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Abstract. In this paper, we analyze the inverse problem of determining the reaction

term f(x, u) in reaction-diffusion equations of the form ∂tu − D∂xxu = f(x, u),

where f is assumed to be periodic with respect to x ∈ R. Starting from a family

of exponentially decaying initial conditions u0,λ, we show that the solutions uλ of this

equation propagate with constant asymptotic spreading speeds wλ. Our main result

shows that the linearization of f around the steady state 0, ∂uf(x, 0), is uniquely

determined (up to a symmetry) among a subset of piecewise linear functions, by the

observation of the asymptotic spreading speeds wλ.

1. Introduction

This paper is devoted to the reconstruction of the linear part ∂uf(x, 0) of the reaction

term f(x, u) in the following reaction-diffusion problem:

(P )

{

∂tu−D∂xxu = f(x, u), t > 0, x ∈ R,

u(0, x) = u0(x) ≥ 0, x ∈ R.

This equation describes the space-time evolution of a concentration u(t, x) in a

heterogeneous excitable environment [4, 47]. It appears in several fields of applications

such as physics, in combustion flame propagation models [9], in chemistry [11], in

ecology, to study the dynamics of a population [36, 44] as well as in population

genetics [2, 3, 40].

For Kolmogorov-Petrovsky-Piskunov type (KPP) nonlinearities (see definition

below), it is well known that the solution u(t, x) of the problem (P ) mainly depends on

the reaction term f(x, u) through its linearization ∂uf(x, 0) around the steady state 0

(see for exemple [7, 13]). In population dynamics, this term represents the intrinsic
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growth rate of a population. The persistence or the extinction of the population

and its rate of range expansion only depend on f(x, u) through this term ∂uf(x, 0)

[4, 7, 8, 22, 27]. In practice, this term is often unknown or partially known.

In this work, we assume that D > 0, and that x 7→ f(x, u) is a 1−periodic reaction

term, that is:

∀x ∈ R,∀s ∈ R, f(x, s) = f(x+ 1, s). (1)

The reconstruction of coefficients for parabolic equations is a widely studied problem.

Several works are done in the case of parabolic operators defined on an open bounded set

(see among others [1, 15, 20, 21, 30, 35, 37]). However in the unbounded case considered

here, there are few references ([31, 33]) about coefficient identification.

In the case of bounded domains, several kinds of observations can be used for the

determination of a coefficient. Many results are based on a method involving Carleman

inequalities, which has been introduced in the seminal paper of Bukhgeim and Klibanov

[12]. This method involves, in addition to localized observations of the solution u(t, x)

of the considered problem, an observation of the solution on the whole domain of study,

at some fixed time. Following the approach by Imanuvilov and Yamamoto [30] for the

reconstruction of a potential in the linear case, several results have been obtained in the

nonlinear case [17, 18, 19, 43]. More recently, other methods based on the maximum

principle and the Hopf’s lemma allowed to obtain uniqueness results using only pointwise

observations in the one-dimensional case [16, 38, 39].

The study of the direct problem (P ) has been widely developed recently (see

e.g. [4, 5, 6, 7, 10, 45, 46]). The paper [5] is devoted to some nonlinear propagation

phenomena in periodic and more general domains, for reaction-diffusion equations with

KPP nonlinearities [34]. In [10], the authors establish spreading properties for the

solutions of equations of the form ∂tu− a(x)∂xxu− q(x)∂xu = f(x, u). A common point

of these works concerns the precise study of the speed of propagation of the solutions

and of the asymptotic spreading speed.

On the other hand, the inverse problems associated with this class of equations have

been little studied. In [14], the author treated the case of a linear parabolic operator in

R
n, associated with boundary and initial conditions which lead to a periodic solution.

Then the problem stated in R
n can be easily written into a problem stated in a bounded

cell. The observations required to solve this inverse problem have to be measured on a set

which includes all the edges of the cell which induces a strong constraint. In a recent work

[31] the authors have improved this result by considering a nonlinear inverse parabolic

problem with non-smooth coefficients and have obtained a more general reconstruction

result without the above-mentioned constraint on the observation set.

Here, the initial condition u0 is not necessarily periodic, and the solution u(t, x) is

therefore non-periodic in general. In this context, we use a new type of observations,

which are based on the spreading properties of the solutions of the Cauchy problem

(P ). Before going further on, we recall the classical Kolmogorov-Petrovsky-Piskunov
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assumptions (denoted by KPP in reference to the seminal work [34]):














∀x ∈ R, f(x, 0) = 0,

∃M > 0, such that for s ≥M, and ∀x ∈ R, f(x, s) ≤ 0,

∀x ∈ R, s 7→ f(x, s)

s
is decreasing for s > 0.

(2)

Under these hypotheses, the 1−periodicity assumption (1), and assuming that the steady

state 0 is linearly unstable (see Proposition 2.1), it is known that the solution of the

Cauchy problem (P ), starting with a compactly supported or Heaviside initial condition,

propagates (to the right) with a finite asymptotic spreading speed w∗ [22] in the following

sense:






lim
t→+∞

u(t, x+ ct) = 0, ∀c > w∗, x ∈ R,

lim inf
t→+∞

u(t, x+ ct) > 0, ∀ 0 ≤ c < w∗, x ∈ R.
(3)

This means that an observer moving to the right with a speed c larger than w∗ will see

the solution converge to 0, whereas if he moves with a speed smaller than w∗, he will

see the solution remain above some positive constant. The existence of this constant

asymptotic spreading speed, as well as the existence of traveling wave solutions which

propagate with constant speeds c ≥ w∗ [4, 8, 45], are the key features which contributed

to the success of the reaction-diffusion framework in applied sciences [36, 42, 44] since

the pioneering work [34]. In particular, whenever the parameters D, ∂uf(x, 0) and u0

in (P ) are properly fitted to experimental data, the predicted asymptotic spreading

speed w∗ is often in accordance with observations of species range expansions [42]. It is

therefore natural to consider the inverse problem of coefficient determination in equation

(P ), based on observations of the spreading properties of its solution u(t, x).

The main objective of this paper is to determine the linear part

r(x) = ∂uf(x, 0) (4)

of the reaction term f(x, u), using observations of the spreading speed of the solution of

the Cauchy problem (P ). In that respect, instead of considering compactly supported

or Heaviside initial conditions, we consider a 1-parameter family of initial conditions

(u0,λ)λ∈I⊂(0,+∞), which decay like e−λ x as x → +∞, and we use the associated

asymptotic spreading speeds wλ as observations.

The outline of the paper is as follows. In Section 2, we give our assumptions and

we state our main result, in Sections 3-5 we detail the proofs of our results.

2. Assumptions and main results

2.1. Assumptions on f

In addition to the periodicity assumption (1) and the KPP assumption (2), we assume

that the nonlinearity (x, u) 7→ f(x, u) is of class C0,α with respect to x locally uniformly
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in u ∈ R, and of class C1 with respect to u. Besides, we assume that the linear part of

the reaction term, r(x) = ∂uf(x, 0) belongs to the function space M1 defined by:

M1 = {1-periodic function ρ ∈ C0(R), linear in [0, θ) and [θ, 1)}, (5)

for some (known) constant θ ∈ (0, 1). In other words, r(x) is a piecewise linear function.

2.2. Stationary states: existence, uniqueness and stability

Under our assumptions on the reaction term f and for continous and bounded initial

conditions u0, it is known that the solution of the Cauchy problem (P ) converges when

t→ +∞ to a nonnegative stationary solution, that is, a solution p ≥ 0 of the problem:

−D∂xxp = f(x, p), x ∈ R. (6)

More precisely, in [7] the authors have given a necessary and sufficient condition for

the existence of a positive stationary state p. This condition is based on the description

of the linear stability of the steady state 0, i.e., on the sign of the principal eigenvalue

of the linear operator L0:

L0 : ψ 7→ −D∂xxψ − r(x)ψ, (7)

with periodicity assumptions on ψ.We recall that, from the Krein-Rutman Theorem [24],

there exists a unique k0 ∈ R and a unique function ψ0 ∈ C2(R) such that


















−D∂xxψ0 − r(x)ψ0 = k0 ψ0, x ∈ R,

ψ0 is 1-periodic,

ψ0(x) > 0, x ∈ R,

ψ0(0) = 1.

(8)

The results of [7] show that, under our assumptions on the function f,

Proposition 2.1. 1) The equation (6) admits a positive and bounded solution p > 0 if

and only if k0 < 0.

2) If k0 < 0, the bounded solution p > 0 of equation (6) is unique and 1-periodic in

x.

3) Let u0 ∈ C0(R) be bounded and such that u0 ≥ 0, u0 6≡ 0. If k0 ≥ 0, then the

solution u(t, x) of (P ) converges to 0 uniformly in x as t→ +∞. If k0 < 0, then u(t, x)

converges to the solution p > 0 of equation (6) locally uniformly in x, as t→ +∞.

The point 3) of the above proposition shows that, whatever the initial condition,

the asymptotic spreading speed of the solution u(t, x) is equal to 0 if k0 ≥ 0. In the

remaining part of the manuscript, we need to observe positive spreading speeds. As a

consequence, we have to assume that k0 < 0. A sufficient condition on r(x) such that

k0 < 0 is (see proposition 2.9 in [7]):
∫ 1

0

r(x) dx ≥ 0, with r 6≡ 0 on [0, 1]. (9)
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2.3. Initial conditions and asymptotic spreading speed

In the case of Heaviside and compactly supported initial conditions, the asymptotic

spreading speed w∗ exists, does not depend on this initial condition, is finite and

satisfies (3).

Now, we consider a family of bounded front-like initial conditions u0,λ satisfying for

some α ∈ (0, 1), x0 > 0 and all λ > 0:

u0,λ ∈ C0,α(R), u0,λ ≥ 0, lim inf
x→−∞

u0,λ(x) > 0, (10)

and

u0,λ(x) = e−λx for x ≥ x0. (11)

We define the asymptotic spreading speed of the solution uλ(t, x) of the Cauchy

problem (P ) starting with the initial condition u0(x) = u0,λ(x) as the nonnegative real

number wλ such that:






lim
t→+∞

uλ(t, x+ ct) = 0, ∀c > wλ, x ∈ R,

lim inf
t→+∞

uλ(t, x+ ct) > 0, ∀ 0 ≤ c < wλ, x ∈ R.
(12)

Depending on the initial condition, the asymptotic spreading speed could be finite or

not [28, 41]. In the case of Heaviside and compactly supported initial conditions, we

have already mentioned that the asymptotic spreading speed w∗ is finite and (3) is

satisfied. Besides, this asymptotic spreading speed is characterised by the following

formula (see [22]):

w∗ = min
λ>0

−kλ

λ
, (13)

where kλ is the principal eigenvalue of the operator:

Lλ : ψλ 7→ −Dψ′′
λ + 2λDψ′

λ − λ2Dψλ − r(x)ψλ, (14)

with periodicity conditions, where r(x) = ∂uf(x, 0) .

The next result describes the asymptotic spreading speed in terms of the initial

condition. It is well known in the case of Heaviside and compactly supported initial

conditions. To the best of our knowledge, it is not clearly stated in the existing literature

for exponentially decaying initial conditions. In this proposition we show the existence

of a finite asymptotic spreading speed wλ and we give a formula for wλ, under our

assumptions on the initial conditions u0,λ.

Proposition 2.2. Assume that f satisfies (1), (2), the regularity assumptions of

Section 2.1 and that k0 < 0 (see Section 2.2). Let u0,λ satisfy (10), (11) and uλ(t, x)

be the solution of problem (P ) with initial condition u0,λ(x). Then, we can associate to

uλ(t, x) a finite asymptotic spreading speed wλ such that






wλ =
−kλ

λ
if 0 < λ < λ∗,

wλ = w∗ otherwise,
(15)



Coefficient determination via asymptotic spreading speeds 6

where kλ is the principal eigenvalue of the operator defined by (14) and λ∗ = λ∗(r) is

the unique positive real number such that w∗ =
−kλ∗

λ∗
.

Proof. See the proof of this proposition in Section 4.

2.4. Uniqueness result

Finally we state our main uniqueness result.

Theorem 2.1. Let f (resp. f̃) check (1), (2), the regularity assumptions of Section 2.1

and assume that k0 < 0 (resp. k̃0 < 0 ) and r(x) ∈ M1 (resp. ∂uf̃(x, 0) = r̃(x) ∈ M1).

Let uλ(t, x) (resp. ũλ(t, x)), be the solution of the Cauchy problem (P ) (resp. (P̃ ))

associated to f and u0,λ(x) (resp. f̃ and u0,λ(x)). If we assume that the asymptotic

spreading speeds wλ (resp. w̃λ) associated to uλ (resp. ũλ) coincide on a continuum of

values of λ, that is to say

∃λ1 > 0 such that ∀λ ∈ (0, λ1), wλ = w̃λ,

then

r̃(x) = r(x) or r̃(x) = r(−x+ θ).

This result shows that the linear part r(x) = ∂uf(x, 0) of the reaction term f(x, u)

in (P ) is uniquely determined (up to a symmetry) by the knowledge of the asymptotic

spreading speeds wλ, for λ ∈ (0, λ1).

The proof is based on the equality of the first and the second moments of the functions

r(x) and r̃(x) (see Lemma 3.2 and Lemma 3.3). The derivation of the equality of the

higher-order moments would be more involved, but would enable one to extend the

result of Theorem 2.1 to more general classes of functions than those in M1.

3. Proof of the main Theorem

Our goal is to reconstruct any potential r(x) element of M1, from observations

of the asymptotic spreading speed which corresponds to a physical and measurable

observation. Let wλ(r) and wλ(r̃) be the asymptotic spreading speed associated to r

and r̃ respectively.

From the assumption of Theorem 2.1, we have wλ(r) = wλ(r̃) for all λ ∈ (0, λ1). Thus,

from Proposition 2.2, kλ(r) = kλ(r̃) for all λ ∈ (0,min(λ1, λ
∗(r), λ∗(r̃))).

Lemma 3.1. For any r ∈ M1, the function : λ 7→ kλ(r) is analytic.

This result follows from the analyticity of the coefficients in (14) and from the

simplicity of kλ, the principal eigenvalue of Lλ (see [32]).

The analyticity of the functions λ 7→ kλ(r) and λ 7→ kλ(r̃) implies that

(H) : kλ(r) = kλ(r̃), for all λ > 0.
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We want to prove that the property (H) implies that:

r̃(x) = r(x) or r̃(x) = r(−x+ θ).

For this, we consider r(x), r̃(x) two elements of M1 such that

r(x) = ax+ b if x ∈ [0, θ), r(x) = cx+ d if x ∈ [θ, 1), for a, b, c, d ∈ R,

and

r̃(x) = ãx+ b̃ if x ∈ [0, θ), r̃(x) = c̃x+ d̃ if x ∈ [θ, 1), for ã, b̃, c̃, d̃ ∈ R.

Using the regularity and periodicity hypothesis of r(x), we deduce






r(x) = ax+ b, for x ∈ [0, θ),

r(x) = −
( aθ

1 − θ

)

x+ b+
aθ

1 − θ
, if x ∈ [θ, 1).

(16)

Thus, from (16), there exist A, B ∈ R such that

r̃(x) = Ar(x) +B, ∀x ∈ R. (17)

The proof will be developed in several parts. In a first step we prove the lemma:

Lemma 3.2. For any r, r̃ ∈ M1 and verifying the hypothesis (H), we have:

∫ 1

0

r(x) dx =

∫ 1

0

r̃(x) dx = r.

Proof. We consider the following problem:


















−Dψ′′
λ + 2λDψ′

λ − (λ2D + r(x))ψλ = kλ(r)ψλ in R,

ψλ > 0,

ψλ 1-periodic ,

ψλ(0) = 1.

(18)

According to [5] (Theorem 2.1 p.8), we have as λ→ +∞

kλ(r) + λ2D → −
∫ 1

0

r(x) dx, and kλ(r̃) + λ2D → −
∫ 1

0

r̃(x) dx. (19)

Thus, using property (H) and (19) we deduce the result of Lemma 3.2 (see another

proof of this result in Lemma 5.1). �

Lemma 3.3. For any r, r̃ ∈ M1, and verifying the property (H), we have:

∫ 1

0

(r(x) − r)2dx =

∫ 1

0

(r̃(x) − r)2dx.
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Proof. See the proof of this Lemma in Section 5. �

From (17) we obtain

∫ 1

0

r̃2(x)dx = A2

∫ 1

0

r2(x)dx+ 2AB

∫ 1

0

r(x)dx+B2,

by using Lemma 3.2 and Lemma 3.3 we get

(1 − A2)

∫ 1

0

r2(x)dx = B
(

(1 + A)

∫ 1

0

r(x)dx
)

,

for A 6= −1 we obtain

(1 − A)

∫ 1

0

r2(x)dx = B

∫ 1

0

r(x)dx,

by using the fact that B = (1 − A)

∫ 1

0

r(x)dx, for A 6= 1, we conclude that

∫ 1

0

r2(x)dx =
(

∫ 1

0

r(x)dx
)2

. (20)

From the Cauchy inequality, the equality (20) is true if and only if r is constant. Thanks

to (17) we deduce that r̃ is also constant, and according to Lemma 3.2 we obtain r = r̃.

By symmetry we also deduce that if r̃ is constant then r is constant so r̃ = r.

Now we consider the case A = 1. We have
∫ 1

0

r̃(x)dx =

∫ 1

0

r(x) dx+B.

By using the fact that

∫ 1

0

r(x) dx =

∫ 1

0

r̃(x) dx, we conclude that B = 0, so r(x) = r̃(x).

Finally, if A = −1, then r̃(x) = −r(x) +B, so r̃(x) = r(−x+ θ). �

Remark 1. In the homogeneous case, i.e, if f does not depend on x, the uniqueness result

of Theorem 2.1 is obvious. In such case, it is known [2, 34] that case w∗ = 2
√
r D, thus

w∗ = w̃∗ implies that r = r̃.

4. Proof of Proposition 2.2

Recall that for the Cauchy problem (P ) associated with compactly supported or

Heaviside initial conditions, we can define an asymptotic speed of propagation (see

formula (3)). In the case of exponentially decaying initial conditions of the type (10)-

(11) we have to prove the existence of this speed.

The proof is based on the construction of appropriate sub and super-solutions for the

system (P ). We are going to use the notion of pulsating traveling wave for the equation:

∂tu = D∂xxu+ gl(x, u),
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with gl(x, u) =
1

l
f(x, lu) for some l > 0. Note that,

∂ugl(x, 0) = ∂uf(x, 0),∀l > 0.

In view to carry out sub-solutions and super-solutions of problem (P ), we consider

the following problem:










−D∂xxpl = gl(x, pl), x ∈ R,

pl is 1-periodic,

pl > 0.

(21)

Now, we consider the solution uλ(t, x) of (P ) with initial condition u0,λ(x). We construct

a super-solution for this problem. In that respect we first look for l such that the solution

pl(x) of (21) satisfies:

min
R

pl > sup
R

u0,λ. (22)

Let us show that such a value of l exists. Let p(x) = p1(x) be the unique positive

solution of

−D∂xxp = f(x, p), x ∈ R. (23)

It is known, from Proposition 2.1, that p(x) is strictly positive and periodic. Thus, it

exists δ1, δ2 > 0 such that

0 < δ1 < p(x) < δ2 on R. (24)

Recall that the function pl satisfies: −D∂xxpl =
1

l
f(x, lpl) for x ∈ R. Let us set

q(x) = lpl(x). Then q verifies the following equation:

−D∂xxq = f(x, q).

By uniqueness (Proposition 2.1), we deduce q(x) = p(x), and finally pl(x) =
p(x)

l
. From

(24) we obtain:

δ1
l
< pl(x) <

δ2
l
. (25)

Let l1 < 1 be such that
δ1
l1
> sup

R

u0,λ. Then we can write

min
R

pl1 > sup
R

u0,λ. (26)

In a first step we consider λ′ ∈ (0, λ) such that λ′ < λ∗ and let c′ =
−kλ′

λ′
> c∗ =

−kλ∗

λ∗
.

We consider U l1
c′ (t, x), a pulsating traveling wave solution of the problem:


















∂tU
l1
c′ = D∂xxU

l1
c′ + gl1(x, U

l1
c′ ), t ∈ R, x ∈ R,

∀z ∈ Z,∀(t, x) ∈ R × R, U l1
c′ (t+ z

c′
, x) = U l1

c′ (t, x− z),

∀(t, x) ∈ R × R, 0 ≤ U l1
c′ (t, x) ≤ pl1(x),

lim
x→−∞

|U l1
c′ (t, x) − pl1(x)| = 0 and lim

x→+∞
U l1

c′ (t, x) = 0,

(27)
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where the above limits hold locally in t. The existence of this solution follows from [8]

and its uniqueness (up to a translation) is proved in [29].

From [25], it is known that the asymptotic behavior of U l1
c′ (t, x) is:

U l1
c′ (t, x) ∼ Be−λ

c
′ (x−c′t)ψλ

c
′
(x), as x→ +∞, for B > 0, t ∈ R, (28)

where λc′ is such that

λc′ = inf{λ > 0 such that kλ + λc′ = 0}, (29)

and ψλ
c
′
(x) is the eigenfunction of the operator Lλ

c
′
(see (14)) associated to the principal

eigenvalue kλ
c
′
. From the convexity of the map λ 7→ −kλ (see [7]) and by definition of λ∗

(see Proposition 2.2), the equation kλ = −λc′ admits at most two roots, λ− ≤ λ∗ ≤ λ+.

Since λ′ < λ∗, we get that λ′ = λ− = λc′ .

Moreover, since l1 < 1 and
f(x, s)

s
is decreasing we have

f(x, l1s)

l1s
>
f(x, s)

s
.

Thus gl1 =
1

l1
f(x, l1s) > f(x, s) for all s ≥ 0.

Finally U l1
c′ (t, x) satisfies

∂tU
l1
c′ −D∂xxU

l1
c′ = gl1(x, U

l1
c′ ) > f(x, U l1

c′ ), x ∈ R.

Then U l1
c′ (t, x) is a super-solution for the problem (P ).

Now we want to prove that

U l1
c′ (0, x) ≥ u0,λ(x),∀x ∈ R. (30)

From (28), we get

U l1
c′ (0, x) ∼ Be−λ′xψλ′(x), as x→ +∞.

Using that ψλ′(x) is continuous, 1-periodic, ψλ′(x) strictly positive on [0, 1] and λ′ < λ,

we obtain

Be−λ′xψλ′(x) > e−λx, for x large enough. (31)

Then, there exists M > 0 such that for any x > M ,

U l1
c′ (0, x) ≥ e−λx = u0,λ(x). (32)

From (26) and (27), we deduce that there exists m < 0 such that

min
x≤m

U l1
c′ (0, x) ≥ sup

x∈R

u0,λ(x). (33)

It remains to prove that

min
x∈[m,M ]

U l1
c′ (0, x) ≥ sup

x∈R

u0,λ(x).

Let

δ = min
x∈[m,M ]

U l1
c′ (0, x). (34)
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From the strong parabolic maximum principle, we know that δ > 0. Let L ≥ m be large

enough such that

e−λx < δ, for all x > L.

Then U l1
c′ (0, x− L+m) verifies (30). Indeed:

- If x ≤ L, then x− L+m ≤ m. From (33), it follows that

U l1
c′ (0, x− L+m) ≥ sup

x∈R

u0,λ(x).

- If x ∈ (L,L+M −m), then m ≤ x− L+m ≤M

and, from (34),

U l1
c′ (0, x− L+m) > δ > e−λx = u0,λ(x).

- If x ≥ L+M −m, then x− L+m ≥M

and, from (32),

U l1
c′ (0, x− L+m) ≥ e−λ(x−L+m) ≥ e−λxe+λ(L−m) ≥ e−λx = u0,λ(x).

Thus, even if it means translating U l1
c′ (0, x) to the right, we can assume that U l1

c′ (0, x) >

u0,λ(x),∀x ∈ R. Since U l1
c′ (0, x) > u0,λ(x) and since U l1

c′ is a super-solution of (P ), a

comparison principle implies that

for all λ′ ∈ (0,min(λ, λ∗)), U l1
c′ (t, x) > uλ(t, x), t ≥ 0, x ∈ R, (35)

with c′ =
−kλ′

λ′
.

In a second step we consider λ′′ such that 0 < λ < λ′′ < λ∗ and let c′′ =
−kλ′′

λ′′
. Let

l2 > 1 be such that
δ2
l2
< lim inf

x→−∞
u0,λ(x) (see (25)). We consider U l2

c′′(t, x) the pulsating

traveling wave solution of the problem (27) (with l2 instead of l1 and c′′ instead of c′).

Using the same arguments as above, and the fact that max
R

pl2 <
δ2
l2
< lim inf

x→−∞
u0,λ(x), it

is easily seen that U l2
c′′(t, x) is a sub-solution of the problem (P ) satisfying

U l2
c′′(0, x) < u0,λ(x)

(even if it means translating U l2
c′′(0, x) to the left). A comparison principle implies that

for all λ′′ ∈ (λ, λ∗), U l2
c′′(t, x) < uλ(x), t ≥ 0, x ∈ R. (36)

So we get from (35) and (36) an appropriate pair of sub and super-solutions for the

problem (P ), and we can write:

U l2
c′′(t, x) < uλ(t, x) < U l1

c′ (t, x), for all t ≥ 0, x ∈ R, λ ∈ (λ′, λ′′).

Now we are going to complete the proof of the existence of an asymptotic spreading

speed associated to problem (P ) with initial conditions of the type (10)-(11).

- First case: if λ < λ∗, we prove that wλ =
−kλ

λ
verifies (12).
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(i) Let c > wλ =
−kλ

λ
, we want to prove that

lim
t→+∞

uλ(t, x+ ct) = 0, for all x ∈ R.

Let λ′ ∈ (0, λ) be such that
−kλ

λ
<

−kλ′

λ′
< c; the existence of λ′ follows from

the continuity of s 7→ ks

s
. We know from (35) that uλ(t, x+ct) < U l1

c′ (t, x+ct),

with wλ < c′ =
−kλ′

λ′
< c. Since c′ < c we obtain from (27) lim

t→+∞
U l1

c′ (t, x+ct) =

0. We conclude that if c > wλ then

lim
t→+∞

uλ(t, x+ ct) = 0, for all x ∈ R. (37)

(ii) Let c < wλ =
−kλ

λ
. We want to prove that

lim inf
t→+∞

uλ(t, x+ ct) > 0.

Let λ′′ ∈ (λ, λ∗) be such that c <
−kλ′′

λ′′
<

−kλ

λ
. We know from (36), that

U l2
c′′(t, x+ ct) < uλ(t, x+ ct), with c < c′′ =

−kλ′′

λ′′
< wλ. Since c < c′′ we obtain

from (27) that lim inf
t→+∞

U l2
c′′(t, x+ ct) > 0. We conclude that if c < wλ then

lim inf
t→+∞

uλ(t, x+ ct) > 0, for all x ∈ R. (38)

Using (37) together with (38) imply that wλ =
−kλ

λ
is the spreading speed of

uλ in the sense of (12) when λ ∈ (0, λ∗).

- Second case: if λ ≥ λ∗, we prove that wλ = w∗.

(i) Let c > w∗, and consider λ′ ∈ (0, λ∗) such that w∗ <
−kλ′

λ′
= c′ < c. From

(35), we know that

0 < uλ(t, x) < U l1
c′ (t, x), t ≥ 0, x ∈ R.

From (3) and since 0 < c′ < c, it follows that

lim
t→+∞

uλ(t, x+ ct) = 0, for all x ∈ R. (39)

(ii) Let c < w∗ and V (t, x) be a solution of (P ) with compactly supported initial

condition such that 0 ≤ V (0, x) < u0,λ(x) for all x ∈ R. A comparison principle

implies that

0 < V (t, x) < uλ(t, x) for all t > 0, x ∈ R.

Thus

uλ(t, x+ ct) > V (t, x+ ct), for all t > 0, x ∈ R.

From (27), we know that

lim inf
t→+∞

V (t, x+ ct) > 0, for all x ∈ R.
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Thus

lim inf
t→+∞

uλ(t, x+ ct) > 0, for all x ∈ R. (40)

Using (39) together with (40) imply that w∗ is the spreading speed of uλ for

all λ ≥ λ∗.

�

5. Proof of Lemma 3.3

We consider the following problem


















Dψ′′
λ − 2λDψ′

λ + r(x)ψλ = −lλ(r)ψλ in R,

ψλ > 0,

ψλ 1-periodic,

ψλ(0) = 1,

(41)

where lλ(r) = kλ(r) + λ2D. We define the functions rλ and hλ by

lλ(r) = −r +
rλ

λ2
,

and

ψλ(x) = 1 +
f1(x)

λ
+
hλ(x)

λ2
,

where

f1(x) :=
1

2D

∫ x

0

(r(s) − r)ds.

We derive from (41):

0 = (2Df ′
1 − r(x) − lλ(r)) +

1

λ
( −Df ′′

1 + 2Dh′λ − r(x)f1 − lλ(r)f1)

+
1

λ2
( −Dh′′λ − r(x)hλ − lλ(r)hλ)

= ( − lλ(r) − r) +
1

λ
( −Df ′′

1 + 2Dh′λ − r(x)f1 + rf1)

+
1

λ2
( −Dh′′λ − r(x)hλ + rhλ) −

1

λ3
rλf1 −

1

λ4
rλhλ

=
1

λ
( −Df ′′

1 + 2Dh′λ − r(x)f1 + rf1)

+
1

λ2
( −Dh′′λ − r(x)hλ + rhλ − rλ) −

1

λ3
rλf1 −

1

λ4
rλhλ. (42)

Now we prove that a2 := lim
λ→+∞

rλ and f2(x) := lim
λ→+∞

hλ(x) are well-defined by

using Lemma 5.1.

Lemma 5.1. There exists a constant C > 0 such that

|lλ(r) + r| ≤ C/λ.
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Proof. We know (see [7] for example) that

lλ(r) = sup{l ∈ R, ∃ψ ∈ W 2,∞
per (R), ψ > 0 in R, −Lλψ ≥ lψ a.e. in R},

= inf{l ∈ R, ∃ψ ∈ W 2,∞
per (R), ψ > 0 in R, −Lλψ ≤ lψ a.e. in R}.

Using ψ(x) = 1 +
f1(x)

λ
as a test-function, taking λ large enough so that

1 +
f1(x)

λ
> 0 for all x, we get almost everywhere:

−Lλψ = −Df
′′
1 (x)

λ
+

2λDf ′
1(x)

λ
− r(x) − r(x)f1(x)

λ
,

= −r
′(x)

2λ
+ r(x) − r − r(x) − r(x)f1(x)

λ
,

≥ −C0

λ
− r,

where C0 is a constant which only depends on ‖r‖∞ and ‖r′‖∞. Take C large enough

so that

C +
Cf1(x)

λ
+ rf1(x) ≥ C0.

We derive from this inequality that

(

− C

λ
− r

)

ψ ≤ −C0

λ
− r over R.

Hence −Lλψ ≥
(

− C

λ
− r

)

ψ over R and we derive from the definition of lλ(r) that

lλ(r) ≥ −C
λ
− r.

Similarly, one can prove that, taking C larger if necessary,

lλ(r) ≤
C

λ
− r.

�

Define θλ ∈ W 2,∞
per (R) so that

ψλ(x) = 1 +
f1(x)

λ
+
θλ(x)

λ
,

where

f1(x) :=
1

2D

∫ x

0

(r(s) − r)ds.

Rewriting the identity −Lλψλ = lλ(r)ψλ with this change of functions, we get:

−Lλθλ + (r − rλ

λ2
)θλ = Df ′′

1 (x) + (r(x) − r +
rλ

λ2
)f1(x) +

rλ

λ
=: Fλ. (43)
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Lemma 5.1 yields that
∣

∣

∣

rλ

λ

∣

∣

∣
≤ C for all λ. Thus, Fλ ∈ L∞

per(R) and there exists two

constants λ̃ > 0, C0 > 0, so that for all λ ≥ λ̃, ‖Fλ‖∞ ≤ C0.

Multiplying (43) by θ′′λ and integrating, one gets, for all λ ≥ λ̃

∫ 1

0

(θ′′λ)
2dx = −

∫ 1

0

(

r(x) − r +
rλ

λ2

)

θλθ
′′
λdx−

∫ 1

0

Fλθ
′′
λdx,

=

∫ 1

0

r′(x)θλθ
′
λdx+

∫ 1

0

(

r(x) − r +
rλ

λ2

)

(θ′λ)
2dx−

∫ 1

0

Fλθ
′′
λdx,

≤ C1(‖θ′λ‖2
L2(0,1) + ‖θ′′λ‖L2(0,1)), (44)

where C1 is a constant which only depends on ‖r′‖∞, ‖r‖∞, the constant C given by

Lemma 5.1 and C0, and where we have used the inequalities

‖θλ‖L2(0,1) ≤ ‖θλ‖∞ ≤ ‖θ′λ‖L1(0,1) ≤ ‖θ′λ‖L2(0,1), (45)

since θλ(0) = 0.

Assume now that there exists a sequence (λn)n such that λn ≥ λ̃

and ‖θ′λn

‖L2(0,1) → +∞ as n → +∞. Let ζn :=
θλn

‖θ′λn

‖L2(0,1)

, so that ‖ζ ′n‖L2(0,1) = 1.

Dividing (44) by ‖θ′λn

‖2
L2(0,1), one gets

∫ 1

0

(ζ ′′n)2dx ≤ C1

(

1 +
‖ζ ′′n‖L2(0,1)

‖θ′λn

‖L2(0,1)

)

.

Thus, as lim
n→+∞

‖θ′λn

‖L2(0,1) = +∞, (‖ζ ′′n‖L2(0,1))n is bounded. As ‖ζ ′n‖L2(0,1) = 1 and

‖ζn‖L2(0,1) ≤ 1 for all n due to (45), we can extract a subsequence, that we still denote

(ζn)n, which converges weakly in H2
per(0, 1) as n → +∞. On the other hand, equation

(43) gives

2λnζ
′
n = ζ ′′n + (r(x) − r +

rλn

λ2
n

)ζn +
Fλn

‖θ′λn

‖L2(0,1)

,

and thus the sequence (λnζ
′
n)n is bounded in L2(0, 1), which is a contradiction since

‖ζ ′n‖L2(0,1) = 1 for all n. We thus conclude that the family (θ′λ)λ≥λ̃ is bounded in

L2(0, 1).

It follows that (θλ)λ≥λ̃ and (θ′′λ)λ≥λ̃ are bounded in L2(0, 1) due to (44) and (45)

respectively, and thus (43) implies that (λθ′λ)λ≥λ̃ is bounded in L2(0, 1). The same

chain of inequalities yields that (λθλ)λ≥λ̃ is bounded in H2(0, 1).

By replacing in (43) θλ by
hλ

λ
, we get

0 = −Df ′′
1 +2Dh′λ +(r−r)f1−

1

λ
(Dh′′λ +(r−r)hλ +rλ)−

rλf1

λ2
− rλhλ

λ3
.(46)

Integrating and noticing that

∫ 1

0

(r − r(x))f1dx = 2D

∫ 1

0

f1f
′
1dx = D

∫ 1

0

(f 2
1 )′dx = 0,

one gets

0 =
1

λ

∫ 1

0

(r(x) − r)hλdx+
rλ

λ
+
rλ

λ2

∫ 1

0

f1dx+
rλ

λ3

∫ 1

0

hλdx
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and thus

rλ = −
∫ 1

0

(r(x) − r)hλ(x)dx−
rλ

λ

∫ 1

0

f1dx−
rλ

λ2

∫ 1

0

hλdx. (47)

We have shown previously that rλ and ‖hλ‖H2(0,1) are bounded uniformly with respect

to λ ≥ λ̃. Then
rλ

λ
→ 0 as λ → +∞. Passing to the limit in (46), we get that

f2 := lim
λ→+∞

hλ is well-defined in H1(0, 1) and that

f ′
2 =

1

2
(f ′′

1 +
(r(x) − r)

D
f1).

Lastly, letting λ→ +∞ in (47), we obtain

lim
λ→+∞

rλ = −
∫ 1

0

(r(x) − r)f2dx = a2.

Now, we can claim that a2 := lim
λ→+∞

rλ and f2(x) := lim
λ→+∞

hλ(x) are well-defined.

By taking the limit in (46) we get:

−Df ′′
1 + 2Df ′

2 − r(x)f1 + rf1 = 0, (48)

and

a2 =

∫ 1

0

(r − r(x))f2(x)dx.

Define M(x) :=

∫ x

0

r(y)dy and integrate by parts:

a2 = −
∫ 1

0

(rx−M(x))f ′
2(x)dx

(there is no boundary terms since M(1) =

∫ 1

0

rdx = r). We compute f ′
2 using the first

equation in (48):

a2 =
1

2D

∫ 1

0

(M(x) − rx)(Df ′′
1 + (r(x) − r)f1)dx,

= −1

2

∫ 1

0

(r(x) − r)f ′
1(x)dx+

1

4D

∫ 1

0

d

dx
(M(x) − rx)2f1(x)dx,

= −1

2

∫ 1

0

(r(x) − r)f ′
1(x)dx−

1

4D

∫ 1

0

(M(x) − rx)2f ′
1(x)dx,

= − 1

4D

∫ 1

0

(r(x) − r)2dx− 1

24D2

∫ 1

0

d

dx
(M(x) − rx)3dx,

= − 1

4D

∫ 1

0

(r(x) − r)2dx.
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Hence, we conclude that

lλ(r) = −r − 1

4Dλ2

∫ 1

0

(r(x) − r)2dx+ o(
1

λ2
),

from which the conclusion follows from Lemma 3.2 and lλ(r) = lλ(r̃) for all λ > 0. �
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