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Automatic selection of ergonomic indicators for the design of

collaborative robots: a virtual-human in the loop approach

P. Maurice1,2,3, Ph. Schlehuber1,2, V. Padois1,2, Y. Measson3 and Ph. Bidaud1,2,4

Abstract— The growing number of musculoskeletal disorders
in industry could be addressed by the use of collaborative
robots, which allow the joint manipulation of objects by both
a robot and a person. Designing these robots requires to
assess the ergonomic benefit they offer. However there is a
lack of adapted assessment methods in the literature. Many
biomechanical quantities can represent the physical solicitations
to which the worker is exposed, but their relevance strongly
depends on the considered task. This paper presents a method
to automatically select relevant ergonomic indicators for a given
task to be performed with a collaborative robot. A virtual hu-
man simulation is used to estimate thirty indicators for varying
human and robot features. A variance-based analysis is then
conducted to extract the most discriminating indicators. The
method is validated on several different tasks. The relevance of
the proposed approach is confirmed by the obtained results.

I. INTRODUCTION

Work-related musculoskeletal disorders (MSD) represent a

major health problem in developed countries. They account

for the majority of reported occupational diseases and affect

almost 50 % of workers [1]. Since MSD result from stren-

uous biomechanical solicitations [2], assisting workers with

collaborative robots can be a solution when a task is physi-

cally demanding yet too complex to be fully automatized. A

collaborative robot enables the joint manipulation of objects

with the worker and thereby provides a variety of benefits,

such as strength amplification, inertia masking and guidance

via virtual surfaces and paths [3].

In order to design a robot which decreases at best the risk

of developing MSD, an ergonomic assessment of the robot-

worker system must be performed throughout the design

process. For cost and time reasons these evaluations can be

carried out within a digital world where modifying the robot

is simpler. Besides, the use of a virtual manikin enables easy

access to many biomechanical quantities, which otherwise

require heavy instrumentation of the worker.

To perform this kind of evaluation, several digital human

software tools for ergonomic analysis are commercially

available (e.g. Jack [4], Delmia, AnyBody [5]). However

none of them provide an assessment method suitable for

collaborative robots design [6]. Some return a sole criterion

representing the global level of exposure, and are very

rough or task-specific. Indeed the way the various MSD
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factors interact is not well-established, therefore it is hard to

formulate a criterion both general and accurate. The others

on the contrary return one measurement per joint and per

kind of solicitation (e.g. joint position or force), and the high

number of outputs makes it difficult for the user to interpret.

Besides, in the context of optimal design for collaborative

robots, these ergonomic criteria represent the objectives to

minimize. So their number must be limited, yet the remaining

criteria must sufficiently account for the global ergonomic

level of the task.

It is therefore necessary to identify the most relevant

criteria among all the available ones. Though the features

of the considered task evidently affect the relevance of

each criterion, establishing general selection guidelines based

only on the task description (a priori selection) may be

quite challenging and lead to inaccurate conclusion. This is

especially true when a collaborative robot is used because

it can deeply modify the physical stress experienced by

the worker and change the nature of the task. Besides the

general purpose is not to estimate the absolute level of MSD

risk, but to find a proper way to compare different assistive

devices. Therefore the most relevant criteria are the ones

which differentiate the various ways of performing the task.

This paper presents a method to automatically select

the most discriminating ergonomic indicators, for a given

task but independently from the robot design because it is

supposed to change during the optimization process. The

chosen approach relies on a variance-based analysis of the

indicators, i.e. how much they are affected by the way the

task is performed. This requires to measure their values for

various situations. Section II therefore presents the different

elements needed to produce these data. Section III describes

the ergonomic indicators and the selection method. The

results are presented in section IV and discussed in section

V.

II. SIMULATION SET-UP

The method presented in this paper is based on the study

of a task execution in different situations, with and without

the use of a collaborative robot. This requires to simulate the

task jointly performed by a worker and a robot. Therefore

the XDE dynamic simulation framework developed by CEA-

LIST1 is used, since it provides a digital human model which

can be controlled and physically interact with a robot.

The only assistance considered in this work is strength

amplification. The robot is therefore controlled so that its

1www.kalisteo.fr/lsi/en/aucune/a-propos-de-xde



weight is compensated and the force it exerts on the envi-

ronment is an amplified image of the force applied by the

worker onto the robot. The control law is

τ r = αJT
ee,r Fvh + gr(qr) (1)

where τ r is the robot joint torques, qr the robot joint angles,

gr the vector of gravity forces, JT
ee,r the Jacobian matrix

of the robot end effector, Fvh the force applied by the

manikin onto the robot end effector, and α the amplification

coefficient. As for the manikin control, it is described in

section II-A.

Since the indicators selection must be independent from

the robot design, many different robots must be considered

in the analysis. In order to be as generic as possible, real

designs are not used in the simulation, but rather a robot is

modelled by its effects (positive and negative) on the worker.

These effects are represented by a set of parameters, each

combination of their values leading to a different situation.

Parameters representing the diversity of workers are added,

so as to ensure that the human features do not have a strong

impact on the selection of the relevant indicators. Otherwise

the robot should include some adjustable parts in order to

adapt to each worker. However the computational cost of

a simulation can be expensive, so the number of situations

which are tested is limited and the values of the parameters

must be carefully selected. This process is described in

section II-B.

Eventually, the ergonomic indicators are measured in the

simulation and then analyzed, in order to identify the relevant

ones. The whole method is summarized in Fig 1.

In order to test this method and ensure that the task

features do affect the selection of the ergonomic indicators,

several case-study tasks of different kinds are considered:

• walking one or several steps, forward, backward or

sideways;

• reaching various targets, with both hands;

• exerting various forces (direction and magnitude) with

and without movement of the hand (e.g. pushing or

carrying objects);

• following trajectories with the hand, with various accu-

racies and at various speeds;

• bending while leaning with one hand.

A. Manikin control

The XDE-manikin consists of 21 rigid bodies linked

together by 20 joints with a total of 45 degrees of freedom,

plus 6 DoFs for the free floating base. Each DoF is a hinge

joint controlled by a sole actuator.

The motion of the manikin is determined by solving

an optimization problem to compute the joint torques and

contact forces which enable to follow some objectives at best

(e.g. hand trajectory, center of mass acceleration, hand force),

while respecting physical constraints. The LQP controller

framework developed by Salini et al. [7] is used. The control
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Fig. 1. Flow chart of the method presented in this paper to select relevant
ergonomic indicators.

problem is formulated as follows

argmin
X

∑

i

ωiTi(X)

s.t.

{

M(q)q̈+C(q, q̇) + g(q) = S τ − JT
c (q)wc

GX � h

(2)

where τ is the joint torques, wc the contact forces, q the gen-

eralized coordinates of the system, with q̇ and q̈ its first and

second derivatives, and X = (τ ,wc, q̈)
T . The first constraint

is the equation of motion: M is the inertia matrix of the

system, C the vector of centrifugal and Coriolis forces, g the

vector of gravity forces, S the actuation selection matrix, and

JT
c the Jacobian of contacts. The second constraint includes

the bounds on the joint positions, velocities and torques, and

the contact existence conditions for each contact point.

The objective function is a weighted sum of tasks Ti

representing the squared error between a desired acceleration

or wrench and the system acceleration/wrench (ωi are the

weighting coefficients). The following tasks are defined

• Operational space acceleration ‖Jiq̈+ J̇iq̇− Ẍ∗

i ‖
2

• Joint acceleration ‖q̈− q̈∗‖2

• Operational space wrench ‖wi −w∗

i ‖
2

• Joint torque ‖τ − τ
∗‖2



where Ẍi is the Cartesian acceleration of body i, and wi

the wrench associated with body i. The superscript ∗ refers

to the desired acceleration/force, which are defined by a

proportional derivative control. For instance, the desired

acceleration is

Ẍ∗ = Ẍgoal +Kv(Ẋ
goal − Ẋ) +Kp(X

goal −X) (3)

where Kp and Kv are the proportional and derivative gains.

The superscript goal indicates the position, velocity and

acceleration wanted for the body or joint.

A ZMP preview control method [8] is used to compute

the desired acceleration for the center of mass task, in order

to ensure the balance of the manikin during both standing

and walking phases. For the walking phases, the length and

duration of a step are parameters of the controller and must

be specified in advanced. The largest weight is associated

with this balance task, since balancing is the first priority.

The hands operational position and force tasks are given

the second most important weights, because they determine

whether the job is correctly performed or not. At the same

level, an orientation task is associated with the head so that

the manikin looks at what it is doing.

Then low weight joint position tasks are added to make

the manikin rest posture and motion more human-like. The

default desired joint positions (reference posture) correspond

to a standing posture, arms along the body. The weights of

these tasks are not equal, but rather decrease when nearing

the distal members (hands and feet), in order to favor their

motion compared to the body parts closer to the torso.

Finally there is a joint torque task which aims at minimiz-

ing the joint torques to prevent useless effort. Its weight is

very small since it must not hinder the other tasks.

B. Parameters definition

The input parameters represent the diversity of potential

workers and collaborative robots. The worker is defined by

his/her height and body mass index (bmi).

This work focuses on parallel comanipulation, i.e. the

worker manipulates the robot only by its end effector. The

robot is therefore simulated by a mass-spring-damper system

attached to the manikin hand. To limit the number of param-

eters, only the robot mass varies whereas the stiffness and

damping are currently kept constant. The amplification coeffi-

cient of the robot control law is also added to the parameters.

Aside from these amplification and supplementary inertia

effects, the robot can interfere with the worker because of its

volume. This can be simulated without making hypotheses on

the robot design, by limiting the movements of the worker

(joint limits) and modifying his posture (pelvis orientation

and joint reference positions). The robot is manipulated with

the right hand, therefore the left part of the body is not

affected by theses changes. Eventually, the step length and

weights of the arm joint position tasks are added to the

input parameters and represent either some preferences of

the worker or some interferences with the robot.

All these parameters take continuous values, but the num-

ber of simulations is limited by their computational cost, so

Parameter Minimum Maximum

manikin height (m) 1.65 1.80

manikin bmi (kg.m−2) 21.0 27.0

arm tasks weights 1, 0.1, 0.01 1, 1, 1

step length (m) 0.2 0.4

upper body joint limits 0.3 1.0

upper body
0, 0, 0, 45 15, 45, 45, 135

reference positions (◦)

pelvis orientation (◦) 0 30

robot mass (kg) 2 10

amplification coefficient 1 3

Fig. 2. Parameters minimum and maximum values. The weights of the arm
joint position tasks are specified as ratio of the largest one of these weights,
and they are given in the following order: scapula, shoulder, forearm (elbow
and wrist). The upper body joint limits are specified as ratio of the regular
joint limits, and applied on each joint of the back and right arm. The
reference positions of the upper body joint tasks are only modified for the
following joints: back flexion, shoulder flexion, shoulder abduction, elbow
flexion. They are given in this order and relative to the regular reference
posture (upright, arms along the body). The root orientation is given relative
to facing the work area.

the exploration of the parameters space must be optimized.

The values of the parameters sets are therefore chosen

according to the exploration method used for the Fourier

amplitude sensitivity testing (FAST) [9]. This is a good trade-

off between the number of trials, which is a lot smaller than

with Monte-Carlo methods, and the comprehensiveness of

the space exploration. The sample size is n= 2000 for each

parameter, which results in a total of 18000 simulations,

with one simulation taking approximately 2 minutes. The

numerical upper and lower bounds of the input parameters

considered in this work are given in Fig. 2.

III. ERGONOMIC INDICATORS

This section details the ergonomic indicators that are

considered, and the method used to identify the relevant ones.

A. Indicators definition

The ergonomic indicators quantify the effects of the phys-

ical solicitations on the worker. Most ergonomic assessment

methods exclude dynamic phenomena though they also gen-

erate MSD. Here on the contrary, the following biomechani-

cal quantities are measured thanks to the dynamic simulation

framework: joint position (A), velocity (B), acceleration (C),

power (D) and torque (E). Similarly to what is done for

robot manipulators [10], each one of these quantities is then

summed up on all the joints of a given body part, in order to

form more synthetic performance criteria. The mathematical

form of a criterion is

1

p

p
∑

i=1

(si)
2

(4)

where si is the biomechanical quantity (position, velocity, ...)

of joints i, and p the number of joints in the considered body

part: torso (a), right arm (b), left arm (c), or legs (d). When

physiological limit values are available, si is normalized

by its limit value smax
i before the summing [6]. However



these limits are strongly person-dependent, and maximum

values are often not well-documented in the literature (e.g.

joint velocities or accelerations), making the normalization

impossible.

In addition to these local indicators, global quantities

which represent the ability of the manikin to comfortably per-

form certain actions are considered. Its balance is estimated

through two indicators: the sum of the square distances

between the ZMP and the base of support boundaries (F)

[11], and the time before the ZMP reaches this boundary (G),

assuming its dynamic remains the same. The first quantity

represents the capacity to withstand external disturbances,

whereas the second evaluates the dynamic quality of the

balance. The capacity to produce force (resp. movement)

in a given direction is evaluated with the force (H) (resp.

velocity (J)) transmission ratio of the right hand proposed

by Chiu [12], except that the dynamic manipulability [13]

is used instead of the kinematic one. Eventually the kinetic

energy (K) of the whole body is added to the indicators list.

B. Selection method

The general purpose of this work is to limit the number

of ergonomic indicators needed to compare different collab-

orative robots. Therefore it is necessary to identify, among

the aforementioned indicators, the ones that best explain the

disparity of the results when the task is performed in various

ways. Thus the main ergonomic differences between several

situations (e.g. several collaborative robots designs) can be

summarized with only a few criteria.

Reducing the number of ergonomic indicators to keep only

the most informative ones is a problem of dimensionality

reduction. However most dimensionality reduction methods

form composite variables (i.e. combinations of the initial

variables), whereas here the resulting variables must remain

the ergonomic indicators. Indeed meaningful ergonomic cri-

teria cannot be formed by aggregating various indicators,

because the latter potentially have very different physical

meanings. So standard dimensionality reduction methods,

such as principal components analysis (PCA) cannot be used

here.

The importance of each ergonomic indicator is therefore

represented directly by its variance. A Scree test (or ”elbow”

rule) is then performed on the values of these variances,

to identify the discriminating indicators. This criterion is

usually used to select the number of dimensions in a PCA.

However before performing this analysis, the er-

gonomic indicators must be scaled because they have non-

homogeneous units (therefore not the same order of mag-

nitude), so they cannot be compared as such. In standard

dimensionality reduction methods, this is often done with

the variables standard deviation, but then the scaled variables

all have a unit variance. Since the variance is precisely

what represents the indicators global sensitivity to the task

parameters, this scaling would result in the loss of relevant

information. Therefore another option is to use the indicators

physiological limit values for this scaling. Though this is

ergonomically very meaningful, some indicators do not have

well-defined limits (e.g. kinetic energy), and even the existing

ones are often hard to find as stated in section III-A. Instead,

the order of magnitude of an indicator is estimated here with

its average value on all the case-study tasks. Indeed tasks of

many different kinds are considered and performed in many

different ways, therefore it can be assumed that the range of

values of each indicator is covered quite exhaustively.

The ergonomic indicators presented in section III-A are

measured for each time step of the simulation. However, the

selection method described here requires that each indicator

(for each situation) is represented by a single value. There-

fore the time-integral value of the indicator (on the whole

duration of the considered task) is used.

IV. RESULTS

Fig. 3 summarizes the ergonomic indicators that are iden-

tified as relevant for each task according to the selection

method detailed in section III-B. From 29 indicators in the

global list, between 3 and 9 indicators are selected for each

task. This selection results in the loss of less than 30 % of

the total information about the variance.

A. General remarks

Many of the selected indicators are in accordance with

what could be expected given the features of the correspond-

ing task. This is especially true for the tasks where force

exertion is associated with slow dynamic (e.g. tasks 12, 15

and 17). The biggest MSD risk factor therefore comes from

the significant efforts. Indeed the torque indicators of the

upper body parts (right arm, back and left arm in phase 17)

are among the most discriminating indicators.

In most of the walking and reaching tasks, the kinetic

energy is selected as a relevant indicator, whereas it is not

selected in other tasks. This is consistent with the fact that

walking and reaching generally involve whole-body motion,

but no significant effort. Even if the aim of this paper is not to

provide general guidelines for indicators selection, the kinetic

energy seems to be a good indicator to summarize the global

ergonomy of reaching and walking tasks, independently from

their detailed features.

Besides, the situations for which the selected indicators

take extreme values are physically consistent. Fig. 4 displays

the parameter values for which the most discriminating indi-

cator takes extreme values, in four typical tasks. These tasks

have been chosen because the most discriminating indicator

can be clearly identified (i.e. its variance is distinctly superior

to the others). The lower and upper extreme values of an

indicator are defined by its 5th and 95th percentiles values.

For each task, only one parameter appears in this table,

because the values of the other parameters are quite equally

distributed for these extreme cases. The results are discussed

below.
Walking sideways: In task 2, the kinetic energy increases

with the step length. The duration of one step is imposed,

so the bigger the step length, the faster the leg trajectory.

Besides, a faster step is more disturbing for the balance.

Therefore it leads to more motion of the whole body, which

also increases the kinetic energy.
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FTR: force transmission ratio

VTR: velocity transmission ratio

RH: right hand

LH: left hand

RA: right arm

LA: left arm

4 Push 100N RH along X axis - No RH movement

6 Pick up 3kg object RH  - Move it 60cm 

  Lean on table LH 

2 Follow straight line roughly

  0.5m/s average velocity - 5N force down

3 Follow square path accurately 

  0.065m/s average velocity - No force

1 Follow straight line roughly 

  0.1m/s average velocity - 36N force down

5 Bend whole body forward - Lean on table LH

Fig. 3. Ergonomic indicators identified as relevant based on their variance, for each phase of the task (presented in chronological order). An indicator
is relevant for a given phase when the corresponding square is colored. The number in the square is the value of the variance, computed on the scaled
indicator. The number at the bottom of each column corresponds to the total percentage of variance explained by the selected indicators. The red-green-blue
colors do not have a particular meaning, they are used only to help the reading of the table.
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Fig. 4. Parameter associated with the extreme values of the most discrimi-
nating ergonomic indicator, in four typical phases. The indicators minimum
and maximum values are displayed, with the corresponding parameters
values. The indicators values are the normalized ones (see section III-B),
therefore there is no unit. RA (resp. LA) stands for right (resp. left) arm.

Fast trajectory tracking: In task 13, the right arm acceler-

ation increases with the robot mass. This is due to the robot

inertia driving the manikin arm when the direction of motion

changes.

Pushing: In task 15, the right arm torque indicator is

minimum when the force amplification coefficient is max-

imum (and vice versa). Indeed, the bigger the amplification

provided by the robot, the smaller the force left to the

manikin to exert.

Bending: In tasks 16-17, the left arm torque indicator in-

creases with the manikin height. While bending, the manikin

leans on a table with its left arm to help keep its balance. But

the table height remains unchanged, so the taller the manikin,

the more it has to bend to reach the table. This results in a

more horizontal posture of its trunk, and therefore in more

weight to support on its leaning arm.

B. Analysis of specific phenomena

As stated in the previous section, most of the results are

consistent with what could be expected. However Fig. 3

also displays some less straightforward results which require

further explanation. They are detailed thereafter.



Force/Velocity transmission ratio (FTR/VTR): The FTR

represents the ease to exert a force in a given direction.

Therefore when a contact force is exerted in this direction,

the FTR is a qualitative image of the joint torques (e.g.

task 15). However it has no meaning when no contact force

is exerted with the corresponding body part, i.e. the right

hand in tasks 1, 9, 10 and 11. The same remark applies

to the velocity transmission ratio (VTR): if no motion is

required in the studied direction, the VTR cannot represent

the current ergonomic situation. Therefore, the initial list of

indicators must be adapted before the selection process: the

global indicators with no physical meaning for the considered

task should be removed. This can also explain why the VTR

indicators are never selected as relevant: most of the time,

the hand motion is not solely along one of the 3 main

directions (X,Y,Z). Actually it would be more meaningful to

compute the VTR along the hand direction of motion, and

the FTR too since the right hand drags the robot. However,

the corresponding data are very noisy and therefore cannot

be used in this work.

Arm indicators in walking phases: The results of most

walking/stepping tasks are at first counter-intuitive. The

left arm dynamic indicators are often very discriminating

(large variance), sometimes more than the legs indicators.

This actually highlights a balance problem. The stability of

the stepping is strongly affected by the input parameters.

So for some combination of their values, the manikin is

very unstable and performs bracing motions to help regain

balance. Since the feet positions and trajectories are imposed,

the arm motions which are not constrained are in comparison

much more diverse. The left arm is more affected because the

robot inertia on the right arm slows the arm motions down.

The balance-related indicators are not necessarily strongly

affected by this phenomena, because the arms bracing can

be sufficient to keep the ZMP trajectory quite unchanged

between different situations. Therefore they do not appear in

the discriminating indicators. However, though these results

are physically meaningful, the balance loss might result more

from a control problem (humanoid balance for dynamic

movements), than from a truly unstable situation for a human

being.

V. DISCUSSION

The physically consistent results validate the method pro-

posed in this paper. However its application within the design

process of collaborative robots for industrial tasks should

be considered carefully because of some current limitations

which are discussed thereafter.

A. Automatic segmentation of the task

The analysis proposed in this paper requires that, for a

given situation, each ergonomic indicator is represented by

a unique value (its time-integral, see section III-B). This

hypothesis makes sense here, because only elementary tasks

are considered. On the contrary industrial tasks that could be

addressed with collaborative robots are generally complex.

They should not be regarded as one and only task, but
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Fig. 5. Ergonomic indicators identified as discriminating for each time
step of tasks 3 and 9 played as a unique complex task. Each indicator is
represented by its corresponding letter defined in section III-A. A blue dot on
an indicator line means that this indicator is relevant for the corresponding
time step The red line is the limit between the phases used in this work. The
pink zone represents the transition phase in which the selected indicators
remain quite the same.

rather as a succession of elementary tasks. The value of

an ergonomic indicator may vary significantly from one

elementary task to another, so summarizing an indicator

with its time-integral on the whole task would result in a

considerable loss of information. Therefore a complex task

needs to be segmented in several elementary phases, in order

to select discriminating indicators separately for each phase.

If the identification of the main phases can be done

manually by the user, defining the limit between two phases

is more difficult. Indeed the first phase often affects the

following one, therefore defining the limit between both

phases when the second motion starts may not be optimal

regarding the selected indicators. This is especially true for

post-walking phases. The end of the walking represents a

strong change in the global dynamic of the body. This

change, which happens at the end of the walking phase,

can disturb the balance and therefore have consequences in

the next phase because regaining balance is not immediate.

To illustrate this phenomenon, tasks 3 (step forward) and 9

(reach 4) of Fig. 3 are concatenated and simulated as one

single task. Fig. 5 displays the ergonomic indicators that

are identified as discriminating for each time step of this

two phases. The limit between both phases is chosen here

as the time when the objectives in the manikin controller

change. No modification in terms of the selected indicators

happens at the pre-defined limit (red line on Fig. 5). On

the contrary, the fact that the same indicators are selected

around the transition (pink zone in Fig. 5) suggests that the



biomechanical solicitations during the transition are specific.

Therefore the transition should be considered as a distinct

phase. But the duration of the transition phase strongly

depends on the features of the first phase and cannot be

known beforehand. Therefore the segmentation of the task

in phases should rather be automatic and based on the evo-

lution of the indicators relevance. Besides, some elementary

tasks themselves segmented in several distinct phases could

probably be assessed more accurately.

Choosing a meaningful criterion to automatically identify

different phases in a task is not straightforward. As depicted

in Fig. 5, a segmentation based only on a change in the set

of discriminating indicators is not possible, because it leads

to far too many phases. However, this problem needs to be

worked on because it would improve the relevance of the

final ergonomic assessment.

B. Realism of the manikin behavior

Since the discriminating ergonomic indicators are iden-

tified based on a virtual human simulation, the ergonomic

relevance of the resulting selection strongly depends on the

realism of the manikin movements and forces. Though the

results presented in section IV show some physical consis-

tency, it is not sufficient to prove the human-like behavior

of the manikin.

First it should be noted that the realism of most common

DHM software tools for ergonomic assessment can be quite

limited. As highlighted in [14] and [15], biomechanical

quantities computed through virtual human simulation do not

always match their equivalent measured directly on a human-

being, which leads to wrong assessment of the risk. Indeed,

within most of these tools, the manikin is animated either

through motion capture data or directly by the user through

direct or inverse kinematics. In the first case, recording the

data require heavy instrumentation of the worker and also

a physical mock-up of the workstation so that the motion

are realistic, which is very time consuming. In the case

where direct kinematics is used, the manikin motions and

postures are entirely decided by the user. They are therefore

hardly ever realistic, especially when the user does not have

particular skills about human motion. Inverse kinematics

leads to better motions, however they still lack realism partly

because dynamics is not considered. Even when some semi-

automatic controls are provided (e.g. reaching, grasping,

gazing, walking) the motion sometimes looks unnatural.

Besides in all these tools, the interaction forces with the

environment are rarely considered to compute the motion,

except in Jack [4] where static posture can be predicted

based on hand force exertions. Also balance is almost always

ignored.

In this paper however, the manikin is animated with

an optimization technique which takes into account the

dynamics of the human body, the external force exertion

and the balance problem (see section II-A). The hands forces

required to perform a given task (e.g. push) are still specified

by the user, but the hands and feet contact forces necessary

to maintain balance result from the optimization. Therefore,

though there is still much to improve, this is a first step

towards a more human-like behavior of the manikin.

Actually simulating highly realistic human motions re-

quires to understand the psychophysical principles that vol-

untary movements obey. Many studies have already been

conducted in order to establish mathematical formulae of

these principles, especially for reaching motions (Fitt’s law,

minimum jerk principle,...). De Magistris et al. [16] have

successfully implemented some of them within the XDE

framework. However these improvements are currently lim-

ited to reaching motions since these driving principles are

not yet known for all kinds of motions. For instance, the

problem of feet positioning is of a very different kind, and

is a current research topic, both for walking [17] and for

manipulation tasks with significant interaction forces [18].

Nevertheless it should be noted that if the results of

the method proposed in this paper (i.e. which ergonomic

indicators are selected) strongly depends on the realism of the

manikin behavior, the method in itself is independent from

the manikin control. Thus in the near future an improved

control law could be used to animate the manikin, while the

indicators analysis method remains the same.

VI. CONCLUSIONS

A method to automatically identify relevant ergonomic

indicators for a given task performed with a collaborative

robot has been proposed. It is based on a virtual human

simulation to estimate the indicators values, for varying

human and robot features. A variance-based analysis was

then used to extract the most discriminating indicators. The

method has been validated on a complex task formed by

several different phases, analyzed separately. Between 3 and

9 indicators were selected in each phase, out of a list of 30

indicators. The selected indicators were for the most part in

accordance with intuitive ergonomic considerations. Results

also highlighted some less straightforward phenomena. The

chosen segmentation of the task in phases was questioned.

As a consequence, future work will be directed towards the

automatic segmentation of a task in different phases, so that

the segmentation is optimal with respect to the relevance

of the ergonomic indicators. A sensitivity analysis of the

ergonomic indicators will also be conducted in order to

evaluate the ergonomic effects of the various human and

robot parameters.

REFERENCES

[1] E. Schneider and X. Irastorza, “OSH in figures: Work-related muscu-
loskeletal disorders in the EU - Facts and figures,” European Agency
for Safety and Health at Work, Tech. Rep., 2010.
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of digital human modelling simulation results and their outcomes
in reality: A case study within manual assembly of automobiles,”
International Journal of Industrial Ergonomics, vol. 39, no. 2, pp.
428–441, 2009.

[16] G. De Magistris, A. Micaelli, P. Evrard, C. Andriot, J. Savin,
C. Gaudez, and J. Marsot, “Dynamic control of dhm for ergonomic
assessments,” International Journal of Industrial Ergonomics, vol. 43,
no. 2, pp. 170–180, 2013.

[17] A. Ibanez, P. Bidaud, and V. Padois, “Emergence of humanoid
walking behaviors from mixed-integer model predictive control,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2014.
[18] M. Liu, A. Micaelli, P. Evrard, and A. Escande, “Task-driven pos-

ture optimization for virtual characters,” in Proceedings of the 11th

ACM SIGGRAPH/Eurographics conference on Computer Animation.
Eurographics Association, 2012, pp. 155–164.


