. The removed noise distribution RMS is 0.972. As dune morpho-
genesis can be investigated from statistical analysis of crest orientation, connectivity, spacing, and length
[Kocurek and Ewing, 2005], studying dune in denoised images is facilitated [Ewing et al., 2013].

Another important aspect of the NLDSAR data is the property that the distribution of the reduced noise
is insensitive to the denoising parameters selected (in equation (2)) as shown in Figure 4. When applying
the process over a full swath (e.g., swath T17) and varying all of the parameters by 200% the shape of the
distribution is only slightly affected but the distribution’s characteristics (mean and variance) remain the
same. Hence, the NLDSAR data are robust with respect to what may be subjective parameter choices.

To date, the denoising processing has been performed over 28 major segments of SAR swaths using
high-performance computing (HPC) facility at Caltech (http://hpc.caltech.edu) and mosaicked together in a
global map shown on Figure 5.

3. Geologic Interpretations Using NLDSAR

In addition to geomorphic and mapping analysis improvement, quantitative studies can benefit from
NLDSAR products. We present in this section several examples of geologic and hydrologic processes
observed at Titan’s surface for which we provide new insights enabled by the NLDSAR products.

LUCAS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2152
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Figure 2. (a) Synthetic tests of denoising image affected by multiplicative noise, respectively, with exponential, Rayleigh,
and gamma distributions. The original image is more complex than in Figure 1. (b) Distribution functions of the synthetic
exponential, Rayleigh, and gamma noises and their removed counterparts. Cross sections along diagonal (upper left,
lower right) of images of synthetic tests for (c) exponential noise, (d) Rayleigh noise, and (e) gamma noise.

3.1. Surface Patchiness
Patches of different brightness are observed in some areas in the NLDSAR data set. In order to consider the
origin of these features, we show in Figure 6 the analysis of the patchiness in a region of two overlapping
swaths sampling Tortula Facula (8◦N, 144◦W) with different observation geometries [Sotin et al., 2005]. The
western part of the overlap area presents discrete patches of different brightness. As shown, the location,
contrast, and morphology of these discrete patches are similar in both NLDSAR images.

The two swaths (T43 and T56) have been acquired in two approximately orthogonal flybys as shown on
Figure 6 (see outlines on Titan’s sphere). The denoising process is applied with the same parameters (i.e.,
h2 = 6.01, T = 0.98, |W| = 21 × 21, |Δ| = 7 × 7, and t = 3). Incidence angles are 38◦ and 19◦ for T43 and
T56, respectively. The observation geometries thus differ substantially between these two swaths, providing
a useful test case to evaluate the source of the patchiness. We expect that if the patchiness is inherent to
Titan’s surface, it would be preserved in the two images, while if it is an artificial byproduct of the technique,
it would appear to vary in the two very different geometries of observation.

In order to investigate the nature of patches, we performed several tests including synthetic data, SAR
data collected on Earth and Venus (see Text S1). We found that varying resolution may affect the appear-
ance of discreet patches. For an Earth image, reducing the spatial resolution to match that of the Cassini
SAR, the procedure tends to cluster brightness in discreet ranges to an extent that depends on the
trade-off between filter parameters (see Text S1 for detailed tests). We also found that swaths with different

LUCAS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2153
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Figure 3. Examples of denoising at different regions, respectively, (a) Mayda Insula from T28, (b) Ligeia Mare from T28,
and (c) Fensal dune field from T17. Top images show original SAR (left) and its NLDSAR counterparts (right). For each
panel, middle graph shows distributions of removed noise (red curve) and the best fitted distribution, i.e., exponential,
Rayleigh, and gamma, in dark blue, purple, and green, respectively. The bottom graphs show histograms of SAR and
NLDSAR and illustrate how the multiplicative noise affects the backscatter distribution from place to place.

observation geometries show patches with matching geometric boundaries and relative brightness to
neighboring patches (see Text S1).

This leads to the following understanding. Features that are covered by a small number of pixels may have
brightness variations that are insufficiently resolved. In this case, the denoising process results in clustering
the pixel values in artificially narrow ranges that may appear as patches. However, the boundaries of such
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Figure 4. Histograms of removed noise over the complete T17
swath obtained with 50 sets of the parameters (h2 ∈ [1; 15], T ∈
[1; 15], t ∈ [1; 4], |W| ∈ [11× 11; 41× 41], and |Δ| ∈ [5× 5; 11× 11],
see equation (2)). The derived noise distribution is not affected by
the parameters and show in this case a Rayleigh distribution.

synthetically generated patches vary with
specific realizations of the noise and hence
are not expected to align across multiple
observations at differing geometries. Note
that in all of our tests, the filtered result is at
least slightly smoother than the input. That
means there is no tendency to artificially
sharpen up smooth variations in brightness
into sharp-edged patches.

As described in Text S1, our tests show that
although patchiness on a small scale can be
introduced as an artifact in some cases, the
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Figure 5. Current state of NLDSAR processing. Summary map of denoised Titan passes including flybys from TA to T65. Symbols with number indicate the location
of examples illustrated in the manuscript in the respective figure number.

large consistent patches on Titan appear to be a property of the surface (or subsurface). The origin of the
features remains enigmatic. The persistence of patches in overlapping images acquired in varying geome-
tries, their localized appearance, as well as synthetic tests, all support, but do not prove, a geologic origin
of patches. If indeed the areas within patches share similar radiometric properties, a hypothesis that would
account for the phenomenon is one of resurfacing events producing deposits which overlay each other. If
cryovolcanic in nature, several factors could influence the radar backscatter of the deposits, including

Figure 6. Overlap and observation geometry for T43 and T56 swaths over Tortula Facula (8◦N, 144◦W). The two swaths
show orthogonal look directions (see outlines on Titan’s sphere and white arrows directions) and different incidence
angles i (see supporting information for additional analysis of this case).

LUCAS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2155



Journal of Geophysical Research: Planets 10.1002/2013JE004584

Figure 7. (a) NLDSAR image showing discreet surface structures
near Momoy crater (11.6◦N,44◦W) observed in T77 (north is up).
Ejecta blanket is indicated with the white arrow. (b) Leilah Fluctus
(55◦N,80◦W) observed upon denoising on TA swath subset (north is
indicated by the white arrow).

extrusion rate, cooling rate, or annealing;
these may affect the backscatter values by
surface roughness, or volume scattering.
One example is shown in Figure 7a, where
patches of uniform brightness and sharp
boundaries may be interpreted as individ-
ual flows superimposed on one another.
The ejecta blanket of Momoy crater may be
interpreted as composed of individual flows
sourced from the crater. Another potential
origin of patches may be due to sedimen-
tary processes as illustrated by Figure 7b,
where possible alluvial cones are observed
in association with fluvial channels.

Radar patchiness may also originate from
subsurface structures due to regional vari-
ations in volume scattering [Paillou et al.,
2006], inherited from porosity or lithologi-
cal structure. Liquid in the subsurface would
alter the dielectric constant and may con-
tribute to regional boundaries. Systematic
mapping and analysis including incidence
angle dependence is required in order to
probe the origin of patches, but the low spa-
tial resolution and limited areas of repeat
coverage of the Cassini RADAR data hinders
a definitive explanation.

3.2. Dunes
Extensive areas in Titan’s equatorial region

are covered by dunes [Lorenz et al., 2006], with morphogenesis likely controlled by an atmospheric circu-
lation trap at an altitude of 2 km [Charnay and Lebonnois, 2011; Lorenz et al., 2010a]. We investigate the
morphology of dunes in order to constrain such models. As shown in Figure 3, the dunes are more sharply
defined with respect to interdune areas upon denoising. In speckled data the boundary between dune and
interdune units is poorly defined and difficult to trace. In denoised images, dunes are seen to emerge from
interdune regions with clear boundaries delineating the contact between the two units. Such clear bound-
aries do not appear on our synthetic tests as shown in Figures 1 and 2 (see also tests in Text S1). Cross section
along the dune field shows that NLDSAR reveals a periodicity between dunes and interdunes (Figure 8). Due
to this refinement, better morphometric estimates are possible: wavelength has been derived automatically
from spectral estimation and we found 𝜆 ≃ 3200 m, in good agreement with previous manually measured
estimations [Radebaugh et al., 2008]. The denoised data enable enhanced dune morphogenesis analysis.
Ewing et al. [2013] document the transition and evolution of extensive dunes to individual barchans and star
dune forms. Large radar glints are isolated and highlighted in denoised data (Figures 3c and 8), enabling
discrimination of their sources and refined estimates of the slopes. NLDSAR is useful for radarclinometry
techniques as well as radargrammetry both providing elevation information, which in turn, enables the
study of the interaction of dunes with the wind regime and the local topography [Lucas et al., 2014].

3.3. Hydrology
Like Earth, Titan possesses an active hydrologic cycle with fluvial, lacustrine, and marine processes. While
previous studies have identified geomorphic units involved in these processes [Stofan et al., 2007; Hayes et
al., 2008; Turtle et al., 2011], their interaction with the topography needs to be better understood. Recently,
Black et al. [2012] studied the geometry of drainage networks and have shown numerically that fluvial
incision has only modestly affected the topography, i.e., they found that fluvial networks reflect spatially
averaged erosion of less than 9% of the initial topographic relief. We will show in this subsection how new
insights into Titan’s hydrology may be obtained from the processed NLDSAR data set.

LUCAS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2156
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Figure 8. (top) T17 swath subset over a dunes field from SAR (left) and NLDSAR (right) data set. (middle) Red and green
cross sections correspond to the profiles displayed below. Images on top show that dunes and interdunes are contiguous
in NLDSAR images. (bottom) Profiles show that edges of dune/interdune in NLDSAR are consistent with those in SAR
data. Figure 8 (bottom) shows the estimates of the power spectra along cross section for both SAR and NLDSAR data
sets. The NLDSAR data provides a clear peak at a wavelength of 3200 m, whereas the unprocessed SAR data show a
broad peak, actually two peaks, between 2500 m and 4500 m., because the speckle noise is not removed.

3.3.1. Valleys and Drainage Basins Morphology
The interest of NLDSAR image for hydrological analysis is illustrated on Figure 9, where bright channels are
observed on T03 swath. The ratio between SAR and NLDSAR shows a randomly distributed noise which
does not depend on the underlying brightness (Figure 9c). We show that features with widths of ∼2 pixels
are preserved in the NLDSAR image (highlighted by white arrows in Figures 9d and 9e), emphasizing the
robustness of the denoising procedure. This example demonstrates the potential improvement for mapping
fluvial features, and geological interpretations as discussed previously.

The objects and textures present in the NLDSAR image shown previously on Figure 9e correspond to rec-
ognizable features on the original noisy image (Figure 9d). For instance, linear patterns appearing in Figure
9e in the bright channel are interpreted to be part of the morphology as they follow the stream direction
and are only present inside the valley. The presence of individual small channels inside a larger valley is

LUCAS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2157
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Figure 9. Example of denoising on T03 swath subset (20◦N,80◦W). (a) Original noisy SAR data and (b) denoised image,
both in logarithmic contrast stretch. (c) The removed noise (i.e., ratio between the original noisy image and denoised
image SAR/NLDSAR) showing no dependence on geologic features, contrast, edges, beam boundaries, or the initial
value of SAR image. Black boxes in Figures 9a–9b indicate locations of magnified insets showing bright channels in the
noisy image (Figure 9d) and the denoised image (Figure 9e). Both are displayed with a linear scale for a better contrast
between bright channels and surrounding areas. White arrows indicate channels that are preserved and highlighted by
the application of the denoising procedure. (North is up.)

similar to comparable rivers on Earth, where such a relationship indicates relatively high slopes, large sedi-
ment load with shallow streams of low sinuosity and a noncohesive bank material [Schumm and Kahn, 1972].
In this same area, patches of distinguishable brightness surround the channels (Figure 9e). The braided pat-
terns here correlates with the transition between two patches, suggesting a possible difference in material
properties of the substrate.

The shores of the northern seas have complex morphologies suggesting the action of fluvial processes
that have sculpted the landscape in this region. Morphology is characterized by sea cliffs, spits, and bays as
shown in Figures 10a and 10b. Whereas cliffs might be cut by waves (if waves are generated on Titan’s seas,
see discussions in Lorenz et al. [2010b, 2012] and Hayes et al. [2013a]), most of the morphologies observed
are controlled by land processes. As mentioned previously, NLDSAR data set provides improvement of
connectivity analysis and drainage integration estimation. Lake shorelines appear sharper (Figures 10a–10c).

Valleys morphologies attest to stream erosion along the shores (Figures 10a and 10b). Interestingly, some
valleys incised at angles acute relative to the present shore of the Ligeia Mare and thus support the inter-
pretation of temporal evolution (Figure 10b), where the lake level rose after the incision of the large fluvial
valley. The valley is expected to form with drainage direction normal to past shoreline, which was modified
upon flooding [Aharonson et al., 2013; Hayes et al., 2013b]. Jingpo Lacus shown in Figure 10c, exhibits val-
ley features beneath a liquid cover, which appear even more clearly in NLDSAR data. These features indicate
that rivers continue into the lake and eroded material is delivered further south. The presently submerged
valleys indicate a rise in lake level subsequent to the significant erosion recorded by the river valley; given
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Figure 10. SAR images (top row) with their NLDSAR counterparts (bottom). North is toward the left. Each thumbnail is
112 km wide. Panels show (a) sea cliffs with spits and (b) bays, as well as (c) valleys incised at acute angles relative to
the present shore of the Ligeia Mare. Channel forms within Jingpo Lacus show an increase width when the channel pass
through lower radar values, suggesting southward flow direction beneath shallow liquid cover (Figure 10c) and NLDSAR
data highlight variations in valley morphology (Figure 10d). Several knickpoints are identified at the valley head. (North
is indicated by the white arrows.)

Figure 11. Digital elevation model of North Pole Region obtained from T25 and T28 denoised swaths. (a) 200 m contours
ranging from −1000 to 200 m overlaying the T28 NLDSAR image scaled in dB. (b) Colorized topography and shaded
relief map of the same area. Dark areas (when 𝜎0 < −15 dB ) have been masked. SARTopo data have been overlayed on
the DEM.
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Figure 12. Stereo topography extracted over Mayda Insula using swaths T25 and T28 (79◦N,48◦E). (a) Correlation map
obtained with SAR images; (b) Correlation map obtained with NLDSAR images; (c) Elevation corresponding to the gray
area in the distribution of elevations shown in panel (d); (d) Hypsograms of extracted DEMs showing a bench in the
distribution (gray area). Insert shows elevation hypsogram of Catalina Island, California with an analogous bench feature
(gray area); (e) Catalina Island, CA shaded relief and elevations corresponding to the bench (gray area) in the distribution
shown in inset of panel (d).

the relative densities of the material involved, submarine erosion of the channel is highly unlikely but is not
ruled out.

NLDSAR data highlight variations in valley morphology and SAR backscatter, suggesting a break in slope in
the valley incision. Figure 10d shows an example of an eroded valley, fed by a smaller channel. The transition
from the narrower, low-contrast valley to the broader, more distinct portion is sharp and indicates a discon-
tinuity. The presence of knickpoints (i.e., location of a river where a sharp change in the topography slope
occurs) may indicate either lithological stratification, erosion mechanism, or disequilibrium response of the
topography to runoff events [Lamb et al., 2007].
3.3.2. Topographic Analysis
We derived a digital elevation model (DEM) from radargrammetry based on the sensor model previously
developed [Kirk et al., 2007] and the use of the commercial photogrammetry software SOCET SET (Figure 11).
We used a pair of original SAR images, as well as NLDSAR images, allowing a significant enhancement in
the edges of structures and thus facilitating the correlation needed for topographic extraction. Using NLD-
SAR data, we obtained a greater number of matching points (up to 80%) and a better correlation (59% of
the pixels give a good correlation in the denoised data compared with 18% in the original SAR image). The
accuracy of stereo matching is controlled by the correlation function computed by the stereo matching
algorithm from the pair of images. The denoised data result in a higher minimum curvature of the correla-
tion function, with sharper peaks in the correlation, leading to more precise measurements. Linear error of
90% is commonly used for evaluating DEMs and is defined as the error in elevation of one point with respect
to another point within the DEM at 90% probability. Along the shorelines, we obtained values of this error
measure below 80 m, a level which was unattainable previously as the best values from the nondenoised
data are greater than 180 m at the same location (i.e., same parallax and height geometry). This denser and
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Figure 13. Hypsometry of drainage basins on Earth, Mars, and Titan.
Kraken and Ligeia are drainage basin selected around these seas. War-
rego Vallis is an example on Mars (after Ansan and Mangold [2006]).
Terrestrial examples have been obtained from Shuttle Radar Topography
Mission (SRTM) data set. For Catalina, different resolutions obtained by
reducing the pixel size using a nearest-neighbor interpolation are shown
for comparison.

more accurate elevation extrac-
tion leads to a finer analysis of the
shorelines of the northern seas. The
elevation ranges from −1000 to
400 m with respect to Titan’s geoid
[i.e., see Iess et al., 2010] in agree-
ment with SARTopo [Kirk et al., 2007;
Stiles et al., 2009; Lorenz et al., 2013] as
shown on Figure 11b.

Several observations are of note on
the basis of the derived topography.
The shorelines of Ligeia Mare and
Kraken Mare are located at similar
altitudes (i.e., within 90 m) compared
with uncertainties in the DEM which
are ∼80 m along the shores (see con-
tour lines on Figure 11a). A large hill
located between Ligeia and Kraken
Mare appears to control the radial
pattern of valleys. While the reso-
lution of the data does not allow
measurement of the slope of the
channel floor, these valleys incised
surfaces whose slopes vary between
1 × 10−4 and 0.02.

A histogram of elevations allows the
identification of a shoulder in the

distribution, suggesting that fluvial and/or lacustrine processes have affected the terrain, creating a topo-
graphic bench (Figure 12). Similar patterns are commonly seen in the near-shore topography distribution
on Earth (Figures 12d and 12e). These results are consistent with observations from SAR images (i.e., pres-
ence of valleys near the shores, see Figure 10a) and show that here erosion and sediment transport may
affect the topography substantially, that their integrated action is quantified volumetrically. By spatially
integrating this topography, an estimation of ∼1 m of removed material is measured along Mayda Insula
shorelines. This is consistent with values obtained recently by Black et al. [2012] (Figure 12). The evidence
supporting topographic adjustment to erosion and sediment transport in some near-shore locations, con-
trasts with a disequilibrium response recorded by knickpoints previously described and valley geometries.
Taken together, these observations indicate late stage erosion and modification of Titan’s topography, with
recent events superimposed on a more mature, fluvially modified landscape.

Comparison of hypsometric curves (i.e., frequency distribution of elevations) of drainage basin on Titan
around the northern seas with terrestrial and Martian examples suggest a late stage of erosion [Ansan and
Mangold, 2006] (Figure 13). Hypsometry of drainage basin around Northern Seas suggests that these net-
works are mature. This is in good agreement with broad and low valleys visible on SAR images. On the other
hand, knickpoints mentioned previously might be adjustments to ’recent’ level raise regarding the timescale
of processes. Beyond the DEM resolution, knickpoints can be formed at a shorter timescale compared to the
equilibrium timescale of the drainage basin.

Dark seas and lakes exhibit extremely low and homogeneous RADAR returns, which mark an absorptive
and smooth surface at the RADAR wavelength. They are commonly considered to be covered by liquid
hydrocarbons [Stofan et al., 2007; Brown et al., 2008; Paillou et al., 2008]. More recently, Cornet et al. [2012a]
have suggested that RADAR brighter areas within Ontario Lacus correspond to mudflats as opposed to be
completely covered by a standing liquid body, by analogy to the Etosha lake in Namibia. It is difficult to dis-
tinguish between these two hypotheses when only comparing backscatter values, which heavily rely on the
unknown parameters such as the scattering properties of the surface and the complex dielectric properties
of the liquid. As such, only areas that are consistently below the radar’s noise floor can reliably be interpreted
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Figure 14. Bathymetry maps of near-shore regions of Ligeia Mare from NLDSAR. Radar backscatter values were converted to apparent depth (i.e., depth/loss
tangent) using a two-layer model of radar energy penetration in the liquid [Hayes et al., 2010] as depicted in the inset schematic. Straight lines in white indicates
the bathymetry profiles location of Figure 15 for Regions A–C, respectively.

as liquid bodies (in the absence of centimeter-smooth solid surface) [Paillou et al., 2008]. The NLDSAR might
potentially help in visualizing the heterogeneities within the mares and lakes areas.

The DEM we obtained over the North polar seas constrains the elevation of liquid bodies. In Figure 11a
we show that the dark areas of Kraken Mare and Ligeia Mare lie at about −1000 m, also seen in the hyp-
sograms in Figure 12d. The denoised images and DEM (Figure 11) further indicate that slopes leading into
Ligeia Mare are at an elevation that is below this shoreline level and hence likely covered by a shallow liq-
uid body (i.e., few meters). We employ denoised images in order to extract bathymetry based on a two-layer
model proposed by Hayes et al. [2010], accounting for the reflection and transmission of radar energy
at the air interface and through the liquid medium (Figure 14). The NLDSAR image enables obtaining a
bathymetry map of large seas with the noise optimally removed, and no local binning (as was performed
by Hayes et al. [2010] and Wye et al. [2010]).

Because the subsurface scatter is not necessary uniform, absolute depths cannot be obtained. Assum-
ing zero backscatter form the surface, we report here the ratio of depth/loss tangent as an “apparent”
bathymetric depth (Figure 14). Our results suggest the presence of submerged valleys beneath a shallow
hydrocarbons layer. Portions of valleys currently submerged exhibit similar widths and network morphology
to portions exposed, supporting the formation of the submerged valleys prior to flooding (Figure 14).

The timing of the putative flooding event is poorly constrained with limited observations; the possibili-
ties range from a catastrophic event after the initial channel formation and shoreline establishment, to
periodic, or continuous. Surface process durations and ages are currently uncertain on Titan with the
available data.
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Figure 15. Terraces show similar apparent depths (i.e., depth/loss tangent) from two different swaths (T28 and T29)
suggesting change in base level of Ligeia Mare. Values are reported for comparison among profiles and should not be
interpreted as absolute depths. Location of profiles are indicated in Figure 14.

Several features indicate shoreline benches in portions of the lake. Channels terminate at similar depths
at distant locations around the lake, indicating adjustment of the fluvial system to a common base level,
lower than the present liquid level. Apparent bathymetric profiles further indicate benches, as a significant
break in slope exists between profiles in region A1 and region A2 (Figure 14). The shallow slopes in region
A1 allowed the lake to flood over a large lateral extent (∼14 km).

In addition, benches in bathymetry are observed in regions A and C at similar “apparent” liquid depths
(Figure 15). The bottom depth of the valley in region C is also near the same benches, suggesting that these
valleys are equilibrated with the deeper marine bench. Assuming the latter is the base level of the lake dur-
ing the formation of the valley provides an upper bound on 𝛿h∕h ∼ 0.25 (where h is the maximum depth
of the lake, recent estimation of h give ∼150 m [Mastrogiueppe et al., 2014]). Note, the relative volumetric
change may be larger, since, for example, for a constant shore slope the relative volumetric change 𝛿v∕v
scales as 3(𝛿h∕h).

Taken together, these observations provide evidence that the landscape in this area has been developed
by stream erosion, with subsequent rise of lake level swamping the river valleys. These liquid level increases
may be compared with lake recession observed in the south. Ontario Lacus was seen to change over sev-
eral years of observations, from imaging science subsystem/SAR comparison [Hayes et al., 2011; Turtle et al.,
2011] at a rate of several tens of cm/yr. Potential past high stands of the lake were also mapped by Barnes et
al. [2009] using VIMS images. Overall, the observed changes correspond to a lake recession comparable in
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areal extent to the increases deduced here in the north but could act at very different timescales. However,
this possible change level of Ontario is still an open question as alternative analysis suggest no change by
comparing 2005 and 2010 SAR observations [Cornet et al., 2012b].

The liquid level increases in the north evident in the morphology and bathymetry may be due to changes
on seasonal or longer timescales. Several meters of change are predicted from GCMs to occur due
to seasonal cycles [Mitchell, 2008; Schneider et al., 2012]; larger changes, or order tens of meters, are
expected from orbital oscillations on timescale of tens to hundreds of kiloyears [Aharonson et al., 2009;
Schneider et al., 2012].

The interpreted rise in liquid level could also result, or partially result, from subsidence of the basin due to
surface loading [Choukroun and Sotin, 2012]. The amplitude of subsidence depends on the densities and
other parameters. But an estimate may be obtained if for example, at an assumed depth of isostatic com-
pensation, the additional load of liquid methane of density 𝜌load = 422 kg/m3 is balanced by a deflection
of the lighter icy crust into a denser medium of water of density 𝜌lm = 1000 kg/m3. The resulting subsi-
dence in response to a load of height h will be 𝛿h = (𝜌load∕𝜌m)h, that is approximately 42 m for every
100 m of liquid added to the surface. These values are consistent with our observations but cannot be
determined directly from the data without additional knowledge of the subsurface structure. Derivation of
the subsurface backscatter function is hence necessary for quantifying the elevation magnitude of these
base-level changes.

4. Conclusions

We show in this study that nonlocal denoising technique can be applied to Cassini SAR data in order to
improve the use of these images both in qualitative interpretation and in quantitative analysis. The new
NLDSAR data set, with a significantly reduced speckle noise, clarifies geologic relations. We highlight and
interpret morphology associated with hydrologic processes: flooded valleys, knickpoints, evidence for runoff
associated with empty isolated lakes, and benches within Ligeia Mare.

Analysis of the denoising procedure and SAR images of Titan provides several new insights. It enables
retrieval of the noise distribution without prior information. The noise distribution differs from region to
region on Titan and could depend on the underlying reflectivity, roughness properties, and number of looks,
which vary along the swaths. We observed unusual patches in the denoised images. Their origin remains
enigmatic. One possible interpretation is that overlapping deposits from cryovolcanic resurfacing events
of various ages cause discreetly varying properties that translate to radar surface brightness. Data process-
ing artifacts are unlikely to result in the observed persistent patches over varying geometries and are hence
disfavored, though not ruled out completely. The comparison between original data (SAR) and denoised
data (NLDSAR) shows that the structures are preserved by the numerical process and at most, only small
biases are introduced. This is particularly well illustrated in the dune field, for which we obtain a similar
wavelength in power spectral analysis of the denoised images compared to manual measurements in the
original images. The enhanced images enable us to more easily identify, map, and interpret various fluvial
and lacustrine morphologies. We show a significant improvement in DEM generation by using the NLDSAR
data, offering a refinement in topographic analysis. This study offers new evidence for base-level eleva-
tion changes in northern seas but cannot be compared directly with lake recession observed in the south
[Hayes et al., 2011; Turtle et al., 2011] as the two may be acting over significantly different timescales: while
several meters as associated with seasonal cycles, tens of meters, are expected from orbital oscillations on
timescales of tens to hundreds of kiloyears. As discussed, rise in liquid level could also partially result from
subsidence of the basin. These results are consistent with observations from SAR images and show that ero-
sion and sediment transport have affected the topography substantially and that their integrated action
could be quantified volumetrically.
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