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Introduction

This paper is devoted to the reconstruction of the linear part ∂ u f (x, 0) of the reaction term f (x, u) in the following reaction-diffusion problem:

(P ) ∂ t u -D∂ xx u = f (x, u), t > 0, x ∈ R, u(0, x) = u 0 (x) ≥ 0, x ∈ R.
This equation describes the space-time evolution of a concentration u(t, x) in a heterogeneous excitable environment [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Xin | Front propagation in heterogeneous media[END_REF]. It appears in several fields of applications such as physics, in combustion flame propagation models [START_REF] Berestycki | Quelques aspects mathématiques de la propagation des flammes prémélangées Nonlinear PDEs and their applications[END_REF], in chemistry [START_REF] Billingham | The development of traveling waves in quadratic and cubic autocatalysis with unequal diffusion rates I. permanent form of traveling waves Phil[END_REF], in ecology, to study the dynamics of a population [START_REF] Murray | Mathematical Biology Third Edition[END_REF][START_REF] Turchin | Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants[END_REF] as well as in population genetics [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation Partial Differential Equations and Related Topics Lectures Notes in Mathematics[END_REF][START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF][START_REF] Roques | Allee effect promotes diversity in traveling waves of colonization[END_REF].

For Kolmogorov-Petrovsky-Piskunov type (KPP) nonlinearities (see definition below), it is well known that the solution u(t, x) of the problem (P ) mainly depends on the reaction term f (x, u) through its linearization ∂ u f (x, 0) around the steady state 0 (see for exemple [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF][START_REF] Cantrell | Spatial ecology via reaction-diffusion equations[END_REF]). In population dynamics, this term represents the intrinsic growth rate of a population. The persistence or the extinction of the population and its rate of range expansion only depend on f (x, u) through this term ∂ u f (x, 0) [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model: II -Biological invasions and pulsating travelling fronts[END_REF][START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF][START_REF] Hamel | viscosity solution method for the spreading speed formula in slowly varying media Indiana[END_REF]. In practice, this term is often unknown or partially known.

In this work, we assume that D > 0, and that x → f (x, u) is a 1-periodic reaction term, that is:

∀x ∈ R, ∀s ∈ R, f (x, s) = f (x + 1, s). (1) 
The reconstruction of coefficients for parabolic equations is a widely studied problem.

Several works are done in the case of parabolic operators defined on an open bounded set (see among others [START_REF] Alifanov | Extreme Methods for Solving Ill-Posed Problems with Application to Inverse Heat Transfer Problems[END_REF][START_REF] Chouli | Stable determination of semilinear term in a parabolic equation[END_REF][START_REF] Duchateau | Unicity in an inverse problem for an unknown reaction term in a reaction-diffusion equation[END_REF][START_REF] Egger | Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation Inverse[END_REF][START_REF] Immanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF][START_REF] Lorenzi | An inverse problem for a semilinear parabolic equation[END_REF][START_REF] Pilant | An inverse problem for a nonlinear parabolic equation[END_REF]). However in the unbounded case considered here, there are few references ( [START_REF] Kaddouri | Inverse problem for a parabolic equation with periodic and nonsmooth coefficients[END_REF][START_REF] Klibanov | Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation Inverse[END_REF]) about coefficient identification.

In the case of bounded domains, several kinds of observations can be used for the determination of a coefficient. Many results are based on a method involving Carleman inequalities, which has been introduced in the seminal paper of Bukhgeim and Klibanov [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems Soviet Mathematics[END_REF]. This method involves, in addition to localized observations of the solution u(t, x) of the considered problem, an observation of the solution on the whole domain of study, at some fixed time. Following the approach by Imanuvilov and Yamamoto [START_REF] Immanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF] for the reconstruction of a potential in the linear case, several results have been obtained in the nonlinear case [START_REF] Cristofol | Biological invasions: deriving the regions at risk from partial measurements[END_REF][START_REF] Cristofol | An inverse problem involving two coefficients in a nonlinear reaction-diffusion equation[END_REF][START_REF] Cristofol | Stable estimation of two coefficients in a nonlinear Fisher KPP equation Inverse Problems[END_REF][START_REF] Tort | Determination of the insolation function in the nonlinear Sellers climate model[END_REF]. More recently, other methods based on the maximum principle and the Hopf's lemma allowed to obtain uniqueness results using only pointwise observations in the one-dimensional case [START_REF] Cristofol | Uniqueness from pointwise observations in a multi-parameter inverse problem[END_REF][START_REF] Roques | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF][START_REF] Roques | The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system Inverse[END_REF].

The study of the direct problem (P ) has been widely developed recently (see e.g. [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena[END_REF][START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF][START_REF] Berestycki | Spreading speeds for one-dimensional monostable reaction-diffusion equations[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration in periodic habitat[END_REF][START_REF] Xin | Existence of planar flame fronts in convective-diffusive periodic media[END_REF]). The paper [START_REF] Berestycki | Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena[END_REF] is devoted to some nonlinear propagation phenomena in periodic and more general domains, for reaction-diffusion equations with KPP nonlinearities [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique Bull[END_REF]. In [START_REF] Berestycki | Spreading speeds for one-dimensional monostable reaction-diffusion equations[END_REF], the authors establish spreading properties for the solutions of equations of the form ∂ t u -a(x)∂ xx u -q(x)∂ x u = f (x, u). A common point of these works concerns the precise study of the speed of propagation of the solutions and of the asymptotic spreading speed.

On the other hand, the inverse problems associated with this class of equations have been little studied. In [START_REF] Choi | Inverse problem for a parabolic equation with space-periodic boundary conditions by a Carleman estimate Inverse[END_REF], the author treated the case of a linear parabolic operator in R n , associated with boundary and initial conditions which lead to a periodic solution.

Then the problem stated in R n can be easily written into a problem stated in a bounded cell. The observations required to solve this inverse problem have to be measured on a set which includes all the edges of the cell which induces a strong constraint. In a recent work [START_REF] Kaddouri | Inverse problem for a parabolic equation with periodic and nonsmooth coefficients[END_REF] the authors have improved this result by considering a nonlinear inverse parabolic problem with non-smooth coefficients and have obtained a more general reconstruction result without the above-mentioned constraint on the observation set.

Here, the initial condition u 0 is not necessarily periodic, and the solution u(t, x) is therefore non-periodic in general. In this context, we use a new type of observations, which are based on the spreading properties of the solutions of the Cauchy problem (P ). Before going further on, we recall the classical Kolmogorov-Petrovsky-Piskunov assumptions (denoted by KPP in reference to the seminal work [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique Bull[END_REF]):

       ∀x ∈ R, f (x, 0) = 0, ∃M > 0, such that for s ≥ M, and ∀x ∈ R, f (x, s) ≤ 0, ∀x ∈ R, s → f (x, s) s is decreasing for s > 0.
(

) 2 
Under these hypotheses, the 1-periodicity assumption [START_REF] Alifanov | Extreme Methods for Solving Ill-Posed Problems with Application to Inverse Heat Transfer Problems[END_REF], and assuming that the steady state 0 is linearly unstable (see Proposition 2.1), it is known that the solution of the Cauchy problem (P ), starting with a compactly supported or Heaviside initial condition, propagates (to the right) with a finite asymptotic spreading speed w * [START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF] in the following sense:

   lim t→+∞ u(t, x + ct) = 0, ∀c > w * , x ∈ R, lim inf t→+∞ u(t, x + ct) > 0, ∀ 0 ≤ c < w * , x ∈ R. (3) 
This means that an observer moving to the right with a speed c larger than w * will see the solution converge to 0, whereas if he moves with a speed smaller than w * , he will see the solution remain above some positive constant. The existence of this constant asymptotic spreading speed, as well as the existence of traveling wave solutions which propagate with constant speeds c ≥ w * [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model: II -Biological invasions and pulsating travelling fronts[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration in periodic habitat[END_REF], are the key features which contributed to the success of the reaction-diffusion framework in applied sciences [START_REF] Murray | Mathematical Biology Third Edition[END_REF][START_REF] Shigesada | Biological Invasions: Theory and Practice Oxford Series in Ecology and Evolution[END_REF][START_REF] Turchin | Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants[END_REF] since the pioneering work [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique Bull[END_REF]. In particular, whenever the parameters D, ∂ u f (x, 0) and u 0 in (P ) are properly fitted to experimental data, the predicted asymptotic spreading speed w * is often in accordance with observations of species range expansions [START_REF] Shigesada | Biological Invasions: Theory and Practice Oxford Series in Ecology and Evolution[END_REF]. It is therefore natural to consider the inverse problem of coefficient determination in equation (P ), based on observations of the spreading properties of its solution u(t, x).

The main objective of this paper is to determine the linear part

r(x) = ∂ u f (x, 0) (4) 
of the reaction term f (x, u), using observations of the spreading speed of the solution of the Cauchy problem (P ). In that respect, instead of considering compactly supported or Heaviside initial conditions, we consider a 1-parameter family of initial conditions (u 0,λ ) λ∈I⊂(0,+∞) , which decay like e -λ x as x → +∞, and we use the associated asymptotic spreading speeds w λ as observations. The outline of the paper is as follows. In Section 2, we give our assumptions and we state our main result, in Sections 3-5 we detail the proofs of our results.

Assumptions and main results

Assumptions on f

In addition to the periodicity assumption (1) and the KPP assumption (2), we assume that the nonlinearity (x, u) → f (x, u) is of class C 0,α with respect to x locally uniformly in u ∈ R, and of class C 1 with respect to u. Besides, we assume that the linear part of the reaction term, r(x) = ∂ u f (x, 0) belongs to the function space M 1 defined by:

M 1 = {1-periodic function ρ ∈ C 0 (R), linear in [0, θ) and [θ, 1)}, (5) 
for some (known) constant θ ∈ (0, 1). In other words, r(x) is a piecewise linear function.

Stationary states: existence, uniqueness and stability

Under our assumptions on the reaction term f and for continous and bounded initial conditions u 0 , it is known that the solution of the Cauchy problem (P ) converges when t → +∞ to a nonnegative stationary solution, that is, a solution p ≥ 0 of the problem:

-D ∂ xx p = f (x, p), x ∈ R. (6) 
More precisely, in [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF] the authors have given a necessary and sufficient condition for the existence of a positive stationary state p. This condition is based on the description of the linear stability of the steady state 0, i.e., on the sign of the principal eigenvalue of the linear operator L 0 :

L 0 : ψ → -D∂ xx ψ -r(x)ψ, (7) 
with periodicity assumptions on ψ. We recall that, from the Krein-Rutman Theorem [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF], there exists a unique k 0 ∈ R and a unique function

ψ 0 ∈ C 2 (R) such that          -D∂ xx ψ 0 -r(x)ψ 0 = k 0 ψ 0 , x ∈ R, ψ 0 is 1-periodic, ψ 0 (x) > 0, x ∈ R, ψ 0 (0) = 1. ( 8 
)
The results of [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF] show that, under our assumptions on the function f, Proposition 2.1. 1) The equation ( 6) admits a positive and bounded solution p > 0 if and only if k 0 < 0.

2) If k 0 < 0, the bounded solution p > 0 of equation ( 6) is unique and 1-periodic in x.

3) Let u 0 ∈ C 0 (R) be bounded and such that u 0 ≥ 0, u 0 ≡ 0. If k 0 ≥ 0, then the solution u(t, x) of (P ) converges to 0 uniformly in x as t → +∞. If k 0 < 0, then u(t, x) converges to the solution p > 0 of equation ( 6) locally uniformly in x, as t → +∞.

The point 3) of the above proposition shows that, whatever the initial condition, the asymptotic spreading speed of the solution u(t, x) is equal to 0 if k 0 ≥ 0. In the remaining part of the manuscript, we need to observe positive spreading speeds. As a consequence, we have to assume that k 0 < 0. A sufficient condition on r(x) such that k 0 < 0 is (see proposition 2.9 in [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF]):

1 0 r(x) dx ≥ 0, with r ≡ 0 on [0, 1]. ( 9 
)

Initial conditions and asymptotic spreading speed

In the case of Heaviside and compactly supported initial conditions, the asymptotic spreading speed w * exists, does not depend on this initial condition, is finite and satisfies (3). Now, we consider a family of bounded front-like initial conditions u 0,λ satisfying for some α ∈ (0, 1), x 0 > 0 and all λ > 0:

u 0,λ ∈ C 0,α (R), u 0,λ ≥ 0, lim inf x→-∞ u 0,λ (x) > 0, (10) 
and

u 0,λ (x) = e -λx for x ≥ x 0 . (11) 
We define the asymptotic spreading speed of the solution u λ (t, x) of the Cauchy problem (P ) starting with the initial condition u 0 (x) = u 0,λ (x) as the nonnegative real number w λ such that:

   lim t→+∞ u λ (t, x + ct) = 0, ∀c > w λ , x ∈ R, lim inf t→+∞ u λ (t, x + ct) > 0, ∀ 0 ≤ c < w λ , x ∈ R. (12) 
Depending on the initial condition, the asymptotic spreading speed could be finite or not [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF][START_REF] Roques | Recolonisation by diffusion can generate increasing rates of spread[END_REF]. In the case of Heaviside and compactly supported initial conditions, we have already mentioned that the asymptotic spreading speed w * is finite and (3) is satisfied. Besides, this asymptotic spreading speed is characterised by the following formula (see [START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF]):

w * = min λ>0 -k λ λ , (13) 
where k λ is the principal eigenvalue of the operator:

L λ : ψ λ → -Dψ ′′ λ + 2λDψ ′ λ -λ 2 Dψ λ -r(x)ψ λ , (14) 
with periodicity conditions, where r(x) = ∂ u f (x, 0) . The next result describes the asymptotic spreading speed in terms of the initial condition. It is well known in the case of Heaviside and compactly supported initial conditions. To the best of our knowledge, it is not clearly stated in the existing literature for exponentially decaying initial conditions. In this proposition we show the existence of a finite asymptotic spreading speed w λ and we give a formula for w λ , under our assumptions on the initial conditions u 0,λ . Proposition 2.2. Assume that f satisfies (1), (2), the regularity assumptions of Section 2.1 and that k 0 < 0 (see Section 2.2). Let u 0,λ satisfy (10), [START_REF] Billingham | The development of traveling waves in quadratic and cubic autocatalysis with unequal diffusion rates I. permanent form of traveling waves Phil[END_REF] and u λ (t, x) be the solution of problem (P ) with initial condition u 0,λ (x). Then, we can associate to u λ (t, x) a finite asymptotic spreading speed w λ such that

   w λ = -k λ λ if 0 < λ < λ * , w λ = w * otherwise, (15) 
where k λ is the principal eigenvalue of the operator defined by ( 14) and λ * = λ * (r) is the unique positive real number such that w * = -k λ * λ * . Proof. See the proof of this proposition in Section 4.

Uniqueness result

Finally we state our main uniqueness result.

Theorem 2.1. Let f (resp. f ) check ( 1), ( 2), the regularity assumptions of Section 2.1 and assume that k 0 < 0 (resp. k0 < 0 ) and r(x) ∈ M 1 (resp. ∂ u f (x, 0) = r(x) ∈ M 1 ). Let u λ (t, x) (resp. ũλ (t, x)), be the solution of the Cauchy problem (P ) (resp. ( P )) associated to f and u 0,λ (x) (resp. f and u 0,λ (x)). If we assume that the asymptotic spreading speeds w λ (resp. wλ ) associated to u λ (resp. ũλ ) coincide on a continuum of values of λ, that is to say

∃λ 1 > 0 such that ∀λ ∈ (0, λ 1 ), w λ = wλ , then r(x) = r(x) or r(x) = r(-x + θ).
This result shows that the linear part r(x) = ∂ u f (x, 0) of the reaction term f (x, u) in (P ) is uniquely determined (up to a symmetry) by the knowledge of the asymptotic spreading speeds w λ , for λ ∈ (0, λ 1 ). The proof is based on the equality of the first and the second moments of the functions r(x) and r(x) (see Lemma 3.2 and Lemma 3.3). The derivation of the equality of the higher-order moments would be more involved, but would enable one to extend the result of Theorem 2.1 to more general classes of functions than those in M 1 .

Proof of the main Theorem

Our goal is to reconstruct any potential r(x) element of M 1 , from observations of the asymptotic spreading speed which corresponds to a physical and measurable observation. Let w λ (r) and w λ (r) be the asymptotic spreading speed associated to r and r respectively. From the assumption of Theorem 2.1, we have w λ (r) = w λ (r) for all λ ∈ (0, λ 1 ). Thus, from Proposition 2.2, k λ (r) = k λ (r) for all λ ∈ (0, min(λ 1 , λ * (r), λ * (r))). This result follows from the analyticity of the coefficients in [START_REF] Choi | Inverse problem for a parabolic equation with space-periodic boundary conditions by a Carleman estimate Inverse[END_REF] and from the simplicity of k λ , the principal eigenvalue of L λ (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]).

The analyticity of the functions λ → k λ (r) and λ → k λ (r) implies that (H) : k λ (r) = k λ (r), for all λ > 0.

We want to prove that the property (H) implies that: r(x) = r(x) or r(x) = r(-x + θ).

For this, we consider r(x), r(x) two elements of M 1 such that

r(x) = ax + b if x ∈ [0, θ), r(x) = cx + d if x ∈ [θ, 1), for a, b, c, d ∈ R, and 
r(x) = ãx + b if x ∈ [0, θ), r(x) = cx + d if x ∈ [θ, 1), for ã, b, c, d ∈ R.
Using the regularity and periodicity hypothesis of r(x), we deduce

   r(x) = ax + b, for x ∈ [0, θ), r(x) = - aθ 1 -θ x + b + aθ 1 -θ , if x ∈ [θ, 1). ( 16 
)
Thus, from ( 16), there exist

A, B ∈ R such that r(x) = Ar(x) + B, ∀x ∈ R. (17) 
The proof will be developed in several parts. In a first step we prove the lemma: Lemma 3.2. For any r, r ∈ M 1 and verifying the hypothesis (H), we have:

1 0 r(x) dx = 1 0 r(x) dx = r.
Proof. We consider the following problem:

         -Dψ ′′ λ + 2λDψ ′ λ -(λ 2 D + r(x))ψ λ = k λ (r)ψ λ in R, ψ λ > 0, ψ λ 1-periodic , ψ λ (0) = 1. ( 18 
)
According to [START_REF] Berestycki | Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena[END_REF] (Theorem 2.1 p.8), we have as λ → +∞

k λ (r) + λ 2 D → - 1 0 r(x) dx, and k λ (r) + λ 2 D → - 1 0 r(x) dx. (19) 
Thus, using property (H) and [START_REF] Cristofol | Stable estimation of two coefficients in a nonlinear Fisher KPP equation Inverse Problems[END_REF] we deduce the result of Lemma 3.2 (see another proof of this result in Lemma 5.1). Lemma 3.3. For any r, r ∈ M 1 , and verifying the property (H), we have:

1 0 (r(x) -r) 2 dx = 1 0 (r(x) -r) 2 dx.
Proof. See the proof of this Lemma in Section 5.

From ( 17) we obtain

1 0 r2 (x)dx = A 2 1 0 r 2 (x)dx + 2AB 1 0 r(x)dx + B 2 ,
by using Lemma 3.2 and Lemma 3.3 we get

(1 -A 2 ) 1 0 r 2 (x)dx = B (1 + A) 1 0 r(x)dx , for A = -1 we obtain (1 -A) 1 0 r 2 (x)dx = B 1 0 r(x)dx,
by using the fact that B = (1 -A)

1 0 r(x)dx, for A = 1, we conclude that 1 0 r 2 (x)dx = 1 0 r(x)dx 2 . (20) 
From the Cauchy inequality, the equality ( 20) is true if and only if r is constant. Thanks to [START_REF] Cristofol | Biological invasions: deriving the regions at risk from partial measurements[END_REF] we deduce that r is also constant, and according to Lemma 3.2 we obtain r = r. By symmetry we also deduce that if r is constant then r is constant so r = r. Now we consider the case A = 1. We have

1 0 r(x)dx = 1 0 r(x) dx + B.
By using the fact that 1 0 r(x) dx = 1 0 r(x) dx, we conclude that B = 0, so r(x) = r(x).

Finally, if A = -1, then r(x) = -r(x) + B, so r(x) = r(-x + θ).

Remark 1. In the homogeneous case, i.e, if f does not depend on x, the uniqueness result of Theorem 2.1 is obvious. In such case, it is known [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation Partial Differential Equations and Related Topics Lectures Notes in Mathematics[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique Bull[END_REF] that case w * = 2 √ r D, thus w * = w * implies that r = r.

Proof of Proposition 2.2

Recall that for the Cauchy problem (P ) associated with compactly supported or Heaviside initial conditions, we can define an asymptotic speed of propagation (see formula (3)). In the case of exponentially decaying initial conditions of the type ( 10)- [START_REF] Billingham | The development of traveling waves in quadratic and cubic autocatalysis with unequal diffusion rates I. permanent form of traveling waves Phil[END_REF] we have to prove the existence of this speed. The proof is based on the construction of appropriate sub and super-solutions for the system (P ). We are going to use the notion of pulsating traveling wave for the equation:

∂ t u = D∂ xx u + g l (x, u), with g l (x, u) = 1 l f (x, lu) for some l > 0. Note that, ∂ u g l (x, 0) = ∂ u f (x, 0), ∀l > 0.
In view to carry out sub-solutions and super-solutions of problem (P ), we consider the following problem:

     -D∂ xx p l = g l (x, p l ), x ∈ R, p l is 1-periodic, p l > 0. (21)
Now, we consider the solution u λ (t, x) of (P ) with initial condition u 0,λ (x). We construct a super-solution for this problem. In that respect we first look for l such that the solution p l (x) of ( 21) satisfies:

min R p l > sup R u 0,λ . (22) 
Let us show that such a value of l exists. Let p(x) = p 1 (x) be the unique positive solution of

-D∂ xx p = f (x, p), x ∈ R. (23) 
It is known, from Proposition 2.1, that p(x) is strictly positive and periodic. Thus, it exists δ 1 , δ 2 > 0 such that 0 < δ 1 < p(x) < δ 2 on R.

Recall that the function p l satisfies: -D∂ xx p l = 1 l f (x, lp l ) for x ∈ R. Let us set q(x) = lp l (x). Then q verifies the following equation:

-D∂ xx q = f (x, q).
By uniqueness (Proposition 2.1), we deduce q(x) = p(x), and finally p l (x) = p(x) l . From [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] we obtain:

δ 1 l < p l (x) < δ 2 l . ( 25 
)
Let l 1 < 1 be such that

δ 1 l 1 > sup R u 0,λ . Then we can write min R p l 1 > sup R u 0,λ . (26) 
In a first step we consider λ ′ ∈ (0, λ) such that λ ′ < λ * and let

c ′ = -k λ ′ λ ′ > c * = -k λ * λ * . We consider U l 1 c ′ (t,
x), a pulsating traveling wave solution of the problem:

         ∂ t U l 1 c ′ = D∂ xx U l 1 c ′ + g l 1 (x, U l 1 c ′ ), t ∈ R, x ∈ R, ∀z ∈ Z, ∀(t, x) ∈ R × R, U l 1 c ′ (t + z c ′ , x) = U l 1 c ′ (t, x -z), ∀(t, x) ∈ R × R, 0 ≤ U l 1 c ′ (t, x) ≤ p l 1 (x), lim x→-∞ |U l 1 c ′ (t, x) -p l 1 (x)| = 0 and lim x→+∞ U l 1 c ′ (t, x) = 0, ( 27 
)
where the above limits hold locally in t. The existence of this solution follows from [START_REF] Berestycki | Analysis of the periodically fragmented environment model: II -Biological invasions and pulsating travelling fronts[END_REF] and its uniqueness (up to a translation) is proved in [START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF].

From [START_REF] Hamel | Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity[END_REF], it is known that the asymptotic behavior of U l 1 c ′ (t, x) is:

U l 1 c ′ (t, x) ∼ Be -λ c ′ (x-c ′ t) ψ λ c ′ (x), as x → +∞, for B > 0, t ∈ R, (28) 
where λ c ′ is such that

λ c ′ = inf{λ > 0 such that k λ + λc ′ = 0}, ( 29 
)
and ψ λ c ′ (x) is the eigenfunction of the operator L λ c ′ (see ( 14)) associated to the principal eigenvalue k λ c ′ . From the convexity of the map λ → -k λ (see [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF]) and by definition of λ * (see Proposition 2.2), the equation k λ = -λc ′ admits at most two roots,

λ -≤ λ * ≤ λ + . Since λ ′ < λ * , we get that λ ′ = λ -= λ c ′ .
Moreover, since l 1 < 1 and f (x, s) s is decreasing we have

f (x, l 1 s) l 1 s > f (x, s) s .
Thus

g l 1 = 1 l 1 f (x, l 1 s) > f (x, s) for all s ≥ 0. Finally U l 1 c ′ (t, x) satisfies ∂ t U l 1 c ′ -D∂ xx U l 1 c ′ = g l 1 (x, U l 1 c ′ ) > f (x, U l 1 c ′ ), x ∈ R. Then U l 1 c ′ (t, x
) is a super-solution for the problem (P ). Now we want to prove that

U l 1 c ′ (0, x) ≥ u 0,λ (x), ∀x ∈ R. (30) 
From ( 28), we get U l 1 c ′ (0, x) ∼ Be -λ ′ x ψ λ ′ (x), as x → +∞. Using that ψ λ ′ (x) is continuous, 1-periodic, ψ λ ′ (x) strictly positive on [0, 1] and λ ′ < λ, we obtain

Be -λ ′ x ψ λ ′ (x) > e -λx , for x large enough. ( 31 
)
Then, there exists M > 0 such that for any x > M ,

U l 1 c ′ (0, x) ≥ e -λx = u 0,λ (x). ( 32 
)
From ( 26) and ( 27), we deduce that there exists m < 0 such that

min x≤m U l 1 c ′ (0, x) ≥ sup x∈R u 0,λ (x). ( 33 
)
It remains to prove that min

x∈[m,M ] U l 1 c ′ (0, x) ≥ sup x∈R u 0,λ (x). Let δ = min x∈[m,M ] U l 1 c ′ (0, x). (34) 
From the strong parabolic maximum principle, we know that δ > 0. Let L ≥ m be large enough such that e -λx < δ, for all x > L.

Then U l 1 c ′ (0, x -L + m) verifies [START_REF] Immanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF]. Indeed: -If x ≤ L, then x -L + m ≤ m. From [START_REF] Klibanov | Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation Inverse[END_REF], it follows that

U l 1 c ′ (0, x -L + m) ≥ sup x∈R u 0,λ (x). 
-

If x ∈ (L, L + M -m), then m ≤ x -L + m ≤ M and, from (34), U l 1 c ′ (0, x -L + m) > δ > e -λx = u 0,λ (x). -If x ≥ L + M -m, then x -L + m ≥ M
and, from [START_REF] Kato | Perturbation theory for linear operators[END_REF],

U l 1 c ′ (0, x -L + m) ≥ e -λ(x-L+m) ≥ e -λx e +λ(L-m) ≥ e -λx = u 0,λ (x).
Thus, even if it means translating U l 1 c ′ (0, x) to the right, we can assume that

U l 1 c ′ (0, x) > u 0,λ (x), ∀x ∈ R. Since U l 1 c ′ (0, x) > u 0,λ (x) 
and since U l 1 c ′ is a super-solution of (P ), a comparison principle implies that for all λ ′ ∈ (0, min(λ, λ * )),

U l 1 c ′ (t, x) > u λ (t, x), t ≥ 0, x ∈ R, (35) 
with c ′ = -k λ ′ λ ′ . In a second step we consider λ ′′ such that 0 < λ < λ ′′ < λ * and let

c ′′ = -k λ ′′ λ ′′ . Let l 2 > 1 be such that δ 2 l 2 < lim inf x→-∞ u 0,λ (x) 
(see [START_REF] Hamel | Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity[END_REF]). We consider U l 2 c ′′ (t, x) the pulsating traveling wave solution of the problem (27) (with l 2 instead of l 1 and c ′′ instead of c ′ ).

Using the same arguments as above, and the fact that max

R p l 2 < δ 2 l 2 < lim inf x→-∞ u 0,λ (x), it is easily seen that U l 2 c ′′ (t, x
) is a sub-solution of the problem (P ) satisfying

U l 2 c ′′ (0, x) < u 0,λ (x) 
(even if it means translating U l 2 c ′′ (0, x) to the left). A comparison principle implies that for all

λ ′′ ∈ (λ, λ * ), U l 2 c ′′ (t, x) < u λ (x), t ≥ 0, x ∈ R. (36) 
So we get from [START_REF] Lorenzi | An inverse problem for a semilinear parabolic equation[END_REF] and [START_REF] Murray | Mathematical Biology Third Edition[END_REF] an appropriate pair of sub and super-solutions for the problem (P ), and we can write:

U l 2 c ′′ (t, x) < u λ (t, x) < U l 1 c ′ (t, x), for all t ≥ 0, x ∈ R, λ ∈ (λ ′ , λ ′′ ).
Now we are going to complete the proof of the existence of an asymptotic spreading speed associated to problem (P ) with initial conditions of the type ( 10)- [START_REF] Billingham | The development of traveling waves in quadratic and cubic autocatalysis with unequal diffusion rates I. permanent form of traveling waves Phil[END_REF].

-First case: if λ < λ * , we prove that w λ = -k λ λ verifies [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems Soviet Mathematics[END_REF].

(i) Let c > w λ = -k λ λ , we want to prove that lim t→+∞ u λ (t, x + ct) = 0, for all x ∈ R. Let λ ′ ∈ (0, λ) be such that -k λ λ < -k λ ′ λ ′ < c; the existence of λ ′ follows from the continuity of s → k s s . We know from (35) that u λ (t, x + ct) < U l 1 c ′ (t, x + ct), with w λ < c ′ = -k λ ′ λ ′ < c. Since c ′ < c we obtain from (27) lim t→+∞ U l 1 c ′ (t, x+ct) = 0. We conclude that if c > w λ then lim t→+∞ u λ (t, x + ct) = 0, for all x ∈ R. ( 37 
) (ii) Let c < w λ = -k λ λ . We want to prove that lim inf t→+∞ u λ (t, x + ct) > 0. Let λ ′′ ∈ (λ, λ * ) be such that c < -k λ ′′ λ ′′ < -k λ λ
. We know from [START_REF] Murray | Mathematical Biology Third Edition[END_REF], that

U l 2 c ′′ (t, x + ct) < u λ (t, x + ct), with c < c ′′ = -k λ ′′ λ ′′ < w λ . Since c < c ′′ we obtain from (27) that lim inf t→+∞ U l 2 c ′′ (t, x + ct) > 0.
We conclude that if c < w λ then lim inf t→+∞ u λ (t, x + ct) > 0, for all x ∈ R.

Using [START_REF] Pilant | An inverse problem for a nonlinear parabolic equation[END_REF] together with [START_REF] Roques | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF] imply that w λ = -k λ λ is the spreading speed of u λ in the sense of ( 12) when λ ∈ (0, λ * ).

-Second case: if λ ≥ λ * , we prove that w λ = w * .

(i) Let c > w * , and consider λ ′ ∈ (0, λ * ) such that w

* < -k λ ′ λ ′ = c ′ < c. From (35), we know that 0 < u λ (t, x) < U l 1 c ′ (t, x), t ≥ 0, x ∈ R.
From (3) and since 0 < c ′ < c, it follows that lim t→+∞ u λ (t, x + ct) = 0, for all x ∈ R.

(ii) Let c < w * and V (t, x) be a solution of (P ) with compactly supported initial condition such that 0 ≤ V (0, x) < u 0,λ (x) for all x ∈ R. A comparison principle implies that 0 < V (t, x) < u λ (t, x) for all t > 0, x ∈ R.

Thus u λ (t, x + ct) > V (t, x + ct), for all t > 0, x ∈ R.

From [START_REF] Hamel | viscosity solution method for the spreading speed formula in slowly varying media Indiana[END_REF], we know that lim inf t→+∞ V (t, x + ct) > 0, for all x ∈ R.

Thus lim inf

t→+∞ u λ (t, x + ct) > 0, for all x ∈ R.

Using [START_REF] Roques | The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system Inverse[END_REF] together with [START_REF] Roques | Allee effect promotes diversity in traveling waves of colonization[END_REF] imply that w * is the spreading speed of u λ for all λ ≥ λ * .

Proof of Lemma 3.3

We consider the following problem

         Dψ ′′ λ -2λDψ ′ λ + r(x)ψ λ = -l λ (r)ψ λ in R, ψ λ > 0, ψ λ 1-periodic, ψ λ (0) = 1, (41) 
where l λ (r) = k λ (r) + λ 2 D. We define the functions r λ and h λ by

l λ (r) = -r + r λ λ 2 ,
and

ψ λ (x) = 1 + f 1 (x) λ + h λ (x) λ 2 , where f 1 (x) := 1 2D
x 0 (r(s) -r)ds.

We derive from (41):

0 = (2Df ′ 1 -r(x) -l λ (r)) + 1 λ ( -Df ′′ 1 + 2Dh ′ λ -r(x)f 1 -l λ (r)f 1 ) + 1 λ 2 ( -Dh ′′ λ -r(x)h λ -l λ (r)h λ ) = ( -l λ (r) -r) + 1 λ ( -Df ′′ 1 + 2Dh ′ λ -r(x)f 1 + rf 1 ) + 1 λ 2 ( -Dh ′′ λ -r(x)h λ + rh λ ) - 1 λ 3 r λ f 1 - 1 λ 4 r λ h λ = 1 λ ( -Df ′′ 1 + 2Dh ′ λ -r(x)f 1 + rf 1 ) + 1 λ 2 ( -Dh ′′ λ -r(x)h λ + rh λ -r λ ) - 1 λ 3 r λ f 1 - 1 λ 4 r λ h λ . (42) 
Now we prove that a 2 := lim Proof. We know (see [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF] for example) that

l λ (r) = sup{l ∈ R, ∃ψ ∈ W 2,∞ per (R), ψ > 0 in R, -L λ ψ ≥ lψ a.e. in R}, = inf{l ∈ R, ∃ψ ∈ W 2,∞ per (R), ψ > 0 in R, -L λ ψ ≤ lψ a.e. in R}.
Using ψ(x) = 1 + f 1 (x) λ as a test-function, taking λ large enough so that 1 + f 1 (x) λ > 0 for all x, we get almost everywhere:

-L λ ψ = - Df ′′ 1 (x) λ + 2λDf ′ 1 (x) λ -r(x) - r(x)f 1 (x) λ , = - r ′ (x) 2λ + r(x) -r -r(x) - r(x)f 1 (x) λ , ≥ - C 0 λ -r,
where C 0 is a constant which only depends on r ∞ and r ′ ∞ . Take C large enough so that

C + Cf 1 (x) λ + rf 1 (x) ≥ C 0 .
We derive from this inequality that

- C λ -r ψ ≤ - C 0 λ -r over R.
Hence -L λ ψ ≥ -C λ -r ψ over R and we derive from the definition of l λ (r) that

l λ (r) ≥ - C λ -r.
Similarly, one can prove that, taking C larger if necessary,

l λ (r) ≤ C λ -r. Define θ λ ∈ W 2,∞ per (R) so that ψ λ (x) = 1 + f 1 (x) λ + θ λ (x) λ ,
where f 1 (x) := 1 2D

x 0 (r(s) -r)ds.

Rewriting the identity -L λ ψ λ = l λ (r)ψ λ with this change of functions, we get:

-L λ θ λ + (r - r λ λ 2 )θ λ = Df ′′ 1 (x) + (r(x) -r + r λ λ 2 )f 1 (x) + r λ λ =: F λ . ( 43 
)
Lemma 5.1 yields that r λ λ ≤ C for all λ. Thus, F λ ∈ L ∞ per (R) and there exists two constants λ > 0, C 0 > 0, so that for all λ ≥ λ, F λ ∞ ≤ C 0 . Multiplying (43) by θ ′′ λ and integrating, one gets, for all λ ≥ λ

1 0 (θ ′′ λ ) 2 dx = - 1 0 r(x) -r + r λ λ 2 θ λ θ ′′ λ dx - 1 0 F λ θ ′′ λ dx, = 1 0 r ′ (x)θ λ θ ′ λ dx + 1 0 r(x) -r + r λ λ 2 (θ ′ λ ) 2 dx - 1 0 F λ θ ′′ λ dx, ≤ C 1 ( θ ′ λ 2 L 2 (0,1) + θ ′′ λ L 2 (0,1) ), (44) 
where C 1 is a constant which only depends on r ′ ∞ , r ∞ , the constant C given by Lemma 5.1 and C 0 , and where we have used the inequalities

θ λ L 2 (0,1) ≤ θ λ ∞ ≤ θ ′ λ L 1 (0,1) ≤ θ ′ λ L 2 (0,1) , (45) 
since θ λ (0) = 0. Assume now that there exists a sequence (λ n ) n such that λ n ≥ λ and θ ′ λn L 2 (0,1) → +∞ as n → +∞. Let

ζ n := θ λn θ ′ λn L 2 (0,1) , so that ζ ′ n L 2 (0,1) = 1. Dividing (44) by θ ′ λn 2 L 2 (0,1) , one gets 1 0 (ζ ′′ n ) 2 dx ≤ C 1 1 + ζ ′′ n L 2 (0,1) θ ′ λn L 2 (0,1)
.

Thus, as lim n→+∞ θ ′ λn L 2 (0,1) = +∞, ( ζ ′′ n L 2 (0,1) ) n is bounded. As ζ ′ n L 2 (0,1) = 1 and ζ n L 2 (0,1) ≤ 1 for all n due to (45), we can extract a subsequence, that we still denote (ζ n ) n , which converges weakly in H 2 per (0, 1) as n → +∞. On the other hand, equation [START_REF] Tort | Determination of the insolation function in the nonlinear Sellers climate model[END_REF] gives

2λ n ζ ′ n = ζ ′′ n + (r(x) -r + r λn λ 2 n )ζ n + F λn θ ′ λn L 2 (0,1)
, and thus the sequence (λ n ζ ′ n ) n is bounded in L 2 (0, 1), which is a contradiction since ζ ′ n L 2 (0,1) = 1 for all n. We thus conclude that the family (θ ′ λ ) λ≥ λ is bounded in L 2 (0, 1). It follows that (θ λ ) λ≥ λ and (θ ′′ λ ) λ≥ λ are bounded in L 2 (0, 1) due to [START_REF] Turchin | Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants[END_REF] and ( 45) respectively, and thus [START_REF] Tort | Determination of the insolation function in the nonlinear Sellers climate model[END_REF] implies that (λθ ′ λ ) λ≥ λ is bounded in L 2 (0, 1). The same chain of inequalities yields that (λθ λ ) λ≥ λ is bounded in H 2 (0, 1).

By replacing in [START_REF] Tort | Determination of the insolation function in the nonlinear Sellers climate model[END_REF] 

We have shown previously that r λ and h λ H 2 (0,1) are bounded uniformly with respect to λ ≥ λ. Then r λ λ → 0 as λ → +∞. Passing to the limit in [START_REF] Xin | Existence of planar flame fronts in convective-diffusive periodic media[END_REF], we get that f 2 := lim λ→+∞ h λ is well-defined in H 1 (0, 1) and that

f ′ 2 = 1 2 (f ′′ 1 + (r(x) -r) D f 1 ).
Lastly, letting λ → +∞ in [START_REF] Xin | Front propagation in heterogeneous media[END_REF], we obtain lim λ→+∞ r λ = - By taking the limit in [START_REF] Xin | Existence of planar flame fronts in convective-diffusive periodic media[END_REF] we get: 

-Df ′′ 1 + 2Df ′ 2 -r(x)f 1 + rf 1 = 0, (48) 

Lemma 3 . 1 .

 31 For any r ∈ M 1 , the function : λ → k λ (r) is analytic.

λ→+∞ r λ and f 2

 2 (x) := lim λ→+∞ h λ (x) are well-defined by using Lemma 5.1. Lemma 5.1. There exists a constant C > 0 such that |l λ (r) + r| ≤ C/λ.

θ λ by h λ λ , we get 0 =r λ f 1 λ 2 - r λ h λ λ 3 .( 46 )and noticing that 1 0 1 0f 1 f ′ 1 dx = D 1 0 (f 2 1 )

 023461111 -Df ′′ 1 + 2Dh ′ λ + (r -r)f 1 -1 λ (Dh ′′ λ + (r -r)h λ +r λ )-Integrating (r -r(x))f 1 dx = 2D ′ dx = 0x) -r)h λ (x)dx -

1 0

 1 (r(x) -r)f 2 dx = a 2 . Now, we can claim that a 2 := lim λ→+∞ r λ and f 2 (x) := lim λ→+∞ h λ (x) are well-defined.

and a 2 = 1 0 2 = - 1 0 1 0

 21211 (r -r(x))f 2 (x)dx. Define M (x) := x 0 r(y)dy and integrate by parts:a (rx -M (x))f ′ 2 (x)dx(there is no boundary terms since M (1) = rdx = r). We compute f ′ 2 using the first equation in (48): x) -rx)(Df ′′ 1 + (r(x) -r)f 1 )dx, x) -r) 2 dx -x) -rx) 3 dx, x) -r) 2 dx + o( 1 λ 2 ),from which the conclusion follows from Lemma 3.2 and l λ (r) = l λ (r) for all λ > 0.
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