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Campus de Beaulieu, 35042 Rennes Cedex, France
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Abstract

We give exponential inequalities and Gaussian approximation results for sums of weakly dependent
variables. These results lead to generalizations of Bernstein and Hoeffding inequalities, where an extra
control term is added; this term contains conditional moments of the variables.

1 Introduction

In the whole paper (Xi)16i6n is a sequence of centred random variables. Our objective is to give new
exponential inequalities and Gaussian approximation results for the sum S = X1 + · · · + Xn in the case
where first and second order mixing conditions are assumed (first order mixing conditions involve conditional
means and second order ones involve conditional covariances). This paper improves a previous one [9] by
extending some results, simplifying the presentation, and correcting two errors: a term was forgotten in the
expression of q Theorem1, and another in the expression of wp given in the remark following Theorem9.

The essential application of exponential inequalities is to give small event probabilities; typically, we
would like here to extend the Hoeffding and Bernstein inequalities to mixing processes, that is

P (S > A) 6 exp

(

− 2A2

∑

i b
2
i + ρ

)

, ai 6 Xi 6 ai + bi (1)

P (S > A) 6 exp

(

− A2

2E[S2] + 2Am/3 + ρ

)

, m = sup
k

‖Xk‖∞ (2)

where ρ = 0 if the variables are independent. We shall obtain here a value of ρ which depends on conditional
moments of the variables. We also want to provide inequalities which generalize what is already known for
martingales. Actually Equation (2) is not satisfied for a martingale (E[S2] has to be replaced with a bound
on the total variation); this will lead us to two different alternatives

P (S > A) 6 exp

(

− A2

2v + 2Am/3 + ρ

)

, (3)

where v is a bound on some kind of quadratic variation and ρ = 0 in the case of a martingale (cf. Theorem 7
for a precise statement), or

P (S > A) 6 exp

(

− A2

2E[S2] +
√

2Aw/3

)

, (4)
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where w is a third order quantity (i.e. if S is replaced with tS, w becomes t3w) which involves conditional
moments and is in the independent case smaller than 3

2

∑ ‖X3
k‖∞ (Theorem 14). For instance, if we are

close to the independent case and S is a normalized sum, that is Xk = Uk/
√
k where (Uk)k is a sequence of

weakly dependent bounded random variables, w has order 1/
√
n and the second term in the denominator is

residual as long as A≪ √
n.

Bounds like Equation (3) will be obtained through what we call here the first order approach whereas
(4) will require the second order approach. We present the main ideas below.

First order approach for spatial processes. Considering the sequence X1, . . . Xn as a time series, for
instance a martingale, it is natural to introduce the σ-fields

Fk = σ(X1, . . . Xk). (5)

It will appear that the remainder ρ will involve essentially terms of the form

n
∑

k=1

k−1
∑

i=1

‖Xi‖∞‖E[Xk|Fi]‖∞

(cf. the constant q in Theorem 1 and Theorem 7).
If the sequence is a random field this filtration will generally not be very useful because of the arbitrariness

of the order on the variables, and we shall need to proceed in a such way that the sequence Fi in the interior
sum actually depends on k. This is done as follows: to each index k we associate a reordering of the sequence
which corresponds (hopefully) to increasing dependence with Xk; this brings on a new sequence, depending
on k: Xk

j . This idea goes back to [6]. More precisely:

For any 1 6 k 6 n is given a sequence Xk
j , j = 1, . . . k, which is a reordering of (Xj, j = 1, . . . k) with

Xk
k = Xk. We attach to each k a family of σ-algebras (Fk

j )j6k such that

F
k
j ⊃ σ(Xk

i , i 6 j), j 6 k. (6)

The σ-algebras (Fj)j6n associated to the initial ordering are still defined by (5).

In particular, we have

F
k
k ⊃ Fk

F
k
k−1 ⊃ Fk−1.

This is how we get a new constant q̃ (Eq. (26)) involving now terms of the form

k−1
∑

i=1

‖Xk
i ‖∞‖E[Xk|Fk

i ]‖∞. (7)

If (Xi) is a time series, it is natural to set Xk
i = Xi and Fk

j = Fj = σ(Xi, i 6 j): the superscripts can be
dropped. Later on, the term “times series” will refer to to this situation, whereas the general case will be
rather referred to as “random fields”.

When dealing with mixing random fields of Rd, each index k corresponds to some point Pk of the space
where Xk sits; for each k, the sequence (Xk

j ) will be typically obtained by sorting the original sequence
(Xj)j6k in decreasing order of the distance d(Pj , Pk). A simple example is the case of m-dependent fields
indexed by Z

d, that is, a process Xa, a ∈ Z
d, such that the set of variables XA = {Xa : a ∈ A} is independent

of XB if the sets A and B have distance at least m; they are typically fields of the form Xa = h(Ya+C)
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where Ya is an i.i.d. random field, C a finite neighbourhood of 0 in Z
d, and h a measurable function of |C|

variables.

We would like to point out that this framework covers quite different situations. For instance, in the
Erdös-Rényi model of an unoriented random graph with n vertices, edges are represented by

(

n
2

)

i.i.d.
Bernoulli variables Yab, 1 6 a < b 6 n, with the convention Yab = Yba and Yaa = 0 (see [2] and references
therein). The number of triangles (for instance) in such a model is

∑

a,b,c

YabYbcYac =
∑

a,b,c

Xabc.

The process X is here an m-dependent process on the set of three element subsets of {1, . . . n}. We shall
treat this example in Section 7.2.

Within this framework, we are able to control exponential moments of S with the help of formulas which
generalize the Hoeffding and Bernstein inequalities for independent variables (Theorem 4 and Theorem 5).
The bound of Theorem 4 involves v =

∑

k ‖E[X2
k |Fk−1]‖∞, and a remainder term involving conditional

expectations ‖E[Xk|Fk
i ]‖∞. This is slightly unsatisfactory since it is known that the key quantity in the

case of a martingale is the quadratic variation 〈X〉 =∑n
k=1E[X2

k |Fk−1], and in most cases effective bounds
will actually involve ‖〈X〉‖∞, which is smaller than v. This is corrected in Theorem 1, where we give a
result which generalizes what is known from martingale theory and improves on classical papers concerned
with mixing [6]. However, inspection of the bounds shows that this improvement is really effective only if
the conditional expectations |E[Xk|Fk

i ]| are significantly smaller than |Xk|; if not, the only way to improve
accuracy is to use the second order approach of Sections 5 and 6 briefly discussed below.

Second order results. By this terminology, we mean the following fact: the Hoeffding inequality (Equa-
tion 1 with ρ = 0) for instance is obtained from the exponential inequality

E[etS ] 6 et
2 ∑

i
b2i /8. (8)

One obvious drawback of this upper bound is that when t tends to 0, it does not look like 1 + t2E[S2]. One
would rather expect something like

E[etS ] 6 et
2E[S2]/2+Ct3 (9)

which has more interesting scaling properties; this approach would hopefully lead to significant improvements
in a moderate deviation domain; this is what has been done in [5], but there S is an arbitrary function of
independent variables, in the spirit of the McDiarmid inequality. In order to get closer, like in Equation (45)
below, we have to pay with higher order extra terms: the remainder terms will not only contain conditional
expectations E[Xk|Fk

i ] but also conditional covariances; this will force us to consider for each pair of indices
(i, j) another reordering of the sequence which corresponds to increasing dependence with the pair (Xi, Xj),

and to introduce σ-fields Hij
k ; we postpone details to Section 6.

In this context we shall give inequality of the form

|E[eS ]− eE[S2]/2| 6 eE[S2]/2+Ct3 (10)

The paper is organized as follows. The three forthcoming sections deal with first order order exponential
inequalities. A classical use of the exponential inequalities leads to Theorem 7 which generalizes the Bernstein
and Hoeffding inequalities. An application to concentration inequalities and triangle counts is given in
Section 4.

Section 5 to 7 are concerned with the second order approach, with applications to bounded difference
inequalities and triangle counts.

In Section 8 we give some estimates under mixing assumptions.
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2 First order approach for time series

This section is devoted to bounds for the Laplace transform of S in the case of time series (spatial processes
are considered in the forthcoming section). The corresponding deviation probabilities will be obtained in
Section 4.1 through classical arguments.

In Theorem 1 we present bounds which generalize known results concerning martingales.
In Theorem 4 we give a Hoeffding bound which is valid in both cases (time series and random fields),

and Theorem 5 gives a Bennett bound for random fields which does not exactly generalizes (11) because the
quadratic variation 〈X〉 is changed into the more drastic upper bound v.

The applicability of the following theorem depends on the way one can bound the quadratic variations
involved. In the forthcoming examples, we shall consider only Equation (11) through a bound on ‖〈X〉‖∞;
however Equations (12) and (13) have the advantage of not involving m.

Theorem 1. Let us consider a sequence of centred random variables (Xi)16i6n with the filtration defined
by (5). We define

m = sup
16k6n

ess supXk

S =

n
∑

k=1

Xk

[X] =

n
∑

k=1

X2
k

〈X〉 =
n
∑

k=1

E[X2
k |Fk−1]

[X+] =
n
∑

k=1

(Xk)
2
+

〈X−〉 =
n
∑

k=1

E[(Xk)
2
−|Fk−1]

q =

n
∑

k=1

k−1
∑

i=1

‖Xi‖∞‖E[Xk|Fi]‖∞ + 1
3

n
∑

k=1

‖Xk‖∞‖E[Xk|Fk−1]‖∞

where the notation x2+ (resp. x2−) stands for x21x>0 (resp. x21x<0). Then

E

[

exp

(

S − 〈X〉
m2

(em −m− 1)

)]

6 e3q (11)

E

[

exp

(

S − 1

2
[X+]−

1

2
〈X−〉

)]

6 e3q (12)

E

[

exp

(

S − 1

6
[X]− 1

3
〈X〉

)]

6 e3q. (13)

If Sk = X1 +X2 + . . . Xk is a supermartingale, these inequalities hold true with q = 0.

Remark. We recommend [1] for an account on recent work concerning exponential inequalities for mar-
tingales.

Proof. The key of the proof will be to use pairs of functions θ(x) and ψ(x) such that

ψ > 0, ex−θ(x)
6 1 + x+ ψ(x). (14)
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These functions are meant to be O(x2) in the neighbourhood of 0. Three examples of such functions are

θ(x) = 0, ψ(x) = ex − x− 1

θ(x) = ζ(x+), ψ(x) = ζ(x−), ζ(x) = e−x + x− 1

θ(x) =
x2

6
, ψ(x) =

x2

3
.

Inequality (14) for these functions is proved in Proposition 15 of the Appendix. Set

Tk =

k
∑

i=1

Xi − θ(Xi)− log(1 + ξi), where ξi = E[ψ(Xi)|Fi−1].

Then

E[eTn ] = E[eXn−θ(Xn)(1 + ξn)
−1eTn−1 ]

6 E[(1 +Xn + ψ(Xn))(1 + ξn)
−1eTn−1 ]

= E[Xn(1 + ξn)
−1eTn−1 ] + E[eTn−1 ]

In the supermartingale case one gets

E[eTn ] 6 E[eTn−1 ]. (15)

In the general case we proceed as follows

E[eTn ] 6 E[Xn((1 + ξn)
−1 − 1)eTn−1 ] + E[Xne

Tn−1 ] + E[eTn−1 ]

= r1 + r2 + E[eTn−1 ]. (16)

We have

r1 = E[E[Xn|Fn−1]e
Tn−1ξn/(1 + ξn)] 6 E[|E[Xn|Fn−1]|eTn−1 ](‖ψ(Xn)‖∞ ∧ 1). (17)

The above defined function ψ is convex with ψ(0) = 0, ψ(−1) 6 1 and ψ(1) 6 1. Hence |ψ(x)| ∧ 1 6 |x| and
therefore

r1 6 ‖Xn‖∞‖E[Xn|Fn−1]‖∞E[eTn−1 ].

Let ∆i = Ti − Ti−1; the second remainder is bounded as follows:

r2 = E

n−1
∑

i=1

Xn(e
Ti − eTi−1)

= E

n−1
∑

i=1

Xn tanh(∆i/2)(e
Ti + eTi−1)

6 E

n−1
∑

i=1

|E[Xn|Fi] tanh(∆i/2)|(eTi + eTi−1)

6

n−1
∑

i=1

‖E[Xn|Fi] tanh(∆i/2)‖∞2 sup
j6n−1

E[eTj ].

Equation (68) of the Appendix implies that | tanh(∆i/2)| 6 3‖Xi‖∞/2, hence

r2 6 3
(

n−1
∑

i=1

‖Xi‖∞‖E[Xn|Fi]‖∞
)

sup
i6n−1

E[eTi ]. (18)
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Finally, bringing together (16), (17) and (18)

E[eTn ] 6 (1 + ρn) sup
i6n−1

E[eTi ], ρn = ‖Xn‖∞‖E[Xn|Fn−1]‖∞ + 3

n−1
∑

i=1

‖Xi‖∞‖E[Xn|Fi]‖∞

6 exp(ρn) sup
i6n−1

E[eTi ]

and we get by induction that

sup
i6k

E[eTi ] 6 exp
(

k
∑

i=1

ρi

)

.

The right hand side can be set to 1 in the supermartingale case (cf. (15)). In particular

E
[

exp
{

n
∑

i=1

Xi − θ(Xi)− log(1 + E[ψ(Xi)|Fi−1])
}]

6 exp(3q)

hence

E
[

exp
{

n
∑

i=1

Xi − θ(Xi)− E[ψ(Xi)|Fi−1]
}]

6 exp(3q).

This leads to the three bounds by using the three pairs of functions and by noticing that for m > 0 and
x 6 m

ϕ(x) 6 ϕ(m), ϕ(x) =
ex − x− 1

x2
(19)

which is a consequence of L’Hospital’s rule for monotonicity [20], and that for x ≥ 0

ζ(x) 6
x2

2

since the function x2/2− ζ(x) has a non-negative derivative.

Next theorem concerns an inequality which only involves [X] (and not 〈X〉). The advantage is that no
boundedness assumption is required since q does not appear. A definition is needed [1]:

Definition 2. We shall say that an integrable random variable Y is heavy on left if

∀a > 0, E[Ta(Y )] 6 0,

where

Ta(y) = min(|y|, a) sign(y)

is the truncated version of y.

Many classical distributions satisfy this property for a reasonably large subset of parameter values [1].
Our definition differs slightly from [1] in the sense that we do not require Y to be centred; thus Theorem 3
below may be seen as an extension of Lemma C.1 of [1] to supermartingales:

Theorem 3. Let us consider a sequence of non-necessarily centred random variables (Xi)16i6n with the
filtration defined by (5). If for all k, the variable Xk is conditionally heavy on the left in the sense that

∀a > 0, E[Ta(Xk)|Fk−1] ≤ 0, (20)

then

E
[

exp
(

S − 1
2 [X]

)]

6 1. (21)
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Proof. Using the classical inequality log coshx ≤ x2/2, and the identity coshx = ex/(1 + tanhx) we get

ex−x2/2
6 1 + tanhx.

Thus

exp
(

S − 1
2 [X]

)

6

n
∏

i=1

(

1 + tanhXk

)

.

On the other hand since tanh(x) = −
∫∞

0
tanh′′(a)Ta(x)da, one has E[tanh(Xk)|Fk−1] ≤ 0, and the above

product is clearly a supermartingale.

Next theorem is a Hoeffding inequality. A weaker version of this theorem could be obtained by using
(13):

Theorem 4. Assume that we are in the setting described in the introduction, with a family of σ-fields
satisfying (6). The variables Xk are centred. We define now q̃ as the first term in the expression of q:

q̃ =
n
∑

k=1

k−1
∑

i=1

‖Xi‖∞‖E[Xk|Fi]‖∞.

If the variables are lower and upper bounded with probability one:

ai 6 Xi 6 ai + bi (22)

the following inequality holds

E
[

exp
(

S − 1
8

∑

i

b2i

)]

6 e8q̃. (23)

In the supermartingale case (i.e. E[Xi|Fi−1] 6 0), this inequality remains true if we allow ai and bi to be
an Fi−1-measurable random variables.

Proof. We start, as in the proof of the Hoeffding inequality, with the following inequality based on the
upper-bound of the exponential function by the chord over the curve on [a, a+ b]:

ex 6
(a+ b)ea − aea+b

b
+ x

ea+b − ea

b
, a 6 x 6 a+ b.

It is well known that the first term of the right hand side, say ec, is smaller than exp(b2/8) independently of
a (this a key step for proving the Hoeffding inequality, see for instance Appendix B of [21]). On the other
hand, it is clear that c 6 a + b (bound ea with ea+b in the expression of ec). Hence, if we define ci and di
with the equations

ci = min
(b2i
8
, ai + bi

)

,

di = eai
ebi − 1

bi

we have

ex 6 eci + dix, ai 6 x 6 ai + bi.

Now let the random variables Tj be defined as

Tk =

k
∑

i=1

(Xi − ci)

7



We obtain

E[eTn ] = E[eXneTn−1−cn ] 6 E[(ecn + dnXn)e
Tn−1−cn ]

In the supermartingale case, the term involving dn is 6 0 and this equation gives immediately the result.
We assume now that we are not necessarily in this case but ai and bi are deterministic. We can assume in
addition, without loss of generality, that ai and bi are chosen so that (22) is tight. Notice that in this case
we also have ai 6 0 6 ai + bi since E[Xi] = 0. The previous equation implies

E[eTn ] 6 dne
−cnE[Xne

Tn−1 ] + E[eTn−1 ]

= dne
−cnE

n−1
∑

i=1

Xn(e
Ti − eTi−1) + E[eTn−1 ]

= dne
−cnr2 + E[eTn−1 ]. (24)

Let ∆i = Ti − Ti−1 = Xi − ci; bounding r2 as in the proof of Theorem 1 we get

r2 = E
n−1
∑

i=1

Xn tanh(∆i/2)(e
Ti + eTi−1)

6 E
n−1
∑

i=1

|E[Xn|Fi]∆i|(eTi + eTi−1)/2

6

n−1
∑

i=1

‖E[Xn|Fi]∆i‖∞ sup
j6n−1

E[eTj ]

and since

|∆i| 6 max(ai + bi − ci, ci − ai) 6 bi 6 2‖Xi‖∞

(bi is the difference between the essential supremum and the essential infimum) we get that

r2 6 2ρn sup
i6n−1

E[eTi ], with ρn =

n−1
∑

i=1

‖Xi‖∞‖E[Xn|Fi]‖∞.

On the other hand, since ai 6 0, Equation (70) in Proposition 16 of the appendix leads to dne
−cn 6 4, and

Equation (24) becomes finally

E[eTn ] 6 (1 + 8ρn) sup
i6n−1

E[eTi ] 6 e8ρn sup
i6n−1

E[eTi ].

Hence

E[eTn ] 6 exp

(

8

n
∑

i=1

ρi

)

.

and we obtain (23) by using that ci 6 b2i /8 in the expression of Tn.

We introduce now a theorem which is almost a consequence of (11), except that q has been replaced by
q̃. Its real interest is that unlike Theorem 1, this result will extend to the more general setting given by
Equation (6).
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Theorem 5. Assume that we are in the setting described in the introduction, with a family of σ-fields
satisfying (6). The variables Xk are centred. We define

v =

n
∑

k=1

‖E[X2
k |Fk−1]‖∞,

m as in Theorem 1, and q̃ as in Theorem 4. Then for any t > 0

E[eS ] 6 exp
( v

m2
(em −m− 1) + q̃

)

. (25)

Proof. We set

Si = X1 +X2 + · · ·+Xi, i 6 n

and S0 = 0. Equation (19) implies that

eXn 6 1 +Xn +X2
nϕ(m)

hence

E[eS ] 6 E[(1 +Xn +X2
nϕ(m))eSn−1 ]

= E
n−1
∑

i=1

Xn(e
Si − eSi−1) + E[(1 +X2

nϕ(m))eSn−1 ]

= E

n−1
∑

i=1

Xn tanh(Xi/2)(e
Si + eSi−1) + ϕ(m)E[X2

ne
Sn−1 ] + E[eSn−1 ]

6 E

n−1
∑

i=1

‖E[Xn|Fi]Xi‖∞(eSi + eSi−1)/2 + ϕ(m)E[E[X2
n|Fn−1]e

Sn−1 ] + E[eSn−1 ]

6 (1 + q̃n + ϕ(m)vn) sup
i6n−1

E[eSi ]

6 eq̃
n+ϕ(m)vn

sup
i6n−1

E[eSi ]

where q̃n and vn are the terms corresponding to k = n in the definition of q̃ and v. This proves the result
by induction.

3 First order approach for spatial processes

The proofs Theorem 4 and Theorem 5 are based on a recursion like

E[eSn ] 6 eqnE[eSn−1 ].

(Note that this is not the case in Theorem 1 since in its proof we consider E[eTn ] whose definition depends
on the initial ordering of variables because of the conditionings.) At each step, the variables can be reordered
in a more suitable order, as explained in the introduction. The proofs can be performed in the same way
and we get

Theorem 6. Assume that we are in the setting described in the introduction, with a family of σ-fields
satisfying (6). The variables Xk are centred. We define

q̃ =

n
∑

k=1

k−1
∑

i=1

‖Xk
i ‖∞‖E[Xk|Fk

i ]‖∞ (26)

v =

n
∑

k=1

‖E[X2
k |Fk−1]‖∞, (27)

Then Theorem 4 and Theorem 5 hold true.

9



The m-dependent case. Let us consider the case of a m-dependent process in the following sense:

• for each k, there exist a set Ik of mk indices (k included) such that

E[Xk|Xi, i /∈ Ik] = 0. (28)

One can start with an arbitrary initial ordering of the random variables. For any k, we can choose the
sequence Xk

j in such a way that if k − j > mk, X
k
j = Xi for some i /∈ Ik, in order to get

E[Xk|Xk
j , j 6 k −mk] = 0. (29)

Fk
i are the corresponding σ-fields. In this case

q̃ =

n
∑

k=1

∑

j<k

‖E[Xk|Fk
j ]‖∞‖Xk

j ‖∞ 6 sup
j

‖Xj‖∞
n
∑

k=1

(mk − 1)‖E[Xk|Fk−1]‖∞

4 Applications of first order bounds

We postpone the discussion concerning spatial processes over a metric space to Section 8.

4.1 Deviation bounds

In this section we give the deviation inequalities that can be deduced from the preceding exponential in-
equalities. We generalize the Bernstein inequality in Equations (30) and (34), and the Hoeffding inequality
in Equation (33); one could get Bennett inequalities through a similar process, we refer to Appendix B of
[21]. In the martingale case, Equations (31) and (32) do not assume that the variables are bounded, but
sums of squares are involved.

Theorem 7. With the notations of Theorem 1 we have for any A, y > 0

P (S > A, 〈X〉 6 y) 6 exp

(

− A2

2(y + 6q) + 2Am/3

)

(30)

P (S > A, [X+] + 〈X−〉 6 y) 6 exp

(

− A2

2(y + 6q)

)

(31)

P (S > A, [X] + 2〈X〉 6 3y) 6 exp

(

− A2

2(y + 6q)

)

. (32)

With the notations of Theorem 4, 5 and 6 we have for any A, y > 0

P (S > A,
∑

i

b2i 6 4y) 6 exp

(

− A2

2y + 32q̃

)

(33)

P (S > A) 6 exp

(

− A2

2(v + 2q̃) + 2Am/3

)

. (34)

In the martingale case, (33) remains true if we allow ai and bi to be an Fi−1-measurable random variable.

Remark. Equation (33) is analogous to Corollary 3(a) of [6].

Proof. Applying the bound (11) to the variables tXi for some t > 0, we get

logP (S > A, 〈X〉 6 y) 6 logE[exp{t(S −A)− t2〈X〉 − t2y

t2m2
(etm − tm− 1)}]

6 3t2q +
y

m2
(etm − tm− 1)− tA

6
y + 6q

m2
(etm − tm− 1)− tA.

10



The optimization of this expression w.r.t. t > 0 is classical in the theory of Bennett and Bernstein inequalities
and delivers (30); see for instance the Appendix B of [21]. The second inequality is deduced from (12) with
the same method: for V = [X+] + 〈X−〉 or V = ([X] + 2〈X〉)/3 one has

logP (S > A, V 6 y) 6 logE[etS−tA−t2(V−y)/2] 6 3t2q + y
t2

2
− tA

and we take t = A/(y + 8q).
Equations (33) and (34) are obtained similarly.

Deviation bounds for normalized sums. They are obtained through the following result (in the spirit
of [7]):

Theorem 8. If S and D are two random variables, D > 0, such that for any t > 0

E
[

exp
(

tS − 1
2 t

2D
)]

6 1 (35)

then, for any p > 1 and x, y > 0

P
( S√

a+D
> x

)

6 e−
x2

2p (xy)−1/p, a = y2E[S
1/(p−1)
+ ]2(p−1). (36)

Proof. Notice that for any variable Y ∼ N(0, 1/a), s ∈ R and d > 0

E

[

esY−
1
2dY

2

]

=

∫

exp
(

− d+ a

2
(y − s

d+ a
)2 +

s2

2(d+ a)

)

√
a dy√
2π

=

√

a

d+ a
exp

( s2

2(d+ a)

)

.

Consequently, taking (s, d) = (S,D) independent of Y in this equation and using (35) we get

E
[

√

a

D + a
exp

( S2

2(D + a)

)

1S>0

]

= E
[

eY S−
1
2Y

2D1S>0

]

6 E
[

eS|Y |−
1
2DY 2

]

6 1.

Hence

P
( S√

a+D
> x

)

6 E
[( S√

D + a

)1/p

exp
( S2

2p(D + a)

)

1S>0

]

x−1/pe−
x2

2p

6 E[S
q/p
+ ]1/qE

[

√

a

D + a
exp

( S2

2(D + a)

)

1S>0

]1/p

a−1/2px−1/pe−
x2

2p

6 E[S
1/(p−1)
+ ](p−1)/pa−1/2px−1/pe−

x2

2p .

We get (36) because of the specific choice of a.

This theorem can be applied with equations (12), (13) , (21) , (23) but not (11) or (25) because of the
constant m in these equations which make the scaling impossible. For instance, (13) implies that for t > 0

E

[

exp

(

tS − t2

6
[X]− t2

3
〈X〉 − 3t2q

)]

6 1

and (36) holds with

D = 1
6 [X] + 1

3 〈X〉+ 3q

where q is defined in Theorem 1.
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4.2 Bounded difference inequalities

The above results lead straightforwardly to bounded difference inequalities by using a classical martingale
argument of Maurey [19]. Equation (38) is the McDiarmid inequality [18]. Equation (39) is a Bernstein
inequality in the same context; an advantage of this inequality is that it may give results even if the function
Dk of (37) is not bounded

Theorem 9. Let Y = (Y1, . . . Yn) be a zero-mean sequence of independent variables with values in some
measured space E. Let f be a measurable function on En with real values. We assume that for some
functions Dk(a, b) one has

|f(y1, . . . yk−1, a, yk+1 . . . yn)− f(y1, . . . yk−1, b, yk+1 . . . yn)| 6 Dk(a, b). (37)

Set

S = f(Y )− E[f(Y )]

m = sup
k

‖∆k‖∞.

Then for any A > 0

P (S > A) 6 exp

(

− 2A2

∑

k δ
2
k

)

, δk = ‖Dk‖∞ (38)

P (S > A) 6 exp

(

− A2

2
∑

k δ
′
k
2 + 2Am/3

)

. δ′k = ‖Dk(Yk, Y
′
k)‖2 (39)

where Y ′
k is an independent copy of Yk.

Remark. Let us mention that if f has the form f(Y ) = supg∈Γ g(Y ) for some finite class of functions Γ
then, with obvious notations,

Dk(a, b) = sup
Y

∣

∣

∣
sup
g∈Γ

g(Y1, . . . Yk−1, a, Yk+1 . . . Yn)− sup
g∈Γ

g(Y1, . . . Yk−1, b, Yk+1 . . . Yn)
∣

∣

∣

6 sup
Y

∣

∣

∣
sup
g∈Γ

{

g(Y1, . . . Yk−1, a, Yk+1 . . . Yn)− g(Y1, . . . Yk−1, b, Yk+1 . . . Yn)
}∣

∣

∣

= sup
g∈Γ

Dg
k(a, b)

in particular δk 6 supg∈Γ δ
g
k. This is a classical argument in the theory of concentration inequalities.

Proof. We shall utilize (33) and (30) with

Xk = E[f(Y )|Fk]− E[f(Y )|Fk−1]

Fk = σ(Y1, . . . Yk).

We have already pointed out that q = 0 since Xk is a martingale difference. Let us define the random
variables

Lk = inf
y
E[f(Y1, . . . Yk−1, y, Yk+1 . . . Yn)|Fk−1]

Uk = sup
y
E[f(Y1, . . . Yk−1, y, Yk+1 . . . Yn)|Fk−1].

The equation

Lk 6 E[f(Y )|Fk] 6 Uk

12



implies

Lk − E[f(Y )|Fk−1] 6 Xk 6 Uk − E[f(Y )|Fk−1]

and since Uk − Lk = ‖Dk‖∞ we can apply (33) with bk = ‖Dk‖∞ and get (38).
On the other hand, if we set

∆k = f(Y )− f(Y1, . . . Yk−1, Y
′
k, Yk+1 . . . Yn),

clearly Xk can be rewritten as

Xk = E[∆k|Fk]

hence E[X2
k |Fk−1] 6 E[∆2

k |Fk−1] 6 δ′k
2
, and (39) follows from (30).

Inequalities for suprema of U-statistics

For some problems of adaptive estimation and testing, it is very important to be able to control the supremum
of U-statistics [12]. We give here a bound in this direction.

Consider a sequence of i.i.d. random variables Y1, . . . Yn with values on some measurable space E and a
finite family H of measurable symmetric functions on Ed and set for h ∈ H

YI = {Yi, i ∈ I}, I ⊂ {1, . . . n}

Zh(Y ) =
1
(

n
d

)

∑

I⊂{1,...n},|i|=d

h(YI)

S = sup
h∈H

Zh(Y )− E[ sup
h∈H

Zh(Y )] (40)

where the sum is restricted to the subsets with cardinality d; since the kernel h is symmetric there is no
ambiguity regarding the notation h(YA). We assume that h is centred:

E[h(Y1, . . . Yd)] = 0.

It is well known that if Zh is non degenerate, that is

E[h(Y1, . . . Yd)|Y1] 6≡ 0,

then the variance of Zh has order n−1, cf [16] p.12. We give in the following corollary a deviation bound for
S which corresponds to a Gaussian approximation with variance of the same order of magnitude. In the case
of degenerate U-statistics we do not get good bounds; this is apparent in the case H has only one element
since an abundant literature exists concerning deviation of degenerate U-statistics [14, 17, 4].

The function L below may be bounded by 2‖h‖∞, and (41) should be generally good enough unless Y1
takes a specific value with high probability in which case (42) may become significantly better:

Corollary 10. If the symmetric function h satisfies for some function L(x, y)

|h(y1, . . . yd)− h(y′1, y2, . . . yd)| 6 L(y1, y
′
1).

Then, for any A > 0

P (S > A) 6 exp

(

− 2nA2

d2‖L‖2∞

)

, (41)

P (S > A) 6 exp

(

− nA2

d2E[L(Y1, Y ′
1)

2] + 2Ad‖L‖∞/3

)

. (42)
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Proof. Fix k, a and b and set with ya = (y1, . . . yk−1, a, yk+1, . . . yn), then

sup
h,y

Zh(y
a)− sup

h
Zh(y

b) 6 sup
h
(Zh(y

a)− Zh(y
b))

thus, with the notation of Theorem 9,

|Dk(a, b)| 6 sup
h

|Zh(y
a)− Zh(y

b)|.

But

|Zh(y
a)− Zh(y

a)| 6 1
(

n
d

)

∣

∣

∣

∑

I∋k

h(yaI )− h(ybI)
∣

∣

∣

6
1
(

n
d

)

(

n− 1

d− 1

)

L(a, b)

=
d

n
L(a, b).

Hence Dk(a, b) 6
d
nL(a, b) and the result is now just a consequence of Theorem 9.

5 Second order approach for time series

In this section we consider a sequence of centred random variables (Xi)16i6n with the filtration defined by
(5). We set

Sk =

k
∑

i=1

Xi. (43)

The idea is to use the following decomposition

eSn = 1−
n
∑

j=1

eSk − eSk−1 ≃ 1−
n
∑

k=1

Xke
Sk

This is why we will need to control Xke
Sk , for each k. This will be done by using again a similar decompo-

sition:

Lemma 11. Consider a sequence of centred random variables (Xi)16i6n with the filtration by (5) and the
partial sums (43). Then

∣

∣E[Xke
Sk ]− E[XkSk]E[eSk ]

∣

∣ 6 wk sup
j≤k

E[eSj ]

with

wk = 1
2

(

∑

j6k

‖E[Xk|Fj ]‖∞‖Xj‖2∞
)

+
(

∑

j6k

∑

i6j

‖E[XkXj |Fi]− E[XkXj ]‖∞‖Xi‖∞
)

+
(

∑

j6k

|E[XkSj−1]|‖Xj‖∞
)

. (44)
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Proof.

Xke
Sk = Xk +

k
∑

j=1

Xk(e
Sj − eSj−1 −Xje

Sj ) +

k
∑

j=1

XkXje
Sj

= Xk +

k
∑

j=1

Xk(e
Sj − eSj−1 −Xje

Sj ) +

k
∑

j=1

j
∑

i=1

XkXj(e
Si − eSi−1) +

k
∑

j=1

XkXj

= Xk +

k
∑

j=1

Xk(e
Sj − eSj−1 −Xje

Sj ) +

k
∑

j=1

j
∑

i=1

(XkXj − E[XkXj ])(e
Si − eSi−1)

−
k
∑

j=1

k
∑

i=j+1

E[XkXj ](e
Si − eSi−1) +

k
∑

j=1

E[XkXj ](e
Sk − 1) +

k
∑

j=1

XkXj

= Xk +R2 +R3 +R4 + E[XkSk]e
Sk − E[XkSk] +XkSk.

Concerning R2, we notice that

|ey − 1− y| 6 1
3y

2( 12e
y + 1)

(this is due to the fact that for ε = ±1, fε(y) = 1
3y

2( 12e
y + 1) + ε(ey − 1 − y) is a convex function which

satisfies f ′ε(0) = fε(0) = 0, thus fε > 0). Replacing y by −y and multiplying by ey we get

|1− ey + yey| 6 1
3y

2( 12 + ey)

hence, using this inequality in each term of R2 with y = Xj :

|E[R2]| 6 E
∑

j6k

|E[Xk|Fj ]| 13X
2
j (

1
2e

Sj−1 + eSj ) 6 1
2

(

∑

j6k

‖E[Xk|Fj ]‖∞‖Xj‖2∞
)

sup
j6k

E[eSj ].

Using now the identity eu − 1 = (eu + 1) tanh(u/2), we have

|E[R3]| =
∣

∣

∣
E
∑

j6k

∑

i6j

(E[XkXj |Fi]− E[XkXj ]) tanh(Xi/2)(e
Si + eSi−1)|

6

(

∑

j6k

∑

i6j

‖E[XkXj |Fi]− E[XkXj ]‖∞‖Xi‖∞
)

sup
j6k

E[eSj ]

and similarly

|E[R4]| =
∣

∣

∣
E

k
∑

i=2

(

i−1
∑

j=1

E[XkXj ]
)

tanh(Xi/2)(e
Si−1 + eSi)

∣

∣

∣

6
(

∑

i6k

|E[XkSi−1]|‖Xi‖∞
)

sup
j6k

E[eSj ]

Theorem 12. Consider a sequence of centred random variables (Xi)16i6n with the filtration by (5) and the
partial sums (43). Then

∣

∣E[eSn ]e−
1
2E[S2

n] − 1
∣

∣ 6 eδ0(ew − 1), (45)
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where

δ0 =
∑

16j<k6n

E[XkXj ]− (x− = −x1x<0) (46)

w =

n
∑

k=1

wk (47)

and wk is given by (44). In particular, for any t > 0

E[etSn ] 6 e
1
2 t

2E[S2
n]+t2δ0+t3w. (48)

Remark. In the martingale case δ0 = 0 and

wn = 1
2‖Xn‖3∞ +

∑

i6n−1

‖E[X2
n|Fi]− E[X2

n]‖∞‖Xi‖∞.

Proof. We consider the piecewise linear interpolation of the sequence Sn

S(t) = Sk + (t− k)Xk+1, t ∈ [k, k + 1]

= S[t] + (t− [t])X[t]+1.

Consider t ∈ (n− 1, n), i.e. t = n− 1 + τ , τ ∈ (0, 1), then

S(t) = Sn−1+τ = Sn−1 + τXn

The previous lemma, applied where Xn is replaced with τXn, and with S(t) in place of Sn, implies that

τ
∣

∣E[S′(t)eS(t)]− E[S′(t)S(t)]E[eS(t)]
∣

∣ 6 τw(t) sup
s6t

E[eS(s)]

with

w(t) = wn.

We set

f(t) = E[eS(t)]

f∗(t) = sup
s6t

f(s)

g(t) = 1
2E[S(t)2].

then
∣

∣f ′(t)− g′(t)f(t)
∣

∣ 6 w(t)f∗(t) (49)

In particular

(fe−g)′ = w̃f∗e−g

for some function w̃(t) such that

|w̃(t)| 6 w(t).

Hence

f(t)e−g(t) = 1 +

∫ t

0

w̃(s)f∗(s)e−g(s)ds. (50)
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We need now a first estimate of f∗. From (49) we get

f(t) 6 1 +

∫ t

0

(g′(s)f(s) + w(s)f∗(s))ds

implying, if t∗ is the index such that f∗(t) = f(t∗), and if we set g′(t)
+
= g′(t)1g′(t)>0,:

f∗(t) 6 1 +

∫ t∗

0

(g′(s)f(s) + w(s)f∗(s))ds

6 1 +

∫ t

0

(g′(s)
+
+ w(s))f∗(s)ds

and by the Gronwall Lemma

f∗(t) ≤ exp
(

∫ t

0

(g′(s)
+
+ w(s))ds

)

Inserting this back in (50):

|f(t)e−g(t) − 1| 6
∫ t

0

w(s) exp
(

∫ s

0

(g′(u)
+
+ w(u))du

)

e−g(s)ds

=

∫ t

0

w(s) exp
(

∫ s

0

(|g′(u)|1g′(u)<0 + w(u))du
)

ds

6 exp
(

∫ t

0

|g′(u)|1g′(u)<0du
)

∫ t

0

w(s)e
∫

s

0
w(u)duds

6 e
∫

t

0
|g′(u)|1g′(u)<0du

(

e
∫

t

0
w(s)ds − 1

)

.

If [u] = k − 1 then

g′(u) = E[XkSk−1] + (u− k + 1)E[X2
k ] > −E[XkSk−1]−

hence

∫ k

k−1

|g′(u)|1g′(u)<0du =

∫ k

k−1

(−g′(u))+du 6 E[XkSk−1]−.

This implies (45). Equation (48) is obtained by noticing that (45) implies

E[eSn ]e−
1
2E[S2

n] − 1 6 eδ0ew − 1

and by an elementary scaling argument.

6 Second order approach for spatial processes

As mentioned in the introduction, in order to get better results, we shall have to control conditional expecta-
tions of products XkXj ; actually, our procedure will rather lead to products like XkX

k
j ; hence we are led to

introduce for any pair (k, j) a sequence Xk,j
i corresponding to increasing dependence with (Xk, X

k
j ). More

precisely:
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Second order setting

(i) For any 1 6 k 6 n is given a sequence Xk
j , j = 1 . . . k, which is a reordering of (Xj, j = 1, . . . k) with

Xk
k = Xk. We attach to each k the σ-algebras

F
k
j ⊃ σ(Xk

i , i 6 j), j 6 k. (51)

(ii) For 1 6 j 6 k 6 n, the sequence (Xk,j
i )i6j is a reordering of (Xk

i )i6j and

H
k,j
i ⊃ σ(Xk,j

i , i 6 j). (52)

In other words the σ-field Fk
j is made by taking off Fk

j+1 the “closest” variable to Xk. The σ-field H
k,j
i is

made by continuing this process after Fk
j (hence i < j) in a way which may depend on k and j.

This set-up is essentially, in a somewhat more general context, what is considered in [6]. For time series,

we have Xk
i = Xi and Fk

i = H
k,j
i = Fi = σ(Xl, l 6 i).

This setting is adequate for dealing with mixing random fields in which case each index k corresponds to
some point Pk of the space; for each k, the sequence (Xk

j )j will be obtained by sorting the original sequence

(Xj) in decreasing order of the distance d(Pj , Pk), and Hk
j will be the σ-field generated by the random

variables setting on the j more distant points from Pk, say P k
1 ,. . .P

k
j ; it is natural to define Xk,j

i as Xl

where Pl is the i-th more distant point from {Pk, P
k
j }, but the choice Xk,j

i = Xk
i , H

k,j
i = Fk

i , is typically
suboptimal but good enough for random fields over the Euclidean space (see Section 8).

Theorem 13. Consider a sequence of centred random variables (Xi)16i6n with the filtrations (51) and (52).
Set

w =

n
∑

k=1

wk

wk = 1
2

∑

j6k

‖E[Xk|Fk
j ]‖∞‖Xk

j ‖2∞ +
∑

j6k

∑

i6j

‖E[XkX
k
j |Hk,j

i ]− E[XkX
k
j ]‖∞‖Xi‖∞

+
∑

j6k

|E[XkS
k
j−1|‖Xk

j ‖∞

Sk
j =

j
∑

i=1

Xk
i .

Then (45) and (48) hold true.

Proof. We can work out Lemma 11 as before except that expressions like

k
∑

j=1

j
∑

i=1

XkXj(e
Si − eSi−1)

will become

k
∑

j=1

j
∑

i=1

XkX
k
j (e

Sk,j

i − eS
k,j

i−1), Sk,j
i =

i
∑

l=1

Xk,j
l .
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and since Sk,j
i is H

k,j
i -measurable, these σ-fields appear in the expression of wk. Since Sk = Skk

k and

Sk
j = Skj

j , we get as before

∣

∣E[Xke
Sk ]− E[XkSk]E[eSk ]

∣

∣ 6 wk sup
i6j6k

E
[

eS
kj

i

]

6 wk sup
α∈[0,1]n

E
[

e
∑k

j=1 αjXj

]

(53)

and the proof goes as the proof of Theorem 12 with a slight complication due to α. We still define

S(t) =
∑

i6t

Xi + (t− [t])X[t]+1

f(t) = E[eS(t)]

g(t) = E[S(t)2]

and, as we obtained (49) and (50), we get here

∣

∣f ′(t)− g′(t)f(t)
∣

∣ 6 w(t)f∗(t) (54)

which implies

f(t)e−g(t) = 1 +

∫ t

0

w̃(s)f∗(s)e−g(s)ds. (55)

with |w̃(s)| ≤ w(s). In order to bound f∗, we define for any α ∈ {0, 1}n

Sα(t) =
∑

i6t

αiXi + (t− [t])α[t]+1X[t]+1

fα(t) = E[eSα(t)]

gα(t) = E[Sα(t)
2]

f∗(t) = sup
α∈[0,1]n,s6t

fα(s). = sup
α∈[0,1]n

fα(t)

Equation (53) can be applied with αkXk instead of Xk and this leads to

|f ′α(t)− g′α(t)fα(t)| 6 wtf
∗(t).

As before we get for any α

fα(t) 6 1 +

∫ t

0

(g′α(s)fα(s) + wsf
∗(s))ds 6 1 +

∫ t

0

((g′α(s))+fα(s) + wsf
∗(s))ds

and this leads to

f∗(t) 6 1 +

∫ t

0

(g′∗(s)f
∗(s) + wsf

∗(s))ds

with now

g′∗(s) = sup
α
g′α(s)+.

The Gronwall Lemma leads to

f∗(t) ≤ exp
(

∫ t

0

(g′(s)∗ + w(s))ds
)

.

19



We need now a bound on g′∗:

g′∗(s) = sup
α
α[s]E[X[s]+1Sα(s)]+

6
∑

i6t

E[X[s]+1Xi]+ + (t− [t])E[X2
[s]+1]

= g′(s) +
∑

i6t

E[X[s]+1Xi]−.

Inserting this back in (55):

|f(t)e−g(t) − 1| 6
∫ t

0

w(s) exp
(

∫ s

0

(g′(u)∗ + w(u))du
)

e−g(s)ds

6 e
∫

t

0

∑
i6t

E[X[s]+1Xi]−ds

∫ t

0

w(s)ew(u)duds

= eδ0
∫ t

0

w(s)ew(u)duds.

7 Applications of second order bounds

7.1 Deviation inequalities

In this section we give the deviation inequalities that can be deduced from the preceding exponential in-
equalities. The bound (56) is analogous to the bound or Corollary 3 (b) in [6] p.85, but in this paper the
variance E[S2] is amplified with an extra factor 2e2 and w takes a slightly different value.

Theorem 14. With the notations of Theorem 12 and Theorem 13, we have for any A > 0

P (S > A) 6 exp

(

− A2

2E[S2] + 4δ0 + 2
√

2Aw/3

)

. (56)

Remark. We recall that in the martingale case δ0 = 0 and

wn = 1
2‖Xn‖3∞ +

∑

i6n

‖E[X2
n|Fi]− E[X2

n]‖∞‖Xi‖∞.

Proof. Using (48) we get

logP (S > A) 6 logE[et(S−A)] 6 ( 12E[S2] + δ0)t
2 + w

t3

3
− tA.

We choose t = A/(E[S2] + 2δ0 +
√

2Aw/3); in particular t 6
√

3A/2w hence

logP (S > A) 6 ( 12E[S2] + δ0)t
2 +

√

2Aw/3
t2

2
− tA = − tA

2
= − A2

2E[S2] + 4δ0 + 2
√

2Aw/3
.
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7.2 m-dependency processes and triangle counts

7.2.1 m-dependent processes

Let us consider the case of a (m,n)-dependent process in the following sense:

• for each k, there exist a set Ik of mk indices (k included) such that

E[Xk|Xi, i /∈ Ik] = 0 (57)

• for each pair (j, k), there exist a set Jj,k of nk indices such that

E[XjXk|Xi, i /∈ Jj,k] = E[XjXk]. (58)

One can start with an arbitrary initial ordering of the random variables. For any k, we can choose the
sequence Xk

j in such a way that if k − j > mk, X
k
j = Xi for some i /∈ Ik, in order to get

E[Xk|Xk
j , j 6 k −mk] = 0. (59)

Similarly we can choose the sequence Xk,j
i in such a way that

E[Xk
jXk|Xk,j

i , i 6 j − nk] = E[XjXk]. (60)

Fk
i and H

k,j
i are the corresponding σ-fields. In this case, for the calculation of wk from Theorem 13 we notice

that

1
2

∑

j6k

‖E[Xk|Fk
j ]‖∞‖Xk

j ‖2∞ 6
1
2mkξ

2‖Xk‖∞

and for the second term, if we set ξ = supi ‖Xi‖∞
∑

j6k

∑

i6j

‖E[XkX
k
j |Hk,j

i ]− E[XkX
k
j ]‖∞‖Xi‖∞ 6 n2

kξ
2‖Xk‖∞

and for the third one

∑

j6k

|E[XkS
k
j ]|‖Xk

j−1‖∞ =

k
∑

j=k−mk+1

j
∑

i=k−mk+1

|E[XkX
k
i ]|‖Xk

j−1‖∞

6 ξ2‖Xk‖∞
k
∑

j=k−mk+1

j
∑

i=k−nk+1

1

6 ξ2‖Xk‖∞ 1
2mk(mk + 1)

hence

wk 6
1
2 (mk + 1)2ξ2‖Xk‖∞ + n2kξ

2‖Xk‖∞.

Thus we can take

w = ξ2
∑

k

‖Xk‖∞
(

1
2 (mk + 1)2 + n2

k

)

, ξ = sup
i

‖Xi‖∞. (61)
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7.2.2 Triangle counts

We shall show that the standard Gaussian approximation is asymptotically valid for triangle counts in the
moderate deviation domain.

In the Erdös-Rényi model of an unoriented random graph with n vertices, edges are represented by
(

n
2

)

i.i.d. Bernoulli variables Yab, 1 6 a < b 6 n, with the convention Yab = Yba and Yaa = 0. The number of
triangles in such a model is

Z =
∑

{a,b,c}

YabYbcYac.

We set p = E[Y12] and

Xabc = YabYbcYac − p3

S =
∑

{a,b,c}

YabYbcYac − p3 =
∑

{a,b,c}

Xabc =
∑

τ∈T

Xτ (62)

where T is the set of subsets of {1, . . . n} with three elements, |T | =
(

n
3

)

. For any τ = {a, b, c}, define Aτ the
set elements of T such that at least two points are in common with τ (τ , {a, b, d}, {a, d, c}, . . . ); this makes
1 + 3(n− 3) elements and (Xσ)σ/∈Aτ

is independent of Xτ . Hence we can take mk = 1 + 3(n− 3).
Similarly, for any pair τ, τ ′, define by Bτ,τ ′ the set of σ which have not two points in common with τ

or τ ′. Then σ(Xσ, σ ∈ Bτ,τ ′) in independent of (Xτ , X
′
τ ). Since the complement of Bτ,τ ′ has at most 2m1

variables, we can take nk = 2m1. Finally, since ‖Xi‖∞ 6 1

w 6
(

1
2 (m1 + 1)2 + 4m2

1

)

|T | 6
(

9
2 (3n)

2 1
6n

3
6 7n5

and since δ0 = 0 (covariates are positively correlated) Equation (56) implies

P (S > A) 6 exp

(

− A2

2V ar(S) + 2
√

14n5A/3

)

. (63)

Let us recall that (see [2])

V ar(S) =

(

n

3

)

(p3 − p6) +

(

n

4

)(

4

2

)

(p5 − p6).

This has order n4 due to the covariance terms. Let us briefly compare with the bound of [2]; this paper
delivers a bound for P (S > A) which is slightly larger than

exp

(

− A2

6nE[Z] + 16
√

E[Z]A

)

, E[Z] =
n(n− 1)(n− 2)

6
p3 (64)

(the actual formula is much more complicated; we have used that min(a−1, b−1) 6 2/(a + b) to obtain this
from Theorem 18 of [2]). One has 6nE[Z] > 2

p2−p3 2V ar(S). For p fixed and n large, the square root term

in (63) is residual if A ≪ n3; this is the moderate deviation case since the centring term in (62) has order
n3 (notice that S 6 n3 w.p.1), and we get the right variance. In (64), a change occurs when n5/2 ≪ A, and
if we set A = Bn5/2 with B large, (64) leads to exp(−cnB) while (62) behaves like exp(−cnB2).

8 Evaluation of constants under ϕ-mixing assumptions

We give here informally some arguments to convince the reader that under standard ϕ-mixing assumptions
the constant q has the same order as the variance of the sum, and that w will be small.
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For more details about mixing we refer to [6], [10] and [3] (particularly Section 8 concerning random
fields).

The ϕ-mixing constant between two σ-fields A and B is defined as

ϕ(A,B) = sup
A∈A,B∈B

|P (B|A)− P (B)|.

It is well known, see reference [22] p.27 or [15] p.278, that this implies that if Z is a zero-mean B-measurable
random variable

‖E[Z|A]‖∞ 6 2ϕ(A,B)‖Z‖∞.

Assume that X is a field over a part of Zd: each variable Xk of the field sits on some Pk ∈ Z
d. Fk

j is the
σ-field generated by the j more distant points from Pk different from X1,...Xk−1, and we take for simplicity
H

k,j
i = Fk

i .
Denote by P k

j the the jth closest point to Pk, when the points P1, . . . Pk−1 have been excluded. Thus Xk
j

sits on P k
k−j+1. The distance of Pk to P k

j , is at least cj
1/d, for some constant c. This implies that standard

ϕ-mixing assumptions between σ(Xk) and Fk
j can be rewritten as

ϕ(Fk
j , σ(Xk)) 6 ϕ∞,1((k − j)1/d) (65)

for some decreasing function ϕ∞,1 (for example exponential decay holds for finite range1 shift-invariant Gibbs
random fields [13] pp. 158-159; this contains a lot of examples). The subscripts ∞ and 1 on ϕ mean that
there is no restriction on the number of random variables contained in the first σ-field, Fk

j , and there is only
1 variable in the second, σ(Xk); we use this traditional notation, in particular for compatibility with [6].

On the other hand for i < j, j − i is smaller than the number of points in the annulus {x : ‖P k
j − Pk‖ 6

‖x− Pk‖ 6 ‖P k
i − Pk‖}, in particular, for some c

j − i 6 c‖P k
i − Pk‖d−1‖P k

j − P k
i ‖.

Hence ‖P k
j − P k

i ‖ is at least c(j − i)i−1+1/d for some c. This implies that standard ϕ-mixing assumptions

between σ(Xk, X
k
j ) and Fk

i can be rewritten as

ϕ(Fk
i , σ(Xk, X

k
j )) 6 ϕ∞,2((j − i)(k − i+ 1)−1+1/d), i 6 j (66)

for some decreasing function ϕ∞,2.
Equations (65) and (66) will imply, for i 6 j 6 k, and any measurable bounded functions f and g

‖E[f(Xk)|Fk
j ]‖∞ 6 2‖f(Xk)‖∞ϕ∞,1((k − j)1/d)

‖E[g(Xk, X
k
j )|Fk

i ]− E[g(Xk, X
k
j )]‖∞ 6 2‖g(Xk, X

k
j )‖∞ϕ∞,2((j − i)(k − i+ 1)−1+1/d).

The first equation leads to

‖E[Xk|Fk
j ]‖∞ 6 2‖Xk‖∞ϕ∞,1((k − j)1/d)

‖E[XkX
k
j |Fk

i ]− E[XkX
k
j ]‖∞ 6 2m‖E[Xk|Fk

j ]‖∞ 6 4m‖Xk‖∞ϕ∞,1((k − j)1/d)

with m = supi ‖Xi‖∞, and the second

‖E[XkX
k
j |Fk

i ]− E[XkX
k
j ]‖∞ 6 2m‖Xk‖∞ϕ∞,2((j − i)(k − i+ 1)−1+1/d).

1This means the existence of a constant c such that if k, l ∈ Z
d are such that d(k, l) > c then Xk and Xl are independent

conditionally to (Xj)j /∈{k,l}.
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Hence

‖E[XkX
k
j |Fk

i ]− E[XkX
k
j ]‖∞ 6 4m‖Xk‖∞ min(ϕ∞,2((j − i)(k − j + 1)−1+1/d), ϕ∞,1((k − j)1/d)).

We get with m1 =
∑ ‖Xi‖∞, and setting ϕ(x) = ϕ([x])

q̃ 6 2
∑

k

∑

i<k

‖Xk
i ‖∞‖E[Xk|Fk

i ]‖∞

6 2m
∑

k

∑

i<k

‖Xk‖∞‖ϕ∞,1(k − i)

6 2m
∑

k

‖Xk‖∞
∫ ∞

0

ϕ∞,1(x
1/d)dx

= 2dm1m

∫ ∞

0

ϕ∞,1(x)x
d−1dx.

The integral is essentially the quantity B(φ) of [6], and Equations (33) and (34) may be seen as improvements
over (b)(i) and (ii) of Corollary 4 of [6]. The constant w in Theorem 13 is the sum of three terms. The first
one is

∑

k

k
∑

j=1

‖E[Xk|Fk
j ‖∞‖E[Xk

j ‖2∞ = 1
2m3 +

1
2m

2
∑

j<k

‖E[Xk|Fk
j ‖∞, m3 =

∑

‖Xi‖3∞

6
1
2m3 +m2

∑

j<k

‖Xk‖∞ϕ∞,1((k − j)1/d)

6
1
2m3 +m2

∑

k

∑

j>0

‖Xk‖∞ϕ∞,1(j
1/d)

6
1
2m3 +m2m1

∑

j>0

∫ j

j−1

ϕ∞,1(x
1/d)dx

= 1
2m3 + dm1m

2

∫ ∞

0

yd−1ϕ∞,1(y)dy

The second term contributing to w is

∑

i6j6k

‖E[XkX
k
j |Fk

i ]− E[XkX
k
j ]‖∞‖Xi‖∞

6 4m2
∑

i6j6k

‖Xi‖∞ min(ϕ∞,2((j − i)(k − j + 1)−1+1/d), ϕ∞,1((k − j)1/d))

= 4m2
∑

i6k

∑

06j6k−i

‖Xi‖∞ min(ϕ∞,2((k − i− j)(j + 1)−1+1/d), ϕ∞,1(j
1/d))

= 4m2
∑

i,k>0

∑

06j6k

‖Xi‖∞ min(ϕ∞,2((k − j)(j + 1)−1+1/d), ϕ∞,1(j
1/d))

6 4m2m1

∑

k>0

∑

06j6k

min(ϕ∞,2((k − j)(j + 1)−1+1/d), ϕ∞,1(j
1/d))

6 4m2m1

∑

06j6(k−1)/2

ϕ∞,2((k − j)(j + 1)−1+1/d) + 4m2m1

∑

06(k−1)/2<j6k

ϕ∞,1(j
1/d)

= 4m2m1T1 + 4m2m1T2
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For the first term, since j + 1 6 k − j and 1
2 (k + 1) 6 k − j:

T1 6
∑

06j6(k−1)/2

ϕ∞,2((k − j)1/d)

6
∑

k>1

1
2 (k + 1)ϕ∞,2((

1
2 (k + 1))1/d)

6
∑

k>1

1
2

∫ k+1

k

(z + 1)ϕ∞,2((
1
2z)

1/d)dz

=

∫ ∞

1/2

(2u+ 1)ϕ∞,2(u
1/d)du

= d

∫ ∞

1/2

(2yd + 1)yd−1ϕ∞,2(y)dy

and for the second one

T2 =
∑

06(k−1)/2<j6k

ϕ∞,1(j
1/d)

=
∑

j>1

(j + 1)ϕ∞,1(j
1/d)

6
∑

j>1

∫ j

j−1

(u+ 2)ϕ∞,1(u
1/d)du

= d

∫ ∞

0

(yd + 2)yd−1ϕ∞,1(y)dy

The third term in w is bounded as

∑

k

∑

j6k

|E[XkS
k
j−1|‖Xk

j ‖∞ 6 m2
∑

k

k
∑

j=1

∑

i<j

‖E[Xk|Fk
i ‖∞

= m2
∑

k

∑

i<k

(k − i)‖E[Xk|Fk
i ‖∞

6 2m2
∑

k

∑

i<k

(k − i)‖Xk‖∞ϕ∞,1((k − i)1/d)

6 2m2
∑

k

∑

j>0

j‖Xk‖∞ϕ∞,1(j
1/d)

6 2m2m1

∑

j>0

∫ j

j−1

(x+ 1)ϕ∞,1(x
1/d)dx

= 2dm1m
2

∫ ∞

0

(1 + yd)yd−1ϕ∞,1(y)dy.

Putting everything together we finally get

w 6
1
2m3 + 11dm2m1

∫ ∞

0

(1 + yd)yd−1(ϕ∞,1(y) + ϕ∞,2(y))dy

The integral in the right hand side is essentially the D(φ) of [6] page 86. If we refer to the independent case
(Xk of order 1/

√
n) the factor m2m1 is of order 1/

√
n, what makes the factor of t3 in (48) residual as far as

t is smaller than
√
n (moderate deviations).
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A Technical inequalities

Proposition 15. The three pairs of functions

θ(x) = 0, ψ(x) = ex − x− 1

θ(x) = ζ(x+), ψ(x) = ζ(x−), ζ(x) = e−x + x− 1

θ(x) =
x2

6
, ψ(x) =

x2

3

satisfy

ex−θ(x)
6 1 + x+ ψ(x). (67)

We have
∣

∣

∣
tanh

(

1
2 (x− θ(x)− log(1 + ψ(y)))

)
∣

∣

∣
6

3
2m, |x|, |y| 6 m. (68)

Proof. Everything will be more or less based on the inequality ex 6 1 + x.
Equation (67) is obvious for the first pair of functions. In the second case we have only to check for

x > 0; since in this case x− θ(x) = 1− e−x this reduces to proving that:

1− e−x
6 log(1 + x).

The function log(1 + x) + e−x − 1 has a derivative (1 + x)−1 − e−x which is > 0 since ex > 1 + x; hence the
inequality is satisfied. The third case is the non negativity of the function

f(x) = 1 + x+
x2

3
− ex−x2/6.

This function satisfies

f ′(x) = 1 +
2x

3
−
(

1− x

3

)

ex−x2/6

f ′′(x) =
2

3
−
((

1− x

3

)2

− 1

3

)

ex−x2/6 =
2

3

(

1− (1− x+ x2/6)ex−x2/6
)

which is non negative since 1− (1− u)eu > 0; f is convex. Since f ′(0) = 0 and f(0) = 0, we conclude that
f is non negative.

For the last inequality, we start with an upper bound on ψ(y). In the first case

ψ(y) 6 ψ(|y|) 6 ψ(m) 6 em − 1.

In the second case ψ(y) 6 ψ(−m) 6 em − 1 and in the third case ψ(y) 6 m2/3 6 em − 1 (because of the
expansion of the exponential); in any case we have

log(1 + ψ(y)) 6 m. (69)

On the one hand

tanh( 12 (x− θ(x)− log(1 + ψ(y)))) 6 tanh( 12x) 6 m/2

and on the other hand, thanks to (69), using that θ(x) 6 x2/2

tanh( 12 (log(1 + ψ(y))− x+ θ(x))) 6 tanh(m+m2/4)

6 min(m+m2/4, 1)

6
5
4m

by considering separately the cases m < 1 and m > 1.
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Proposition 16. For any a 6 0 6 b one has

ea
eb − 1

b
6 4 exp

(

min

(

b2

8
, a+ b

))

. (70)

Proof. We have indeed

exp

(

−b
2

8

)

eb − 1

b
= exp

(

−b
2

8

)

(eb/2 + 1)(eb/2 − 1)

b

= e−b2/8(eb/2 + 1)2
tanh(b/4)

b

6 (eb/2−b2/16 + e−b2/16)2
1

4

6
1

4
(e+ 1)2

< 4.

Hence

ea
eb − 1

b
6 4 exp

(

b2

8

)

.

And clearly

ea
eb − 1

b
= ea+b 1− e−b

b
6 ea+b.
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