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Elliptic equations involving general subcritical
source nonlinearity and measures

2

Huyuan Chen' Patricio Felmer Laurent Véron?

Abstract
In this article, we study the existence of positive solutions to elliptic
equation (E1)
(—A)*u=g(u)+ov in Q,

subject to the condition (E2)
u=ou on 0N ifa=1 or in Q° if a €(0,1),

where 0, 0 > 0, ) is an open bounded C? domain in R, (—A)“ denotes
the fractional Laplacian with « € (0,1) or Laplacian operator if a = 1,
v, i are suitable Radon measures and g : Ry — R, is a continuous
function.

We introduce an approach to obtain weak solutions for problem
(E1)-(E2) when g is integral subcritical and o, ¢ > 0 small enough.

Key words: Fractional Laplacian; Radon measure; Green kernel; Poisson kernel;
Schauder’s fixed point theorem.

MSC2010: 35R11, 35J61, 35R06

1 Introduction

Let a € (0,1], Q be an open bounded C? domain in RY with N > 2a,
p(x) = dist(x,09), g : R4 — Ry be a continuous function and denote by

(=A)® the Laplacian operator if & = 1 or the fractional Laplacian with
€ (0,1) defined as

(—A)*u(e) = lim (~A)%u(a),

€
e—0t

where for € > 0,

(apzu) = [ Ao e

" 0, if telo,el,
A T I

and
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Our first purpose of this paper is to study the existence of weak solutions
to the semilinear elliptic problem

(=A)*u=g(u)+ov in Q, (1.1)
subject to the Dirichlet boundary condition
u=0 on 9N ifa=1 orin Q° if € (0,1), (1.2)

where o > 0, v € MM(Q, p?) with B € [0,a] and M(K, p) being the space of
Radon measures in () satisfying

/ Ply| < +oo.
(9]

In particular, we denote 9)?”( ) = M(Q
are respectively 9, (€, p%) and M (Q).

When a = 1, problem (1.1)-(1.2) has been studied for some decades.
The basic method developed by Ni [21] and Ratto-Rigoli-Véron [22] is to
iterate

,p°). The associated positive cones

unt1 = Gilg(un)] + 0G1lv], VneN.

The crucial ingredient in this approach is to derive a function v satisfying
v > Gilg(v)] + oG]

Later on, Baras-Pierre [3] applied duality argument to derive weak solution
of problem (1.1)-(1.2) with a = 1 under the hypotheses:

(7) the mapping r — ¢(r) is nondecreasing, convex and continuous;

(ii) there exist ¢g > 0 and & € C3-1(Q), & # 0 such that

g <CO_A§O> € L'(Q),
o

where g* is the conjugate function of g;

(ii4)
~A
/diu < /Qg* (%) de, Ve € CHH(Q).

When ¢ is pure power source, Brezis-Cabré [2] and Kalton-Verbitsky [16]
pointed out that the necessary condition for existence of weak solution to

—Au=vP+ov in QQ,

1.3
u=20 on Of), 13)

is that
G1[(G1[V)"] < e1Galv], (1.4)



for some ¢; > 0. Bidaut-Véron and Vivier in [5] proved that (1.4) holds
for p < N]fﬁ_é 5 and problem (1.3) admits a weak solution if ¢ > 0 small.
While it is not easy to get explicit condition for general nonlinearity by
above methods.

In this article, we introduce a new method to obtain the weak solution
of problem (1.1)-(1.2) involving general nonlinearity without convex and
nondecreasing properties, which is inspired by the Marcinkiewicz spaces ap-
proach.

Let us first make precise the definition of weak solution to (1.1)-(1.2).

Definition 1.1 We say that u is a weak solution of (1.1)-(1.2), if u €
LY(Q), g(u) € LY(Q, p*dx) and

AupAwwx:Agmgm+a[f@, Ve € Xa,

where X, = C31(Q) if a =1 or X, C C(RY) with a € (0,1) is the space of
functions & satisfying:

(i) supp(§) C Q,

(17) (—A)*¢(x) exists for all x € Q and |(—A)*¢(z)| < C for some C > 0,
(i) there exist ¢ € LY(Q, p®dx) and g9 > 0 such that |(—=A)%€| < ¢ a.e. in
Q, for all € € (0,g9].

We denote by G, the Green kernel of (—A)® in 2 x ©Q and by G,[.] the
associated Green operator defined by

%Mmzéam@@@, W € MO, p°).
Our first result states as follows.

Theorem 1.1 Let o € (0,1], 0 > 0 and v € M, (2, p°) with 3 € [0, .
(1) Suppose that
g(s) < cas? +¢€, Vs >0, (1.5)

for some py € (0,1], ca > 0 and € > 0. Assume more that co is small enough
when pg = 1.

Then problem (1.1)-(1.2) admits a weak nonnegative solution w, which
satisfies

uy > oG,y (1.6)
(73) Suppose that
g(s) <cssP* ¢, Vse[0,1] (1.7)
and
+o0 .
Joo i= / g(s)s " Phds < 400, (1.8)
1
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where c3,e > 0, p. > 1 and P}; = _N]j;;iﬁ'

Then there exist og, €9 > 0 depending on c3, P«, oo and p}} such that for
o € [0,00) and € € (0,¢€y), problem (1.1)-(1.2) admits a nonnegative weak
solution w, which satisfies (1.6).

We remark that (i) we do not require any restriction on parameters
¢, €,0 when py € (0,1) or on parameters €, 0 when py = 1; (i7) the assump-
tion (1.8) is called as integral subcritical condition, which is usually used
in dealing with elliptic problem with absorption nonlinearity and measures,
see the references [5, 9, 10, 24].

Let us sketch the proof of Theorem 1.1. We first approximate the nonlin-
earity g and Radon measure v by {g,} and {v,} respectively, then we make
use of the Marcinkiewicz properties and embedding theorems to obtain that
for n > 1, problem

(—A)uy, = gp(up) +ov,  in Q,

subject to condition (1.2), admits a nonnegative solution u, by Schauder’s
fixed point theorem. The crucial point is to obtain uniformly bound of {u,,}
in the Marcinkiewicz space. The proof ends by getting a subsequence of
{un} that converges in the sense of Definition 1.1.

Our second purpose in this note is to obtain the weak solution to elliptic
equations involving boundary measures. Firstly, we study the weak solution

of
—Au=g(u) in €,
@ (1.9)
U= o on 09,

where p > 0 and p € Wﬁr(ﬁﬁ) the space of nonnegative bounded Radon
measure on ). When g(s) = s? with p < {+1, the weak solution to
problem (1.9) is derived by Bidaut-Véron and Vivier in [5] by using iterating
procedure. More interests on boundary measures refer to [4, 6, 13, 17, 18, 19].

Definition 1.2 We say that u is a weak solution of (1.9) , if u € L*(Q),
g(u) € LY(Q, pdx) and

_ = W Eda 9¢(x) " 1.1
[ty = [ aweds o [ Faua). veeciio,

o0 8ﬁm
where 1, s the unit normal vector pointing outside of  at point x.

We denote by P the Poisson kernel of —A in Q x 9Q and by P[] the
associated Poisson operator defined by

Blul(x) = | Pley)du(y), Vi € M(99).

Our second result states as follows.



Theorem 1.2 Let ¢ > 0 and p € M (59).
(1) Suppose that
g(s) <cys? +€, Vs>0, (1.10)

for some qo € (0,1], ¢4 > 0 and € > 0. Assume more that ¢y is small enough
when gy = 1.
Then problem (1.9) admits a weak nonnegative solution u,, which satisfies

e > 2Pl (L1
(7i) Suppose that
g(s) < css? +¢€, Vsel0,1] (1.12)
and
o0 "
goo :Z/ g9(s)s™1 7T ds < +o0, (1.13)
1
where ¢, >0, ¢, > 1 and ¢* = %

Then there exist oo, €9 > 0 depending on ¢s, Gx, §oo and q* such that for
0€10,00) and € € [0,€), problem (1.9) admits a nonnegative weak solution
w,, which satisfies (1.11).

We remark that the key-point in the proof of Theorem 1.2 is to derive
the uniform bound in Marcinkiewicz quasi-norm to the solutions of
—Au = ga(ut oPlu]) 9,

(1.14)
u =0 on 0f),

where {g,} is a sequence of C! bounded functions approaching to g in

L (Ry). In fact, the weak solution u, could be decomposed into

uﬂ = UM + Q]P)[M:L

where v, is a weak solution to (1.14) replaced g, by g.
Inspired by the fact above, we give the definition of weak solution to

(~A)u=g(u) in

e o (1.15)
as follows.
Definition 1.3 We say that u, is a weak solution of (1.15) , if
uy = vy + 0Go[wy],
where
wy(z) = /QC %, LASRY) (1.16)
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and v, 1s a solution of

(=A)*u = g(u+ 0Galwy]) in € (1.17)

u=20 in Q¢
in the sense of Definition 1.1.

In Definition 1.3, the function G,[w,] plays the role of P[u] when av = 1. In
order to better classify the measures tackled in follows, we denote

Rg = {pn € M (Q°) : w, € LY, p’dx)}, (1.18)
where 8 € [0,a] and w,, is given by (1.16).

Theorem 1.3 Let o € (0,1), 0 > 0 and p € Rg with B € [0,q].
(1) Suppose that
g(s) <cgs? +e€, Vs>0, (1.19)

for some qo € (0,1], cg > 0 and € > 0. Assume more that cg is small enough
when gy = 1.

Then problem (1.15) admits a weak nonnegative solution w, which sat-
isfies

uy > 0Go[wy). (1.20)
(7i) Suppose that
g(s) < crs™ +¢€, Vsel0,1] (1.21)
and
+o0 .
oo = / g(s)s 1 Phds < +o0, (1.22)
1

where c7,e >0, g, > 1 and PE = _N§2J;6+B'

Then there exist og, 09 > 0 depending on c7, gy, goo and pg such that for
0 €[0,00) and € € [0,¢€q), problem (1.15) admits a nonnegative weak solution
w,, which satisfies (1.20).

The rest of this paper is organized as follows. In section §2, we re-
call some basic results on Green kernel and Poisson kernel related to the
Marcinkiewicz space. Section §3 is addressed to prove the existence of weak
solution to elliptic equation with small forcing measure. Finally, we obtain
weak solution to elliptic equation with small boundary type measure.



2 Preliminary

In order to obtain the weak solution of (1.1)-(1.2) with integral subcritical
nonlinearity, we have to introduce the Marcinkiewicz space and recall some
related estimate.

Definition 2.1 Let © C RY be a domain and w be a positive Borel measure
in®. Fork>1,k =k/(k—1) andu € L. (0,du), we set

loc

1
|u|| pr+(0,dey = inf {c € [0,00] : / luldeww < ¢ </ dw) " , VE C ©, E Borel
E E

(2.1)
and
M¥(©,d) = {u € LL(0.d%) : [ullyr(oam) < +o).  (22)

M"(©,dw) is called the Marcinkiewicz space of exponent s, or weak
L*-space and ||.||arx(0,dw) is @ quasi-norm. We observe that

lu+ vl ars(0,d) < Nullars@,de) + 1V 0% (0 ,dw) (2.3)

and
it are(0,dw) = tlullars©,de)> YVt > 0. (2.4)

Proposition 2.1 [1, 11] Assume that1 < ¢ < k < oo and u € L}, (0, dw).
Then there exists cg > 0 dependent of q, k such that

1—q/k
[ it < cslulreio.am) ( [ d)
E E

for any Borel set E of O.

The next estimate is the key-stone in the proof of Theorem 1.1 to control
the nonlinearity in {g > 1}.

Proposition 2.2 Let a € (0,1], g € [0,a] and ph = %, then there
exists cg > 0 such that
1Galtlly s ey < o5 ey 25)

Proof. When a € (0, 1), it follows by [9, Proposition 2.2] that for v € [0, o],
there exists ¢;g > 0 such that

1Galv] <c

HMkaﬂ"Y(Q,deJ:) = 10HVH9JI(Q,p/3)’

where

N

N—-2a’

N+ . N3
kogn = N—QOZFB’ if v < 554>
“o if not.



We just take v = 8, then ko g, = pj3 and (2.5) holds.
When o = 1, (2.5) follows by [24, Theorem 3.5]. O

The following proposition does not just provide regularity but also plays
an essential role to control in {g < 1}.

Proposition 2.3 Let o € (0,1] and B € [0, ], then the mapping f — G, |[f]
is compact from LY(Q, pPdx) into LI(Q) for any q € [1, m) Moreover,
forqell, %), there exists c11 > 0 such that for any f € L'(Q, p°dx)

1Galfllze@) < crrllfllr,pran)- (2.6)

Proof. When « € (0,1) and 3 € [0, o, it follows by [9, Proposition 2.5] that
for p € (1, ﬁo&ﬁ)’ there exists c1o > 0 such that for any f € L' (9, p°dzx)

1Galflllwze—rr(0) < cr2llfll 1@ pp ) (2.7)

Wherefy:ﬁ—i—% if >0 and v > W if 5 = 0. By [20, Theorem

6.5], the embedding of W?2*=7P(Q) into L4() is compact, then the mapping

[+ Gy[f] is compact from L'(8, p?dz) into L(Q) for any ¢ € [1, m)

We observe that (2.6) follows by (2.7) and the embedding inequality.
When a =1 and 8 € [0, 1], it follows by [5, Theorem 2.7] that

G sy br ) 00 (2.8)

N
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where c13 > 0. By the compactness of the embedding from W, NI Q)
into L1(Q) with ¢ € [1, %672)’ we have that the mapping f — G,[f] is
compact from L'(Q, pPdzx) into LI(Q) for ¢ € [1, %5*2) Similarly, (2.6)
follows by (2.8) and the related embedding inequality. O

When we deal with problem (1.9), the Poisson kernel changes the bound-
ary measure to forcing term and the following proposition plays an important
role in obtaining the weak solution to (1.14) replaced g,, by g.

Proposition 2.4 [5, Theorem 2.5] Let v > —1 and py = %, then there
exists c14 > 0 such that

1P| az7v (@,p7de) < crallvlloms (0)- (2.9)

3 Forcing measure

3.1 Sub-linear

In this subsection, we are devoted to prove the existence of weak solution
to (1.1) when the nonlinearity is sub-linear.



Proof of Theorem 1.1 part (i). Let 8 € [0, a], we define the space
Cs(Q) ={¢ € C(Q): p ¢ € C(D)}
endowed with the norm

I¢lley@y = o~ <llo@)-
B

Let {v,} C C1(Q) be a sequence of nonnegative functions such that v, — v
in sense of duality with Cg(€2), that is,

n—o0

lim | (vpde = / Cdv, V¢ € C(Q). (3.1)
Q Q

By the Banach-Steinhaus Theorem, [|[v,[lon(q, ,¢) is bounded independently
of n. We may assume that ||t 110 psaz) < [[V[lam,pey = 1 for all n > 1.
We consider a sequence {g,} of C'! nonnegative functions defined on R
such that g, (0) = ¢(0),

9n < gnt1 <9, sup gu(s) =n and lim |[g, — gl[re ®,) =0. (3.2)
seR, n— o0 oc

We set
M(v) = [[vllLr(o)-
Step 1. To prove that forn > 1,
(=A)%u = gn(u) +ovp, in Q,

3.3
u=20 in QF° (3:3)

admits a nonnegative solution u, such that
M (un) < A,

where A\ > 0 independent of n.
To this end, we define the operators {7,} by

Tou = Gg [gn(u) + UVn] ) Vu € LE}-(Q%

where L} (Q) is the positive cone of L'(2). By (2.6) and (1.19), we have
that
M(,ﬁlu) < CllHQn(u) + O-VnHLl(Q,dex)

< coenn JouPopP(x)da + cglo + €)

< egers o uPoda + (o + €) (3.4)
< epcr6( fo udz)PO + cg(o + €)

= cac16M (u)P° + cg(o + €),

9



where ¢15, c1g > 0 independent of n. Therefore, we derive that
M(Thu) < caci6M (u)P° + c11(0 + €).
If we assume that M (u) < X for some A > 0, it implies
M(Thu) < cac16AP° + c11(0 + €).
In the case of py < 1, the equation
cac16A P +ci1(o+€) = A

admits a unique positive root A. In the case of py = 1, for ¢ > 0 satisfying
cac16 < 1, the equation

cacigA +cri(o +€) = A
admits a unique positive root A. For M(u) < \, we obtain that
M (Tou) < caci6A° +ci1(o +€) = A (3.5)

Thus, T, maps L'(Q) into itself. Clearly, if uy, — u in L'(Q) as m —
0o, then gn(um) — gn(u) in LY(Q) as m — oo, thus 7, is continuous.
For any fixed n € N, Tpum = Gg [gn(um) + ovy] and {gn(um) + ovptm is
uniformly bounded in L'(Q, p®dz), then it follows by Proposition 2.3 that
{Gq [gn(Um) + o] }m is pre-compact in L'(Q), which implies that 7,, is a
compact operator.
Let
G={uecLi(Q): M(u) <N},

which is a closed and convex set of L'(€2). It infers by (3.5) that
Ta(G) C G.

It follows by Schauder’s fixed point theorem that there exists some u, €
L! (Q) such that T,u, = u, and M(u,) < A, where A > 0 independent of n.

We observe that u,, is a classical solution of (3.3). For a = 1, since g,
bounded and C*, then it is natural to see that. When « € (0,1), let open
set O satisfy O € O C Q. By [23, Proposition 2.3], for § € (0,2a), there
exists c17 > 0 such that

[unllcooy < err{llg(un) Lo () + ollvnlle @)}

then applied [23, Corollary 2.4], u,, is C?**< locally in €2 for some ¢y > 0.
Then u, is a classical solution of (3.3). Moreover, from [10, Lemma 2.2], we
derive that

/un(—A)O‘gdw:/gn(un)gdx—i—a/&/ndm, V¢ € X, (3.6)
Q Q Q

10



Step 2. Convergence. We observe that {g,(u,)} is uniformly bounded
in L(Q, pPdz), so is {v,}. By Proposition 2.3, there exist a subsequence
{un,} and u such that u,, — u a.e. in Q and in L}(Q), then by (1.19), we
derive that g, (un,) — g(u) in L*(Q). Pass the limit of (3.6) as ny — oo to
derive that

[uare= [ geds o [ can veex.,

thus wu is a weak solution of (1.1)-(1.2) and u is nonnegative since {u,} are
nonnegative. U

3.2 Integral subcritical

In this subsection, we prove the existence of weak solution to (1.1) when the
nonlinearity is integral subcritical. We first introduce an auxiliary lemma.

Lemma 3.1 Assume that g : Ry — Ry is a continuous function satisfying
“+o0o
/ g(s)s™17Pds < 400 (3.7)
1

for some p > 0. Then there is a sequence real positive numbers {T,} such
that

lim 7,, =oc0 and lim ¢(7},)7,,” =0.

n—o0 n—o0
Proof. Let {s,} be a sequence of real positive numbers converging to oo.
We observe

28n 2sn
/ gt)t™1"Pdt > min g(t)(2sn)_1_p/ dt

tE€[sn,2sn]

= 2717Ps~P min t
" te[sn,2sn]g()

and by (3.7),

28n

lim g(t)t~17Pdt = 0.
n—oo Sm

Then we choose T}, € [sy,2s,] such that g(T,) = minyg[,, 2,,] 9(t) and then
the claim follows. O

Proof of Theorem 1.1 part (ii). Let {v,} € C'(Q) be a sequence of
nonnegative functions such that v, — v in sense of duality with Cs(Q)
and we may assume that [[vn|[11(0 psdr) < 2[Vilom@,ps) = 1 for all n > 1.
We consider a sequence {g,} of C'! nonnegative functions defined on R

satisfying ¢,(0) = ¢g(0) and (3.2). We set

Mi(w) = o] s and  My(v) = 0] - (0,

(Q,pPdx)

11



where pj and p, are from (1.7) and (1.8). We may assume that p, €
(1, #M) In fact, if p, > #&Lﬁ’ then for any given p € (1, #0&5)’
(1.8) implies that

g(s) <cs3sP +¢€ Vs e0,1].

Step 1. To prove that forn > 1,
(—=A)*u = gp(u) +ov, in Q,

u=0 in Q° 3.8)
admits a nonnegative solution u, such that
My (1) + Ma(uy) <
where A > 0 independent of n.
To this end, we define the operators {7,} by
Tou = G [gn(u) + ovy) , Yu € LY ().
By Proposition 2.2, we have
My(Tow) < eollgnu) + ovall s o pan
< colllgn (Wl Ly (0 ppaw) + 0l (3.9)

In order to deal with [|gn(u)|11(q psdz), for A > 0 we set Sy = {z € Q:
u(z) > A} and w(A) = ‘[SA pPdx,

g (W)l 21 (0, ppaz) < /ch(U)deer/S g(u)p’da. (3.10)
1 1

We first deal with | s, 9(u) pPdzx. In fact, we observe that

/gmm%xzmnmn+/WM$@@»
S1 1

where
T

/100 g(s)dw(s) = lim g(s)dw(s).

T—oc0 1

It infers by Proposition 2.1 and Proposition 2.2 that there exists cjg > 0
such that
w(s) < c1gMy(u)Pss™Ps (3.11)

and by (1.8) and Lemma 3.1 with p = p’g, there exist a sequence of increasing

numbers {T;} such that 77 > 1 and Tj_pﬁg(Tj) — 0 when j — oo, thus
1 " Y
w(Ug() + [ w(s)dg(s) < exsdwBg(V) + (@ [ s Fidg(s)
1 1

* ¥ M pz; Tj__*
< e ()T Pg(y) + LD [P 1m3g )
B 1

12



Therefore,
Js, 9(w)pPdz = w(1)g(1) + 7% w(s) dg(s)
< A [ 5 Phg(s)ds (312)
= C18G00 My ()P,

where ¢1g > 0 independent of n.
We next deal with fo g(u)pPdz. For p, € (1, ﬁa_‘_ﬁ), we have that

Jse g(w)p’d < e3 [ge P pPdu + € [ pPdx
< c3c19 fQ uP*dx + cqge€ (3.13)
< cgcigMa(u)P* + cige,

where c19 > 0 independent of n.
Along with (3.9), (3.10), (3.12) and (3.13), we derive

My (Thu) < coc18900 My (u)pg + cgcgerg Mo ()P + cgerge + oo (3.14)
By [20, Theorem 6.5] and (2.6), we derive that
My (Tpu) < cerillgn(u) + ovnll L1 (0, p8d0)s
which along with (3.10), (3.12) and (3.13), implies that
Ma(Thu) < cr1¢189o0 My (u)P5 + c11c3¢10 Ma(u)P* + cr1c19€ + ci10. (3.15)
Therefore, inequality (4.7) and (4.8) imply that
Mi(Tou) + Ma(Trtt) < 20goo M (w)P5 + c13Ma(u)P* + core + ca0,

where cog = (c9+c11)c1s, c21 = (cg+c11)c19 and ¢ = cg+cq1. If we assume
that Mj(u) + Ma(u) < A, implies

Ml(%u) + Mg(%u) < 620900)\1)2} + 621)\p* + co1€ + C290.

Since p}}, P« > 1, then there exist o9 > 0 and ¢y > 0 such that for any
o € (0,00] and € € (0, €], the equation

20900 N8 + Co1 AP* + co109€ + g0 = A

admits the largest root A > 0.
We redefine M (u) = M (u) + Ma(u), then for M (u) < ), we obtain that

M(ﬁlu) < CQ()gooj\p2 + 0215\7’* + c91€ + Cco90 = . (3.16)

13



Especially, we have that

-4 _ _
H'EuHLl(Q) < Cng(%u)‘Q’ Pp < gy if M(u) <A\

Thus, 7, maps L'(Q) into itself. Clearly, if u,, — u in L'(Q) as m —
oo, then gn(um) — gn(u) in LY(Q) as m — oo, thus 7, is continuous.
For any fixed n € N, Tpum = Gg [gn(um) + ovy] and {gn(um) + ovptm is
uniformly bounded in L'(Q, p®dz), then it follows by Proposition 2.3 that
{Gq [gn(Um) + o] }m is pre-compact in L'(Q), which implies that 7,, is a
compact operator.
Let
G={uecLi(Q): M(u) <N}

which is a closed and convex set of L'(Q). It infers by (4.9) that
Ta(G) C G.

It follows by Schauder’s fixed point theorem that there exists some u,, €
L (2) such that T,u, = uy, and M(u,) < A, where A > 0 independent of n.

In fact, u, is a classical solution of (3.8). For a = 1, since g, bounded
and C!, then it is natural to see that. When a € (0,1), let open set O
satisfy O € O C Q. By [23, Proposition 2.3], for § € (0,2a), there exists
Co4 > 0 such that

||Un\|c@(0) < C24{H9(Un)\|L<>°(Q) + 0’||VnHL<><>(Q)},

then applied [23, Corollary 2.4], u,, is C?**€ locally in €2 for some ey > 0.
Then w, is a classical solution of (3.8). Moreover,

/un(—A)afdx:/gn(un)fdx—i—o—/£Vndx, Ve € Xq. (3.17)
Q Q Q

Step 2. Convergence. Since {g,(u,)} and {v,,} are uniformly bounded
in LY(Q, p®dz), then by Propostion 2.3, there exist a subsequence {u,, } and
u such that u,, — v a.e. in Q and in L(Q), and gy, (un,) — g(u) a.e. in Q.

Finally we prove that gy, (upn,) — g(u) in LY(Q, p’dz). For A > 0, we
set Sy = {z € Q: |uy, (z)] > A} and w(N) = fSA pPdx, then for any Borel
set B C ), we have that

/ ’gnk(unk)‘pﬁdx:/ g(unk)Pﬁdx—i-/ g(unk)pﬂdx
E EﬂS/C\ ENS)y

i) [ Pt [ ot (3.18)
<o) [ pPdo+ag) + [ " w(s)dg(s),

where g(\) = maxeo,x 9(5)-
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On the other hand,

00 Tm
/}\ g(s)dw(s) = lim g(s)dw(s).

Tm~>oo by

*

where {7}, } is a sequence increasing number such that T'” 9(Tn) — 0 as
m — oo, which could obtained by assumption (1.8) and Lemma 3.1 with
p =D

It infers by (3.11) that

Tm Tm

w(5)dg(s) < ersgOA 5 + cos / s Phdg(s)
A

(g + [

A

* Tm

J— C 1%

< co5Tm P g(Tin) + o ri’ 1/ s~ Pag(s)ds,
Ié; A

where co5 = clgpg. Pass the limit of m — oo, we have that
o0

w(Ng(A) + A w(s) dg(s) < p}ECQ—il /:03‘1"’%<s>ds.

Notice that the above quantity on the right-hand side tends to 0 when
A — 00. The conclusion follows: for any € > 0 there exists A > 0 such that

ar /OO s 7 Pag(s)ds <
ps+1J) B

DO

Since A is fixed, together with (3.10), there exists § > 0 such that

/pﬁdx§5:>g()\)/pﬁdx§:
E B 2

This proves that {g o u,,} is uniformly integrable in L(Q, p?dz). Then

gouy,, — gouin LY(Q, p’dz) by Vitali convergence theorem.
Pass the limit of (3.17) as ny — oo to derive that

/Q w(—A)E = /Q g(u)édz + o /Q cdv, VEEX,

thus u is a weak solution of (1.1)-(1.2) and u is nonnegative since {u,} are
nonnegative. ]

4 Boundary type measure

In order to prove the elliptic problem involving boundary type measure, the
idea is to change the boundary type measure to a forcing source.

15



Lemma 4.1 For € 9% (99), we have that
Plu] € CH(Q).
Proof. It infers by [5, Proposition 2.1] that for (z,y) € Q x 09,
P(z,y) < enle—y[™ and  |VoP(z,y)| < enle -y~
then by the formulation of P[u] we have that P[u] € C1(€). O

Lemma 4.2 Assume that 0 > 0, u € 93?1_1(89), g is a nonnegative function
satisfying (1.12) and (1.13), {gn} are a sequence of C* nonnegative functions
defined on Ry satisfying g,(0) = g(0) and (3.2).

Then there exists oo > 0 and ey > 0 such that for o € [0, 00] and € €

[Oa 60]7
Au=golut Blu]) m 9,

4.1
u=20 on Of) (4.1)

admits a nonnegative solution wy, such that
My (wy) + Ma(wy,) < A
for some X\ > 0 independent of n, where
My (v) = [[vllprer (pazy and  Ma(v) = [[v]|La (),
with g« and ¢* given in (1.12) and (1.13) respectively.

Proof. Without loss generality, we assume [|u[logns 90y = 1 and g € (1, F55).
Redenote the operators {7} by

Tou= G [gn(u+ oPlu])],  Vue Li(9).
By Proposition 2.2, we have
My (Tnw) < collgn(u+ @Plu])llL1(0,pdx)
(4.2)
< cgllg(u + oPlu))l 21 (@, pda)

For A >0, we set Sy = {z € Q:u+ oP[u] > A} and w(A) = [g pdz,
oo+ Bl sy < [ g+ Pl)ods + [ glu-+ Plul)pda.

S§ S1
(4.3)
We first deal with [ g(u + oP[u])pdz. In fact, we observe that

/gm+mwmm=wmmn+/wM$@@,
S1 1
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where

00 T
/1 g(s)dw(s) = lim g(s)dw(s).

T—o0 1

It infers by Proposition 2.2 and Proposition 2.4 with v = 1 that there exists
such that

*

() < exsllut BUAIIT e 5™

*

q
< o1 (el yree @1y + IPlllnger @iy ) 77

< co7 (M1 (u) + 0149)(1* s

- (4.4)

where cgg, co7 > 0 independent of n. By (1.13) and Lemma 3.1 with p = ¢*,
there exist a sequence of increasing numbers {7} such that 77 > 1 and

Tj_q*g(Tj) — 0 when j — oo, thus

T;
w()g(1) + / w(s)dg(s)

. R
< co7 (M1 (u) 4 c140)P% g(1) + cor (M1 (u) + c140)* / s~ dg(s)
1

< cor (M (u) + 6149)q* ijq*g(Tj)

i c27(M1((]1:ZL+10149)q fng S_l_q*g(s)ds.

Therefore,
fg u)pdr = w( )9(1)+f1oo

< b’ (< ryga 69

< €890 M1 (W)7 + c2890007

where cog > 0 independent of n.
We next deal with fo g(u + oP[u])pdx. For g, € (1, FE1), we have that

fsc u+ oP[u])pdr < c; fo(u + oP[u])% pdx + Efo pdx
< c5Co9 fQ ul*dx + c5c990% + coge (4.6)
< e5ca9 Ma(u)® 4 52907 + cage,

where cog9 > 0 independent of n.
Along with (4.2), (4.3), (4.5) and (4.6), we derive that

M (Thu) < cgcaggooMi(u)? + cocscag Ma(u)? + cocage + coly, (4.7)
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where [, = c289000P + c5¢200P*. By [20, Theorem 6.5] and (2.6), we derive
that

Ms(Tou) < crrllg(u + oP[u]) |1 (@, pda)
which along with (4.3), (4.5) and (4.6), implies that

My (Thu) < cr1626900 M1 (w)? + cr1cscagMa(u)? 4 cricage + ciily.  (4.8)
Therefore, inequality (4.7) and (4.8) imply that
M (Tou) + Ma(Tou) < c30g00M1(u)? + 31 Ma(u)? + ca1e + caal,,

where c3g = (Cg + 011)0267 c31 = (Cg + 011)05029 and c3p = cg + c11. If we
assume that M (u) + Ma(u) < A, implies

Ml(%u) + MQ(%U) < 030900)\(1* + 613)\q* + c31€ + CngQ.

Since ¢*,q« > 1, then there exist g9 > 0 and ¢y > 0 such that for any
0 € (0, 00] and € € (0, o], the equation

Cgogoo)\q* + c31 A + c3105€ + 03219 =\

admits the largest root A > 0. B
We redefine M (u) = M (u) + Ma(u), then for M (u) < A, we obtain that

M(%u) < Cgogooj\q* + 6315\(1* + c31€ + nglg =\ (49)
Especially, we have that
1 — _
[ Tnullpiq) < esMi(Tou)| Q™7 < essh i M(u) < A

Thus, T, maps L'(Q) into itself. Clearly, if u,, — u in L}(Q) as m — oo,
then g, (um) — gn(u) in LY(Q) as m — oo, thus 7T, is continuous. For
any fixed n € N, Tpup, = Gy [gn(um + oP[p])] and {gn(um) + oP[p]}m is
uniformly bounded in L'(€2, pdz), then it follows by Proposition 2.3 that
{G1 [gn(tm + oP[p]]}rn is pre-compact in L(Q), which implies that 7, is a
compact operator.
Let
G={ue L (Q): M(u) <}

which is a closed and convex set of L'(€2). It infers by (4.9) that

T.(G) C G.

It follows by Schauder’s fixed point theorem that there exists some w, €
LY () such that T,w, = w, and M (w,) < A, where A > 0 does not depend
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on n. Since g, and P[u] are C! functions by Lemma 4.1, then w,, is a classical
solution of (4.1) and

/ wn(~A)edr = / gn(wn + oPlu)Edz, VE € CEI(9).
Q Q

Proof of Theorem 1.2 (ii). It derives by Lemma 4.1 that w, is a classical
solution of (4.1). Denote u,, = wy, + olP[u] and then

9¢(x)

o0 8ﬁm

/Qun(—A)§ = /an(un)fdac +0 du(z), V¢ e X, (4.10)
Since {gn(un)} are uniformly bounded in L'(f2, pdz), then by Propostion
2.3, there exist a subsequence {wy, } and w such that w,, — w a.e. in Q
and in L'(Q) and then u,, — v a.e. in Q and in L' (Q) where u = w+ oP[u].
Thus, gp, (un,) = g(u) a.e. in Q.

Similarly to the argument in Proof of Theorem 1.1 part (ii) in Step 2,
we have that gy, (un,) — g(u) in L'(Q, pdz).

Pass the limit of (4.10) as ny — oo to derive that

0¢
—A d - d _d v Xon
/Q“( )édx /QQ(U)SHQ/@QM p, V&€

thus u is a weak solution of (1.9) and w is nonnegative since {uy,} are non-
negative. O

Proof of Theorem 1.2 (i). It proceeds similarly to the proof of Theorem
1.1 (¢), so we omit here. O

5 Boundary type measure for o € (0, 1)

5.1 Basic results

In this subsection, we devoted to study the properties of SRz with 5 € [0, o,
see the definition 1.18. Here and in what follows, we assume that o € (0, 1).

Lemma 5.1 Let 1 < 8/ < B < «, then

Proof. Let xg € 09, x¢ = xg + tiiy, and &; be the dirac mass concentrated
at x¢, where 77, is the unit normal vector pointing outside at xg.

Fixed t > 0, ws,(z) = |x — 2| V72 for x € Q. It is easy to see that
ws, € L*°(Q) and then 6, € Ry for any B € [0,a].

Fixed t = 0, ws,(z) = |z — 20|~V 2% for # € Q. We observe that
ws, & L*(Q, p*dzx) and then &y € Rg for any B € [0, al. O
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Example. Let zg € 092, xy = xg + t1iy, and J; be the dirac mass concen-

trated at z;. Denote
o
= Z bnd,
n=1 "

where {b,} a sequence nonnegative numbers will be chosen latter. We ob-
serve that

[e.e]
bn,
w“(:c)zg —|x—x1|N+2°" x e
n=1 n

and w), € L(Q, p’dx) if and only if

Z b,n?*P < 4o0. (5.2)
n=1
Lemma 5.2 Let i € Rg with 5 € [0,a] and w,, is given by (1.16).
(i) w, € CHQ) N LY(Q, pPdz).
(i1) Let w, = Galwy] in Q and @, = p in Q°, then W, is a weak solution
of
(—A)*u=0 in K,
(5.3)
u=p in Q°

in the sense of
/ u(—A)*¢dr = / §wydr, VEeX,.
Q Q

Proof. (i) i € Mg implies that w, € L'(Q, p°dz) and since the function:
z = |z —y[ 7N 72 is C1(Q) for any y € Q, then w, € C1().

(ii) For u € Mg with B € [0,q], let {u,} C CF(RN) with supp(u,) C Q°
be a sequence of nonnegative functions such that u, — p in distribution
sense.

Then we derive that w,, € C'(Q) and there exists a unique classical
solution Gq[w,,] to

(—A)*u =w,, in Q,

5.4
u=0~0 in €°. (5.4)

Moreover,
/u(—A)O‘gdaﬁ = / Ewydr, VEeX,. (5.5)
Q Q
Let u, = Galwy,] + ftn, then we have that
(=A) %y = (=A)*Galwy, ] + (=A)" 1y = wy,, —wy, =0

n

and (5.5) holds for u,. Passing the limit of n — oo, we derive that w, is a
weak solution of (5.4). O

We note that (i) Lemma 5.2(i7) indicates that G,[w,] has the similar
role as P[u] when a = 1; (i7) the definition 1.3 is equivalent to
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Definition 5.1 wu, is a weak solution of (1.15), if u, € L'(2), g(u,) €
LY, p¥dx) and

/Quu(—A)ofdx:/Qg(uu)fdx—i—/ﬂwu§dx, £ eXg,

where w, is given by (1.16).

5.2 Proof of Theorem 1.3
Inspired by the proof of Theorem 1.2, we first give an important lemma,

which is important in dealing with the subcritical case.

Lemma 5.3 Assume that o > 0, u € Rg, g is a nonnegative function

satisfying (1.21) and (1.22), {gn} are a sequence of C* nonnegative functions

defined on Ry satisfying g,(0) = ¢g(0) and (3.2).

Then there exists oo > 0 and ey > 0 such that for o € [0, 09] and € € [0, €],
(_A)au - gn(u + QGa[wM]) n €,

5.6
u=20 in Q° (5.6)

admits a nonnegative solution wy, such that
My (wn) + Ma(wy) < A
for some XA > 0 independent of n, where

My (v) and Mz (v) = [[v]| e (),

=10l 0oy
with g, and pj given in (1.21) and (1.22) respectively.

Proof. For u € Mg, we have that w, € LY(Q, pPdzx), which, by Proposi-
tion 2.3, implies that G,[w,] € MP5(Q, pPda). Tt proceeds as Lemma 4.2,

replaced P[u| by Gq[w,] to obtain that there exists gg > 0 and ¢y > 0 such
that for o € [0, go] and € € [0, €], there exists w,, such that

Wy = Goz [gn (wn + QGa [wu])]

and B

for some A > 0 independent of n.
By Lemma 5.2 (i), we see that w, is a classical solution of (5.6). More-
over,

[ wn(-ayeds = [ gutw, + Calwigde, vee iR, (57
Q Q
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Proof of Theorem 1.3 (ii). It derives by Lemma 5.3 that w,, is a classical
solution of (5.6). Denote u,, = wy, + 0G4 [w,] Since {gn(uy,)} are uniformly
bounded in L(€, pdx), then by Propostion 2.3, there exist a subsequence
{wp, } and w such that w,, — w a.e. in Q and in L'(Q) and then u,, — u
a.e. in Q and in L'(Q) where u = w + 0G,[w,]. Thus, gy, (un,) — g(u) a.e.
in .

Similarly to the argument in Proof of Theorem 1.1 part (ii) in Step 2,
we have that g,, (un,) — g(u) in L*(, pPdz).

Pass the limit of (5.7) as ny — oo to derive that

/ w(—A)%dx = / g(w + oGy fwy])édx, V€ € X,.
Q Q

Thus u = w + 0G[w,] is a weak solution of (1.15) and u is nonnegative
since {w,} are nonnegative. O

Proof of Theorem 1.3 (7). It proceeds similarly to the proof of Theorem
1.1 (), so we omit here. O
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