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Introduction

Let α ∈ (0, 1], Ω be an open bounded C 2 domain in R N with N > 2α, ρ(x) = dist(x, ∂Ω), g : R + → R + be a continuous function and denote by (-∆) α the Laplacian operator if α = 1 or the fractional Laplacian with α ∈ (0, 1) defined as

(-∆) α u(x) = lim ε→0 + (-∆) α ε u(x),
where for ε > 0,

(-∆) α ε u(x) = - R N u(z) -u(x) |z -x| N +2α χ ε (|x -z|)dz and χ ε (t) = 0, if t ∈ [0, ε],
1, if t > ε.
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Our first purpose of this paper is to study the existence of weak solutions to the semilinear elliptic problem (-∆) α u = g(u) + σν in Ω, (1.1) subject to the Dirichlet boundary condition

u = 0 on ∂Ω if α = 1 or in Ω c if α ∈ (0, 1), (1.2) 
where σ > 0, ν ∈ M(Ω, ρ β ) with β ∈ [0, α] and M(Ω, ρ β ) being the space of Radon measures in Ω satisfying Ω ρ β d|ν| < +∞.

In particular, we denote M b (Ω) = M(Ω, ρ 0 ). The associated positive cones are respectively M + (Ω, ρ β ) and M b + (Ω). When α = 1, problem (1.1)-(1.2) has been studied for some decades. The basic method developed by Ni [START_REF] Ni | On the elliptic equation ∆u + K(x)u N+2 N-2 = 0[END_REF] and Ratto-Rigoli-Véron [START_REF] Ratto | Scalar curvature and conformal deformation of hyperbolic sapce[END_REF] is to iterate

u n+1 = G 1 [g(u n )] + σG 1 [ν], ∀n ∈ N.
The crucial ingredient in this approach is to derive a function v satisfying

v ≥ G 1 [g(v)] + σG 1 [ν].
Later on, Baras-Pierre [START_REF] Baras | Critéres d'existence de solutions positives pour des équations semi-linéaires non monotones[END_REF] applied duality argument to derive weak solution of problem (1.1)-(1.2) with α = 1 under the hypotheses: (i) the mapping r → g(r) is nondecreasing, convex and continuous;

(ii) there exist c 0 > 0 and ξ 0 ∈ C 1.1 0 (Ω), ξ 0 = 0 such that

g * c 0 -∆ξ 0 ξ 0 ∈ L 1 (Ω),
where g * is the conjugate function of g;

(iii)

Ω ξdν ≤ Ω g * -∆ξ ξ dx, ∀ξ ∈ C 1.1 0 (Ω).
When g is pure power source, Brezis-Cabré [START_REF] Brezis | Some simple PDEs without solutions[END_REF] and Kalton-Verbitsky [START_REF] Kalton | Nonlinear equations and weighted nor inequalities[END_REF] pointed out that the necessary condition for existence of weak solution to

-∆u = u p + σν in Ω, u = 0 on ∂Ω, (1.3) is that G 1 [(G 1 [ν]) p ] ≤ c 1 G 1 [ν], (1.4) 
for some c 1 > 0. Bidaut-Véron and Vivier in [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF] proved that (1.4) holds for p < N +β N +β-2 and problem (1.3) admits a weak solution if σ > 0 small. While it is not easy to get explicit condition for general nonlinearity by above methods.

In this article, we introduce a new method to obtain the weak solution of problem (1.1)-(1.2) involving general nonlinearity without convex and nondecreasing properties, which is inspired by the Marcinkiewicz spaces approach.

Let us first make precise the definition of weak solution to (1.1)-(1.2).

Definition 1.1 We say that u is a weak solution of (1.1)

-(1.2), if u ∈ L 1 (Ω), g(u) ∈ L 1 (Ω, ρ α dx) and Ω u(-∆) α ξdx = Ω g(u)ξdx + σ Ω ξdν, ∀ξ ∈ X α ,
where

X α = C 1.1 0 (Ω) if α = 1 or X α ⊂ C(R N ) with α ∈ (0, 1) is the space of functions ξ satisfying: (i) supp(ξ) ⊂ Ω, (ii) (-∆) α ξ(x) exists for all x ∈ Ω and |(-∆) α ξ(x)| ≤ C for some C > 0, (iii) there exist ϕ ∈ L 1 (Ω, ρ α dx) and ε 0 > 0 such that |(-∆) α ε ξ| ≤ ϕ a.e. in Ω, for all ε ∈ (0, ε 0 ].
We denote by G α the Green kernel of (-∆) α in Ω × Ω and by G α [.] the associated Green operator defined by

G α [ν](x) = Ω G α (x, y)dν(y), ∀ν ∈ M(Ω, ρ α ).
Our first result states as follows.

Theorem 1.1 Let α ∈ (0, 1], σ > 0 and ν ∈ M + (Ω, ρ β ) with β ∈ [0, α]. (i) Suppose that g(s) ≤ c 2 s p 0 + ǫ, ∀s ≥ 0, (1.5) 
for some p 0 ∈ (0, 1], c 2 > 0 and ǫ > 0. Assume more that c 2 is small enough when p 0 = 1.

Then problem (1.1)-(1.2) admits a weak nonnegative solution u ν which satisfies

u ν ≥ σG α [ν]. (1.6) (ii) Suppose that g(s) ≤ c 3 s p * + ǫ, ∀s ∈ [0, 1] (1.7)
and

g ∞ := +∞ 1 g(s)s -1-p * β ds < +∞, (1.8) 
where c 3 , ǫ > 0, p * > 1 and p * β = N +β N -2α+β . Then there exist σ 0 , ǫ 0 > 0 depending on c 3 , p * , g ∞ and p * β such that for σ ∈ [0, σ 0 ) and ǫ ∈ (0, ǫ 0 ), problem (1.1)-(1.2) admits a nonnegative weak solution u ν which satisfies (1.6).

We remark that (i) we do not require any restriction on parameters c 2 , ǫ, σ when p 0 ∈ (0, 1) or on parameters ǫ, σ when p 0 = 1; (ii) the assumption (1.8) is called as integral subcritical condition, which is usually used in dealing with elliptic problem with absorption nonlinearity and measures, see the references [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF][START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF][START_REF] Chen | Semilinear fractional elliptic equations with gradient nonlinearity involving measures[END_REF][START_REF] Véron | Elliptic equations involving Measures[END_REF].

Let us sketch the proof of Theorem 1.1. We first approximate the nonlinearity g and Radon measure ν by {g n } and {ν n } respectively, then we make use of the Marcinkiewicz properties and embedding theorems to obtain that for n ≥ 1, problem

(-∆) α u n = g n (u n ) + σν n in Ω, subject to condition (1.
2), admits a nonnegative solution u n by Schauder's fixed point theorem. The crucial point is to obtain uniformly bound of {u n } in the Marcinkiewicz space. The proof ends by getting a subsequence of {u n } that converges in the sense of Definition 1.1.

Our second purpose in this note is to obtain the weak solution to elliptic equations involving boundary measures. Firstly, we study the weak solution of -∆u = g(u) in Ω,

u = ̺µ on ∂Ω, (1.9) 
where ̺ > 0 and µ ∈ M b + (∂Ω) the space of nonnegative bounded Radon measure on ∂Ω. When g(s) = s p with p < N +1 N -1 , the weak solution to problem (1.9) is derived by Bidaut-Véron and Vivier in [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF] by using iterating procedure. More interests on boundary measures refer to [START_REF] Bhakta | Reduced limit for semilinear boundary value problems with measure data[END_REF][START_REF] Bidaut-Véron | Semilinear elliptic equations and systems with measure data: existence and a priori estimates[END_REF][START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF][START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF][START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case[END_REF][START_REF] Marcus | Nonlinear second order elliptic equations involving measures[END_REF]. Definition 1.2 We say that u is a weak solution of (1.9) , if u ∈ L 1 (Ω), g(u) ∈ L 1 (Ω, ρdx) and

Ω u(-∆)ξdx = Ω g(u)ξdx + ̺ ∂Ω ∂ξ(x) ∂ n x dµ(x), ∀ξ ∈ C 1.1 0 (Ω),
where n x is the unit normal vector pointing outside of Ω at point x.

We denote by P the Poisson kernel of -∆ in Ω × ∂Ω and by P[.] the associated Poisson operator defined by

P[µ](x) = ∂Ω P (x, y)dµ(y), ∀µ ∈ M b (∂Ω).
Our second result states as follows.

Theorem 1.2 Let ̺ > 0 and µ ∈ M b + (∂Ω). (i) Suppose that g(s) ≤ c 4 s q 0 + ǫ, ∀s ≥ 0, (1.10)

for some q 0 ∈ (0, 1], c 4 > 0 and ǫ > 0. Assume more that c 4 is small enough when q 0 = 1.

Then problem (1.9) admits a weak nonnegative solution u µ which satisfies

u µ ≥ ̺P[µ]. (1.11) (ii) Suppose that g(s) ≤ c 5 s q * + ǫ, ∀s ∈ [0, 1] (1.12)
and

g ∞ := +∞ 1 g(s)s -1-q * ds < +∞, (1.13) 
where c 5 , ǫ > 0, q * > 1 and q * = N +1 N -1 . Then there exist ̺ 0 , ǫ 0 > 0 depending on c 5 , q * , g ∞ and q * such that for ̺ ∈ [0, ̺ 0 ) and ǫ ∈ [0, ǫ 0 ), problem (1.9) admits a nonnegative weak solution u µ which satisfies (1.11).

We remark that the key-point in the proof of Theorem 1.2 is to derive the uniform bound in Marcinkiewicz quasi-norm to the solutions of

-∆u = g n (u + ̺P[µ]) in Ω, u = 0 on ∂Ω, (1.14) 
where {g n } is a sequence of C 1 bounded functions approaching to g in L ∞ loc (R + ). In fact, the weak solution u µ could be decomposed into

u µ = v µ + ̺P[µ],
where v µ is a weak solution to (1.14) replaced g n by g. Inspired by the fact above, we give the definition of weak solution to

(-∆) α u = g(u) in Ω, u = ̺µ in Ω c (1.15)
as follows.

Definition 1.3 We say that u µ is a weak solution of (1.15) , if

u µ = v µ + ̺G α [w µ ],
where

w µ (x) = Ω c dµ(z) |z -x| N +2α , x ∈ Ω (1.16)
and v µ is a solution of

(-∆) α u = g(u + ̺G α [w µ ]) in Ω, u = 0 in Ω c (1.17)
in the sense of Definition 1.1.

In Definition 1.3, the function G α [w µ ] plays the role of P[µ] when α = 1. In order to better classify the measures tackled in follows, we denote

R β := {µ ∈ M + (Ω c ) : w µ ∈ L 1 (Ω, ρ β dx)}, (1.18) 
where β ∈ [0, α] and w µ is given by (1.16).

Theorem 1.3 Let α ∈ (0, 1), σ > 0 and µ ∈ R β with β ∈ [0, α]. (i) Suppose that g(s) ≤ c 6 s q 0 + ǫ, ∀s ≥ 0, (1.19) 
for some q 0 ∈ (0, 1], c 6 > 0 and ǫ > 0. Assume more that c 6 is small enough when q 0 = 1.

Then problem (1.15) admits a weak nonnegative solution u µ which satisfies

u µ ≥ ̺G α [w µ ]. (1.20) 
(ii) Suppose that

g(s) ≤ c 7 s q * + ǫ, ∀s ∈ [0, 1] (1.21)
and

g ∞ := +∞ 1 g(s)s -1-p * β ds < +∞, (1.22) 
where c 7 , ǫ > 0, q * > 1 and p * β = N +β N -2α+β . Then there exist σ 0 , ̺ 0 > 0 depending on c 7 , q * , g ∞ and p * β such that for ̺ ∈ [0, ̺ 0 ) and ǫ ∈ [0, ǫ 0 ), problem (1.15) admits a nonnegative weak solution u µ which satisfies (1.20).

The rest of this paper is organized as follows. In section §2, we recall some basic results on Green kernel and Poisson kernel related to the Marcinkiewicz space. Section §3 is addressed to prove the existence of weak solution to elliptic equation with small forcing measure. Finally, we obtain weak solution to elliptic equation with small boundary type measure.

Preliminary

In order to obtain the weak solution of (1.1)-(1.2) with integral subcritical nonlinearity, we have to introduce the Marcinkiewicz space and recall some related estimate.

Definition 2.1 Let Θ ⊂ R N be a domain and ̟ be a positive Borel measure in Θ. For κ > 1, κ ′ = κ/(κ -1) and u ∈ L 1 loc (Θ, dµ), we set u M κ (Θ,d̟) = inf c ∈ [0, ∞] : E |u|d̟ ≤ c E d̟ 1 κ ′ , ∀E ⊂ Θ, E Borel (2.1) and M κ (Θ, d̟) = {u ∈ L 1 loc (Θ, d̟) : u M κ (Θ,d̟) < +∞}. (2.2)
M κ (Θ, d̟) is called the Marcinkiewicz space of exponent κ, or weak L κ -space and . M κ (Θ,d̟) is a quasi-norm. We observe that

u + v M κ (Θ,d̟) ≤ u M κ (Θ,d̟) + v M κ (Θ,d̟) (2.3) 
and

tu M κ (Θ,d̟) = t u M κ (Θ,d̟) , ∀t > 0. (2.4) 
Proposition 2.1 [START_REF] Ph | A semilinear elliptic equation in L 1 (R N )[END_REF][START_REF] Cignoli | An Introduction to Functional Analysis[END_REF] Assume that 1 ≤ q < κ < ∞ and u ∈ L 1 loc (Θ, d̟). Then there exists c 8 > 0 dependent of q, κ such that

E |u| q d̟ ≤ c 8 u M κ (Θ,d̟) E d̟ 1-q/κ for any Borel set E of Θ.
The next estimate is the key-stone in the proof of Theorem 1.1 to control the nonlinearity in {g ≥ 1}.

Proposition 2.2 Let α ∈ (0, 1], β ∈ [0, α] and p * β = N +β N -2α+β , then there exists c 9 > 0 such that G α [ν] M p * β (Ω,ρ β dx) ≤ c 9 ν M(Ω,ρ β ) .
(2.5)

Proof. When α ∈ (0, 1), it follows by [9, Proposition 2.2] that for γ ∈ [0, α],
there exists c 10 > 0 such that

G α [ν] M k α,β,γ (Ω,ρ γ dx) ≤ c 10 ν M(Ω,ρ β ) ,
where

k α,β,γ = N +γ N -2α+β , if γ < N β N -2α , N N -2α , if not.
We just take γ = β, then k α,β,γ = p * β and (2.5) holds. When α = 1, (2.5) follows by [START_REF] Véron | Elliptic equations involving Measures[END_REF]Theorem 3.5].

The following proposition does not just provide regularity but also plays an essential role to control in {g < 1}.

Proposition 2.3 Let α ∈ (0, 1] and β ∈ [0, α], then the mapping f → G α [f ] is compact from L 1 (Ω, ρ β dx) into L q (Ω) for any q ∈ [1, N N +β-2α ). Moreover, for q ∈ [1, N N +β-2α ), there exists c 11 > 0 such that for any f ∈ L 1 (Ω, ρ β dx) G α [f ] L q (Ω) ≤ c 11 f L 1 (Ω,ρ β dx) .
(2.6)

Proof. When α ∈ (0, 1) and β ∈ [0, α], it follows by [9, Proposition 2.5] that for p ∈ (1,

N N -2α+β
), there exists c 12 > 0 such that for any f ∈ L 1 (Ω, ρ β dx)

G α [f ] W 2α-γ,p (Ω) ≤ c 12 f L 1 (Ω,ρ β dx) , (2.7) 
where

γ = β + N (p-1) p if β > 0 and γ > N (p-1) p if β = 0. By [20, Theorem 6.5], the embedding of W 2α-γ,p (Ω) into L q (Ω) is compact, then the mapping f → G α [f ] is compact from L 1 (Ω, ρ β dx) into L q (Ω) for any q ∈ [1, N N +β-2α ).
We observe that (2.6) follows by (2.7) and the embedding inequality.

When α = 1 and β ∈ [0, 1], it follows by [5, Theorem 2.7] that

G α [f ] W 1, N N-1+β 0 (Ω) ≤ c 13 f L 1 (Ω,ρ β dx) , (2.8) 
where c 13 > 0. By the compactness of the embedding from W

1, N N-1+β 0 (Ω) into L q (Ω) with q ∈ [1, N N +β-2 ), we have that the mapping f → G α [f ] is compact from L 1 (Ω, ρ β dx) into L q (Ω) for q ∈ [1, N N +β-2
). Similarly, (2.6) follows by (2.8) and the related embedding inequality.

When we deal with problem (1.9), the Poisson kernel changes the boundary measure to forcing term and the following proposition plays an important role in obtaining the weak solution to (1.14) replaced g n by g. Proposition 2.4 [5, Theorem 2.5] Let γ > -1 and p γ = N +γ N -1 , then there exists c 14 > 0 such that

P[ν] M pγ (Ω,ρ γ dx) ≤ c 14 ν M b (∂Ω) .
(2.9)

3 Forcing measure

Sub-linear

In this subsection, we are devoted to prove the existence of weak solution to (1.1) when the nonlinearity is sub-linear.

Proof of Theorem 1.1 part (i). Let β ∈ [0, α], we define the space

C β ( Ω) = {ζ ∈ C( Ω) : ρ -β ζ ∈ C( Ω)}
endowed with the norm

ζ C β ( Ω) = ρ -β ζ C( Ω) .
Let {ν n } ⊂ C 1 ( Ω) be a sequence of nonnegative functions such that ν n → ν in sense of duality with C β ( Ω), that is,

lim n→∞ Ω ζν n dx = Ω ζdν, ∀ζ ∈ C β ( Ω). (3.1)
By the Banach-Steinhaus Theorem, ν n M(Ω,ρ β ) is bounded independently of n. We may assume that

ν n L 1 (Ω,ρ β dx) ≤ ν M(Ω,ρ β ) = 1 for all n ≥ 1.
We consider a sequence {g n } of C 1 nonnegative functions defined on R + such that g n (0) = g(0),

g n ≤ g n+1 ≤ g, sup s∈R + g n (s) = n and lim n→∞ g n -g L ∞ loc (R + ) = 0. (3.2)
We set

M (v) = v L 1 (Ω) .
Step 1. To prove that for n ≥ 1,

(-∆) α u = g n (u) + σν n in Ω, u = 0 in Ω c (3.3)
admits a nonnegative solution u n such that

M (u n ) ≤ λ,
where λ > 0 independent of n.

To this end, we define the operators {T n } by

T n u = G α [g n (u) + σν n ] , ∀u ∈ L 1 + (Ω),
where

L 1 + (Ω) is the positive cone of L 1 (Ω). By (2.6) and (1.19), we have that M (T n u) ≤ c 11 g n (u) + σν n L 1 (Ω,ρ β dx) ≤ c 2 c 11 Ω u p 0 ρ β (x)dx + c 6 (σ + ǫ) ≤ c 2 c 15 Ω u p 0 dx + c 6 (σ + ǫ) ≤ c 2 c 16 ( Ω udx) p 0 + c 6 (σ + ǫ) = c 2 c 16 M (u) p 0 + c 6 (σ + ǫ), (3.4) 
where c 15 , c 16 > 0 independent of n. Therefore, we derive that

M (T n u) ≤ c 2 c 16 M (u) p 0 + c 11 (σ + ǫ).
If we assume that M (u) ≤ λ for some λ > 0, it implies

M (T n u) ≤ c 2 c 16 λ p 0 + c 11 (σ + ǫ).
In the case of p 0 < 1, the equation

c 2 c 16 λ p 0 + c 11 (σ + ǫ) = λ
admits a unique positive root λ. In the case of p 0 = 1, for c 2 > 0 satisfying c 2 c 16 < 1, the equation

c 2 c 16 λ + c 11 (σ + ǫ) = λ
admits a unique positive root λ. For M (u) ≤ λ, we obtain that

M (T n u) ≤ c 2 c 16 λp 0 + c 11 (σ + ǫ) = λ. (3.5) Thus, T n maps L 1 (Ω) into itself. Clearly, if u m → u in L 1 (Ω) as m → ∞, then g n (u m ) → g n (u) in L 1 (Ω) as m → ∞, thus T n is continuous. For any fixed n ∈ N, T n u m = G α [g n (u m ) + σν n ] and {g n (u m ) + σν n } m is uniformly bounded in L 1 (Ω, ρ β dx), then it follows by Proposition 2.3 that {G α [g n (u m ) + σν n ]} m is pre-compact in L 1 (Ω), which implies that T n is a compact operator. Let G = {u ∈ L 1 + (Ω) : M (u)
≤ λ}, which is a closed and convex set of L 1 (Ω). It infers by (3.5) that

T n (G) ⊂ G.
It follows by Schauder's fixed point theorem that there exists some u n ∈ L 1 + (Ω) such that T n u n = u n and M (u n ) ≤ λ, where λ > 0 independent of n.

We observe that u n is a classical solution of (3.3). For α = 1, since g n bounded and C 1 , then it is natural to see that. When α ∈ (0, 1), let open set O satisfy O ⊂ Ō ⊂ Ω. By [23, Proposition 2.3], for θ ∈ (0, 2α), there exists c 17 > 0 such that

u n C θ (O) ≤ c 17 { g(u n ) L ∞ (Ω) + σ ν n L ∞ (Ω) },
then applied [23, Corollary 2.4], u n is C 2α+ǫ 0 locally in Ω for some ǫ 0 > 0. Then u n is a classical solution of (3.3). Moreover, from [10, Lemma 2.2], we derive that

Ω u n (-∆) α ξdx = Ω g n (u n )ξdx + σ Ω ξν n dx, ∀ξ ∈ X α .
(3.6)

Step 2. Convergence. We observe that {g n (u n )} is uniformly bounded in L 1 (Ω, ρ β dx), so is {ν n }. By Proposition 2.3, there exist a subsequence {u n k } and u such that u n k → u a.e. in Ω and in L 1 (Ω), then by (1.19), we derive that g n k (u n k ) → g(u) in L 1 (Ω). Pass the limit of (3.6) as n k → ∞ to derive that

Ω u(-∆) α ξ = Ω g(u)ξdx + σ Ω ξdν, ∀ξ ∈ X α ,
thus u is a weak solution of (1.1)-(1.2) and u is nonnegative since {u n } are nonnegative.

Integral subcritical

In this subsection, we prove the existence of weak solution to (1.1) when the nonlinearity is integral subcritical. We first introduce an auxiliary lemma. Then we choose T n ∈ [s n , 2s n ] such that g(T n ) = min t∈[sn,2sn] g(t) and then the claim follows.

Proof of Theorem 1.1 part (ii). Let {ν n } ⊂ C 1 ( Ω) be a sequence of nonnegative functions such that ν n → ν in sense of duality with C β ( Ω) and we may assume that

ν n L 1 (Ω,ρ β dx) ≤ 2 ν M(Ω,ρ β ) = 1 for all n ≥ 1.
We consider a sequence {g n } of C 1 nonnegative functions defined on R + satisfying g n (0) = g(0) and (3.2). We set

M 1 (v) = v M p * β (Ω,ρ β dx) and M 2 (v) = v L p * (Ω) ,
where p * β and p * are from (1.7) and (1.8). We may assume that p * ∈ (1, Step 1. To prove that for n ≥ 1,

(-∆) α u = g n (u) + σν n in Ω, u = 0 in Ω c (3.8)
admits a nonnegative solution u n such that

M 1 (u n ) + M 2 (u n ) ≤ λ,
where λ > 0 independent of n.

To this end, we define the operators {T n } by

T n u = G α [g n (u) + σν n ] , ∀u ∈ L 1 + (Ω). By Proposition 2.2, we have M 1 (T n u) ≤ c 9 g n (u) + σν n L 1 (Ω,ρ β dx) ≤ c 9 [ g n (u) L 1 (Ω,ρ β dx) + σ]. (3.9) 
In order to deal with g n (u) L 1 (Ω,ρ β dx) , for λ > 0 we set S λ = {x ∈ Ω : u(x) > λ} and ω(λ) = S λ ρ β dx,

g n (u) L 1 (Ω,ρ β dx) ≤ S c 1 g(u)ρ β dx + S 1 g(u)ρ β dx. (3.10)
We first deal with S 1 g(u)ρ β dx. In fact, we observe that

S 1 g(u)ρ β dx = ω(1)g(1) + ∞ 1 ω(s)dg(s),
where

∞ 1 g(s)dω(s) = lim T →∞ T 1 g(s)dω(s).
It infers by Proposition 2.1 and Proposition 2.2 that there exists

c 18 > 0 such that ω(s) ≤ c 18 M 1 (u) p * β s -p * β (3.11)
and by (1.8) and Lemma 3.1 with p = p * β , there exist a sequence of increasing numbers {T j } such that T 1 > 1 and

T -p * β j g(T j ) → 0 when j → ∞, thus ω(1)g(1) + T j 1 ω(s)dg(s) ≤ c 18 M 1 (u) p * β g(1) + c 18 M (u) p * β T j 1 s -p * β dg(s) ≤ c 18 M 1 (u) p * β T j -p * β g(T j ) + c 18 M 1 (u) p * β p * β + 1 T j 1 s -1-p * β g(s)ds.
Therefore,

S 1 g(u)ρ β dx = ω(1)g(1) + ∞ 1 ω(s) dg(s) ≤ c 18 M 1 (u) p * β p * β +1 ∞ 1 s -1-p * β g(s)ds = c 18 g ∞ M 1 (u) p * β , (3.12) 
where c 18 > 0 independent of n.

We next deal with S c

1 g(u)ρ β dx. For p * ∈ (1, N N -2α+β
), we have that

S c 1 g(u)ρ β dx ≤ c 3 S c 1 u p * ρ β dx + ǫ S c 1 ρ β dx ≤ c 3 c 19 Ω u p * dx + c 19 ǫ ≤ c 3 c 19 M 2 (u) p * + c 19 ǫ, (3.13) 
where c 19 > 0 independent of n.

Along with (3.9), (3.10), (3.12) and (3.13), we derive

M 1 (T n u) ≤ c 9 c 18 g ∞ M 1 (u) p * β + c 9 c 3 c 19 M 2 (u) p * + c 9 c 19 ǫ + c 9 σ. (3.14) 
By [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]Theorem 6.5] and (2.6), we derive that

M 2 (T n u) ≤ c 11 g n (u) + σν n L 1 (Ω,ρ β dx) ,
which along with (3.10), (3.12) and (3.13), implies that 

M 2 (T n u) ≤ c 11 c 18 g ∞ M 1 (u) p * β + c
(u) + M 2 (u) ≤ λ, implies M 1 (T n u) + M 2 (T n u) ≤ c 20 g ∞ λ p * β + c 21 λ p * + c 21 ǫ + c 22 σ.
Since p * β , p * > 1, then there exist σ 0 > 0 and ǫ 0 > 0 such that for any σ ∈ (0, σ 0 ] and ǫ ∈ (0, ǫ 0 ], the equation

c 20 g ∞ λ p * β + c 21 λ p * + c 21 c 2 ǫ + c 22 σ = λ
admits the largest root λ > 0.

We redefine M (u) = M 1 (u) + M 2 (u), then for M (u) ≤ λ, we obtain that

M (T n u) ≤ c 20 g ∞ λp * β + c 21 λp * + c 21 ǫ + c 22 σ = λ. (3.16) 
Especially, we have that

T n u L 1 (Ω) ≤ c 8 M 1 (T n u)|Ω| 1-1 p * β ≤ c 23 λ if M (u) ≤ λ. Thus, T n maps L 1 (Ω) into itself. Clearly, if u m → u in L 1 (Ω) as m → ∞, then g n (u m ) → g n (u) in L 1 (Ω) as m → ∞, thus T n is continuous. For any fixed n ∈ N, T n u m = G α [g n (u m ) + σν n ] and {g n (u m ) + σν n } m is uniformly bounded in L 1 (Ω, ρ β dx), then it follows by Proposition 2.3 that {G α [g n (u m ) + σν n ]} m is pre-compact in L 1 (Ω), which implies that T n is a compact operator. Let G = {u ∈ L 1 + (Ω) : M (u)
≤ λ} which is a closed and convex set of L 1 (Ω). It infers by (4.9) that

T n (G) ⊂ G.
It follows by Schauder's fixed point theorem that there exists some

u n ∈ L 1 + (Ω) such that T n u n = u n and M (u n ) ≤ λ, where λ > 0 independent of n.
In fact, u n is a classical solution of (3.8). For α = 1, since g n bounded and C 1 , then it is natural to see that. When α ∈ (0, 1), let open set O satisfy O ⊂ Ō ⊂ Ω. By [23, Proposition 2.3], for θ ∈ (0, 2α), there exists c 24 > 0 such that

u n C θ (O) ≤ c 24 { g(u n ) L ∞ (Ω) + σ ν n L ∞ (Ω) },
then applied [23, Corollary 2.4], u n is C 2α+ǫ 0 locally in Ω for some ǫ 0 > 0. Then u n is a classical solution of (3.8). Moreover,

Ω u n (-∆) α ξdx = Ω g n (u n )ξdx + σ Ω ξν n dx, ∀ξ ∈ X α . (3.17) 
Step 2. Convergence. Since {g n (u n )} and {ν n } are uniformly bounded in L 1 (Ω, ρ β dx), then by Propostion 2.3, there exist a subsequence {u n k } and u such that u n k → u a.e. in Ω and in L 1 (Ω), and g n k (u n k ) → g(u) a.e. in Ω.

Finally we prove that

g n k (u n k ) → g(u) in L 1 (Ω, ρ β dx). For λ > 0, we set S λ = {x ∈ Ω : |u n k (x)| > λ} and ω(λ) = S λ ρ β dx, then for any Borel set E ⊂ Ω, we have that E |g n k (u n k )|ρ β dx = E∩S c λ g(u n k )ρ β dx + E∩S λ g(u n k )ρ β dx ≤ g(λ) E ρ β dx + S λ g(u n k )ρ β dx ≤ g(λ) E ρ β dx + ω(λ)g(λ) + ∞ λ ω(s)dg(s), (3.18) 
where g(λ) = max s∈[0,λ] g(s). 

ω(λ)g(λ) + Tm λ ω(s)dg(s) ≤ c 18 g(λ)λ -p * β + c 25 Tm λ s -p * β dg(s) ≤ c 25 T -p * β m g(T m ) + c 25 p * β + 1 Tm λ s -1-p * β g(s)ds,
where c 25 = c 18 p * β . Pass the limit of m → ∞, we have that

ω(λ)g(λ) + ∞ λ ω(s) dg(s) ≤ c 25 p * β + 1 ∞ λ s -1-p * β g(s)ds.
Notice that the above quantity on the right-hand side tends to 0 when λ → ∞. The conclusion follows: for any ǫ > 0 there exists λ > 0 such that

c 17 p * β + 1 ∞ λ s -1-p * β g(s)ds ≤ ǫ 2 .
Since λ is fixed, together with (3.10), there exists δ > 0 such that

E ρ β dx ≤ δ =⇒ g(λ) E ρ β dx ≤ ǫ 2 .
This proves that {g

• u n k } is uniformly integrable in L 1 (Ω, ρ β dx). Then g • u n k → g • u in L 1 (Ω, ρ β dx) by Vitali convergence theorem.
Pass the limit of (3.17) as n k → ∞ to derive that

Ω u(-∆) α ξ = Ω g(u)ξdx + σ Ω ξdν, ∀ξ ∈ X α ,
thus u is a weak solution of (1.1)-(1.2) and u is nonnegative since {u n } are nonnegative.

Boundary type measure

In order to prove the elliptic problem involving boundary type measure, the idea is to change the boundary type measure to a forcing source. Then there exists ̺ 0 > 0 and ǫ 0 > 0 such that for ̺ ∈ [0, ̺ 0 ] and ǫ ∈ [0, ǫ 0 ],

-∆u

= g n (u + ̺P[µ]) in Ω, u = 0 on ∂Ω (4.1)
admits a nonnegative solution w n such that

M 1 (w n ) + M 2 (w n ) ≤ λ
for some λ > 0 independent of n, where

M 1 (v) = v M q * (Ω,ρdx) and M 2 (v) = v L q * (Ω) ,
with q * and q * given in (1.12) and (1.13) respectively.

Proof. Without loss generality, we assume µ M b (∂Ω) = 1 and q * ∈ (1, N +1 N -1 ). Redenote the operators {T n } by

T n u = G 1 [g n (u + ̺P[µ])] , ∀u ∈ L 1 + (Ω).
By Proposition 2.2, we have

M 1 (T n u) ≤ c 9 g n (u + ̺P[µ]) L 1 (Ω,ρdx) ≤ c 9 g(u + ̺P[µ]) L 1 (Ω,ρdx) (4.2) 
For λ > 0, we set

S λ = {x ∈ Ω : u + ̺P[µ] > λ} and ω(λ) = S λ ρdx, g(u + ̺P[µ]) L 1 (Ω,ρdx) ≤ S c 1 g(u + ̺P[µ])ρdx + S 1 g(u + ̺P[µ])ρdx. (4.
3) We first deal with S 1 g(u + ̺P[µ])ρdx. In fact, we observe that It infers by Proposition 2.2 and Proposition 2.4 with γ = 1 that there exists such that

S 1 g(u + ̺P[µ])ρdx = ω(1)g(1) + ∞ 1 ω(s)dg(s),
ω(s) ≤ c 26 u + ̺P[µ] q * M q * (Ω,ρdx) s -q * ≤ c 27 u M q * (Ω,ρdx) + ̺P[µ] M q * (Ω,ρdx) q * s -q * ≤ c 27 (M 1 (u) + c 14 ̺) q * s -q * (4.4)
where c 26 , c 27 > 0 independent of n. By (1.13) and Lemma 3.1 with p = q * , there exist a sequence of increasing numbers {T j } such that T 1 > 1 and

T -q * j g(T j ) → 0 when j → ∞, thus ω(1)g(1) + T j 1 ω(s)dg(s) ≤ c 27 (M 1 (u) + c 14 ̺) p * β g(1) + c 27 (M 1 (u) + c 14 ̺) q * T j 1 s -q * dg(s) ≤ c 27 (M 1 (u) + c 14 ̺) q * T j -q * g(T j )
+ c 27 (M 1 (u)+c 14 ̺) q * q * +1 T j 1 s -1-q * g(s)ds.

Therefore,

S 1 g(u)ρdx = ω(1)g(1) + ∞ 1 ω(s) dg(s) ≤ c 27 (M 1 (u)+c 14 ̺) q * q * +1 ∞ 1 s -1-q * g(s)ds ≤ c 28 g ∞ M 1 (u) q * + c 28 g ∞ ̺ q * , (4.5) 
where c 28 > 0 independent of n.

We next deal with S c

1 g(u + ̺P[µ])ρdx. For q * ∈ (1, N +1 N -1 ), we have that S c 1 g(u + ̺P[µ])ρdx ≤ c 5 S c 1 (u + ̺P[µ]) q * ρdx + ǫ S c 1 ρdx ≤ c 5 c 29 Ω u q * dx + c 5 c 29 ̺ q * + c 29 ǫ ≤ c 5 c 29 M 2 (u) q * + c 5 c 29 ̺ q * + c 29 ǫ, (4.6) 
where c 29 > 0 independent of n.

Along with (4.2), (4.3), (4.5) and (4.6), we derive that

M 1 (T n u) ≤ c 9 c 26 g ∞ M 1 (u) q * + c 9 c 5 c 29 M 2 (u) q * + c 9 c 29 ǫ + c 9 l ̺ , (4.7) 
where l ̺ = c 28 g ∞ ̺ p * + c 5 c 29 ̺ p * . By [20, Theorem 6.5] and (2.6), we derive that

M 2 (T n u) ≤ c 11 g(u + ̺P[µ]) L 1 (Ω,ρdx) ,
which along with (4.3), (4.5) and (4.6), implies that

M 2 (T n u) ≤ c 11 c 26 g ∞ M 1 (u) q * + c 11 c 5 c 29 M 2 (u) q * + c 11 c 29 ǫ + c 11 l ̺ . (4.8)
Therefore, inequality (4.7) and (4.8) imply that 

M 1 (T n u) + M 2 (T n u) ≤ c 30 g ∞ M 1 (u) q * + c 31 M 2 (u) q * + c 31 ǫ + c 32 l ̺ ,
(u) + M 2 (u) ≤ λ, implies M 1 (T n u) + M 2 (T n u) ≤ c 30 g ∞ λ q * + c 13 λ q * + c 31 ǫ + c 32 l ̺ .
Since q * , q * > 1, then there exist ̺ 0 > 0 and ǫ 0 > 0 such that for any ̺ ∈ (0, ̺ 0 ] and ǫ ∈ (0, ǫ 0 ], the equation

c 30 g ∞ λ q * + c 31 λ q * + c 31 c 5 ǫ + c 32 l ̺ = λ admits the largest root λ > 0. We redefine M (u) = M 1 (u) + M 2 (u), then for M (u) ≤ λ, we obtain that M (T n u) ≤ c 30 g ∞ λq * + c 31 λq * + c 31 ǫ + c 32 l ̺ = λ. (4.9)
Especially, we have that Similarly to the argument in Proof of Theorem 1.1 part (ii) in Step 2, we have that g n k (u n k ) → g(u) in L 1 (Ω, ρdx).

T n u L 1 (Ω) ≤ c 8 M 1 (T n u)|Ω| 1-1 q * ≤ c 33 λ if M (u) ≤ λ.
Pass the limit of (4.10) as n k → ∞ to derive that

Ω u(-∆)ξdx = Ω g(u)ξdx + ̺ ∂Ω ∂ξ ∂ n dµ, ∀ξ ∈ X α ,
thus u is a weak solution of (1.9) and u is nonnegative since {u n } are nonnegative.

Proof of Theorem 1.2 (i). It proceeds similarly to the proof of Theorem 1.1 (i), so we omit here.

5 Boundary type measure for α ∈ (0, 1)

Basic results

In this subsection, we devoted to study the properties of R β with β ∈ [0, α], see the definition 1.18. Here and in what follows, we assume that α ∈ (0, 1).

Lemma 5.1 Let 1 ≤ β ′ ≤ β ≤ α, then ∅ = R β ′ ⊂ R β = M + (Ω c ).
(5.1)

Proof. Let x 0 ∈ ∂Ω, x t = x 0 + t n x 0 and δ t be the dirac mass concentrated at x t , where n x 0 is the unit normal vector pointing outside at x 0 . Fixed t > 0, w δt (x) = |xx t | -N -2α for x ∈ Ω. It is easy to see that w δt ∈ L ∞ (Ω) and then δ t ∈ R β for any β ∈ [0, α].

Fixed t = 0, w δ 0 (x) = |xx 0 | -N -2α for x ∈ Ω. We observe that w δ 0 ∈ L 1 (Ω, ρ α dx) and then δ 0 ∈ R β for any β ∈ [0, α].

Lemma 3 . 1 1 g

 311 Assume that g : R + → R + is a continuous function satisfying+∞ (s)s -1-p ds < +∞ (3.7)for some p > 0. Then there is a sequence real positive numbers{T n } such that lim n→∞ T n = ∞ and lim n→∞ g(T n )T -p n = 0.Proof. Let {s n } be a sequence of real positive numbers converging to ∞. We observe 2sn sn g(t)t -1-p dt ≥ min t∈[sn,2sn] g(t)(2s n ) t -1-p dt = 0.

NN

  -2α+β ). In fact, if p * ≥ N N -2α+β , then for any given p ∈ (1, N N -2α+β ), (1.8) implies that g(s) ≤ c 3 s p + ǫ, ∀s ∈ [0, 1].

11 c 3 c

 3 19 M 2 (u) p * + c 11 c 19 ǫ + c 11 σ. (3.15) Therefore, inequality (4.7) and (4.8) imply thatM 1 (T n u) + M 2 (T n u) ≤ c 20 g ∞ M 1 (u) p * β + c 13 M 2(u) p * + c 21 ǫ + c 22 σ, where c 20 = (c 9 + c 11 )c 18 , c 21 = (c 9 + c 11 )c 19 and c 22 = c 9 + c 11 . If we assume that M 1

  )dω(s). where {T m } is a sequence increasing number such that T -p * β m g(T m ) → 0 as m → ∞, which could obtained by assumption (1.8) and Lemma 3.1 with p = p * β . It infers by (3.11) that

Lemma 4 . 1

 41 For µ ∈ M b + (∂Ω), we have thatP[µ] ∈ C 1 (Ω).

Proof. It infers by [ 5 ,

 5 Proposition 2.1] that for (x, y) ∈ Ω × ∂Ω, P (x, y) ≤ c N |x -y| 1-N and |∇ x P (x, y)| ≤ c N |x -y| -N , then by the formulation of P[µ] we have that P[µ] ∈ C 1 (Ω).

Lemma 4 . 2

 42 Assume that ̺ > 0, µ ∈ M b + (∂Ω), g is a nonnegative function satisfying (1.12) and (1.13), {g n } are a sequence of C 1 nonnegative functions defined on R + satisfying g n (0) = g(0) and (3.2).

where c 30 = (c 9 +

 9 c 11 )c 26 , c 31 = (c 9 + c 11 )c 5 c 29 and c 32 = c 9 + c 11 . If we assume that M 1

  Thus, T n maps L 1 (Ω) into itself. Clearly, if u m → u in L 1 (Ω) as m → ∞, then g n (u m ) → g n (u) in L 1 (Ω) as m → ∞, thus T n is continuous. For any fixed n ∈ N, T n u m = G 1 [g n (u m + ̺P[µ])] and {g n (u m ) + ̺P[µ]} m is uniformly bounded in L 1 (Ω, ρdx), then it follows by Proposition 2.3 that {G 1 [g n (u m + ̺P[µ]]} m is pre-compact in L 1 (Ω), which implies that T n is a compact operator. Let G = {u ∈ L 1 + (Ω) : M (u) ≤ λ} which is a closed and convex set of L 1 (Ω). It infers by (4.9) that T n (G) ⊂ G.It follows by Schauder's fixed point theorem that there exists some w n ∈ L 1 + (Ω) such that T n w n = w n and M (w n ) ≤ λ, where λ > 0 does not depend on n. Since g n and P[µ] are C 1 functions by Lemma 4.1, then w n is a classical solution of (4.1) andΩ w n (-∆)ξdx = Ω g n (w n + ̺P[µ])ξdx, ∀ξ ∈ C 1.1 0 (Ω).Proof of Theorem 1.2 (ii). It derives by Lemma 4.1 that w n is a classical solution of (4.1). Denote u n = w n + ̺P[µ] and thenΩ u n (-∆)ξ = Ω g n (u n )ξdx + ̺ ∂Ω ∂ξ(x) ∂ n x dµ(x), ∀ξ ∈ X α ,(4.10) Since {g n (u n )} are uniformly bounded in L 1 (Ω, ρdx), then by Propostion 2.3, there exist a subsequence {w n k } and w such that w n k → w a.e. in Ω and in L 1 (Ω) and then u n k → u a.e. in Ω and in L 1 (Ω) where u = w + ̺P[µ]. Thus, g n k (u n k ) → g(u) a.e. in Ω.

Example. Let x 0 ∈ ∂Ω, x t = x 0 + t n x 0 and δ t be the dirac mass concentrated at x t . Denote

where {b n } a sequence nonnegative numbers will be chosen latter. We observe that

(5.2)

Proof. (i) µ ∈ R β implies that w µ ∈ L 1 (Ω, ρ β dx) and since the function:

) with supp(µ n ) ⊂ Ωc be a sequence of nonnegative functions such that µ n → µ in distribution sense.

Then we derive that w µn ∈ C 1 ( Ω) and there exists a unique classical solution

and (5.5) holds for u n . Passing the limit of n → ∞, we derive that wµ is a weak solution of (5.4). We note that (i) Lemma 5.2(ii) indicates that G α [w µ ] has the similar role as P[µ] when α = 1; (ii) the definition 1.3 is equivalent to

where w µ is given by (1.16).

Proof of Theorem 1.3

Inspired by the proof of Theorem 1.2, we first give an important lemma, which is important in dealing with the subcritical case. Then there exists ̺ 0 > 0 and ǫ 0 > 0 such that for ̺ ∈ [0, ̺ 0 ] and ǫ ∈ [0, ǫ 0 ],

admits a nonnegative solution w n such that

for some λ > 0 independent of n, where

with q * and p * β given in (1.21) and (1.22) respectively.

Proof. For µ ∈ R β , we have that w µ ∈ L 1 (Ω, ρ β dx), which, by Proposition 2.3, implies that G α [w µ ] ∈ M p * β (Ω, ρ β dx). It proceeds as Lemma 4.2, replaced P[µ] by G α [w µ ] to obtain that there exists ̺ 0 > 0 and ǫ 0 > 0 such that for ̺ ∈ [0, ̺ 0 ] and ǫ ∈ [0, ǫ 0 ], there exists w n such that

for some λ > 0 independent of n. By Lemma 5.2 (i), we see that w n is a classical solution of (5.6). Moreover, 

Pass the limit of (5.7) as n k → ∞ to derive that Ω w(-∆) α ξdx = Ω g(w + ̺G α [w µ ])ξdx, ∀ξ ∈ X α .

Thus u = w + ̺G α [w µ ] is a weak solution of (1.15) and u is nonnegative since {w n } are nonnegative.

Proof of Theorem 1.3 (i). It proceeds similarly to the proof of Theorem 1.1 (i), so we omit here.