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Exponential inequalities for dependent processes

We give exponential inequalities and Gaussian approximation results for sums of weakly dependent variables. These results lead to generalizations of Bernstein and Hoeffding inequalities, where an extra control term is added; this term contains conditional moments of the variables.

Introduction

In the whole paper (X i ) 1 i n is a sequence of centred random variables. Our objective is to give new exponential inequalities and Gaussian approximation results for the sum S = X 1 + • • • + X n in the case where first and second order mixing conditions are assumed (first order mixing conditions involve conditional means and second order ones involve conditional covariances). This paper improves a previous one [START_REF] Delyon | Exponential inequalities for sums of weakly dependent variables[END_REF] by extending some results, simplifying the presentation, and correcting two errors: a term was forgotten in the expression of q Theorem 1, and another in the expression of w p given in the remark following Theorem 9.

The essential application of exponential inequalities is to give small event probabilities; typically, we would like here to extend the Hoeffding and Bernstein inequalities to mixing processes, that is

P (S A) exp - 2A 2 i b 2 i + ρ , a i X i a i + b i (1) 
P (S A) exp - A 2 2E[S 2 ] + 2Am/3 + ρ , m = sup k X k ∞ (2) 
where ρ = 0 if the variables are independent. We shall obtain here a value of ρ which depends on conditional moments of the variables. We also want to provide inequalities which generalize what is already known for martingales. Actually Equation ( 2) is not satisfied for a martingale (E[S 2 ] has to be replaced with a bound on the total variation); this will lead us to two different alternatives

P (S A) exp - A 2 2v + 2Am/3 + ρ , (3) 
where v is a bound on some kind of quadratic variation and ρ = 0 in the case of a martingale (cf. Theorem 7 for a precise statement), or

P (S A) exp - A 2 2E[S 2 ] + 2Aw/3 , (4) 1 
where w is a third order quantity (i.e. if S is replaced with tS, w becomes t 3 w) which involves conditional moments and is in the independent case smaller than 3 2 X 3 k ∞ (Theorem 14). For instance, if we are close to the independent case and S is a normalized sum, that is X k = U k / √ k where (U k ) k is a sequence of weakly dependent bounded random variables, w has order 1/ √ n and the second term in the denominator is residual as long as A ≪ √ n.

Bounds like Equation (3) will be obtained through what we call here the first order approach whereas (4) will require the second order approach. We present the main ideas below.

First order approach for spatial processes. Considering the sequence X 1 , . . . X n as a time series, for instance a martingale, it is natural to introduce the σ-fields

F k = σ(X 1 , . . . X k ).
(

) 5 
It will appear that the remainder ρ will involve essentially terms of the form

n k=1 k-1 i=1 X i ∞ E[X k |F i ] ∞
(cf. the constant q in Theorem 1 and Theorem 7).

If the sequence is a random field this filtration will generally not be very useful because of the arbitrariness of the order on the variables, and we shall need to proceed in a such way that the sequence F i in the interior sum actually depends on k. This is done as follows: to each index k we associate a reordering of the sequence which corresponds (hopefully) to increasing dependence with X k ; this brings on a new sequence, depending on k: X k j . This idea goes back to [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF]. More precisely:

For any 1 k n is given a sequence X k j , j = 1, . . . k, which is a reordering of (X j , j = 1, . . . k) with X k k = X k . We attach to each k a family of σ-algebras (F k j ) j k such that

F k j ⊃ σ(X k i , i j), j k. ( 6 
)
The σ-algebras (F j ) j n associated to the initial ordering are still defined by [START_REF] Catoni | Laplace transform estimates and deviation inequalities[END_REF].

In particular, we have

F k k ⊃ F k F k k-1 ⊃ F k-1 .
This is how we get a new constant q (Eq. ( 26)) involving now terms of the form

k-1 i=1 X k i ∞ E[X k |F k i ] ∞ . (7) 
If (X i ) is a time series, it is natural to set X k i = X i and F k j = F j = σ(X i , i j): the superscripts can be dropped. Later on, the term "times series" will refer to to this situation, whereas the general case will be rather referred to as "random fields".

When dealing with mixing random fields of R d , each index k corresponds to some point P k of the space where X k sits; for each k, the sequence (X k j ) will be typically obtained by sorting the original sequence (X j ) j k in decreasing order of the distance d(P j , P k ). A simple example is the case of m-dependent fields indexed by Z d , that is, a process X a , a ∈ Z d , such that the set of variables X A = {X a : a ∈ A} is independent of X B if the sets A and B have distance at least m; they are typically fields of the form X a = h(Y a+C ) where Y a is an i.i.d. random field, C a finite neighbourhood of 0 in Z d , and h a measurable function of |C| variables.

We would like to point out that this framework covers quite different situations. For instance, in the Erdös-Rényi model of an unoriented random graph with n vertices, edges are represented by n 2 i.i.d. Bernoulli variables Y ab , 1 a < b n, with the convention Y ab = Y ba and Y aa = 0 (see [START_REF] Boucheron | Concentration inequalities using the entropy method[END_REF] and references therein). The number of triangles (for instance) in such a model is

a,b,c Y ab Y bc Y ac = a,b,c X abc .
The process X is here an m-dependent process on the set of three element subsets of {1, . . . n}. We shall treat this example in Section 7.2.

Within this framework, we are able to control exponential moments of S with the help of formulas which generalize the Hoeffding and Bernstein inequalities for independent variables (Theorem 4 and Theorem 5).

The bound of Theorem 4 involves

v = k E[X 2 k |F k-1 ] ∞ , and a remainder term involving conditional expectations E[X k |F k i ] ∞
. This is slightly unsatisfactory since it is known that the key quantity in the case of a martingale is the quadratic variation

X = n k=1 E[X 2 k |F k-1 ]
, and in most cases effective bounds will actually involve X ∞ , which is smaller than v. This is corrected in Theorem 1, where we give a result which generalizes what is known from martingale theory and improves on classical papers concerned with mixing [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF]. However, inspection of the bounds shows that this improvement is really effective only if the conditional expectations |E[X k |F k i ]| are significantly smaller than |X k |; if not, the only way to improve accuracy is to use the second order approach of Sections 5 and 6 briefly discussed below.

Second order results. By this terminology, we mean the following fact: the Hoeffding inequality (Equation 1 with ρ = 0) for instance is obtained from the exponential inequality

E[e tS ] e t 2 i b 2 i /8 . (8) 
One obvious drawback of this upper bound is that when t tends to 0, it does not look like 1 + t 2 E[S 2 ]. One would rather expect something like

E[e tS ] e t 2 E[S 2 ]/2+Ct 3 (9) 
which has more interesting scaling properties; this approach would hopefully lead to significant improvements in a moderate deviation domain; this is what has been done in [START_REF] Catoni | Laplace transform estimates and deviation inequalities[END_REF], but there S is an arbitrary function of independent variables, in the spirit of the McDiarmid inequality. In order to get closer, like in Equation ( 45) below, we have to pay with higher order extra terms: the remainder terms will not only contain conditional expectations E[X k |F k i ] but also conditional covariances; this will force us to consider for each pair of indices (i, j) another reordering of the sequence which corresponds to increasing dependence with the pair (X i , X j ), and to introduce σ-fields H ij k ; we postpone details to Section 6. In this context we shall give inequality of the form

|E[e S ] -e E[S 2 ]/2 | e E[S 2 ]/2+Ct 3 ( 10 
)
The paper is organized as follows. The three forthcoming sections deal with first order order exponential inequalities. A classical use of the exponential inequalities leads to Theorem 7 which generalizes the Bernstein and Hoeffding inequalities. An application to concentration inequalities and triangle counts is given in Section 4.

Section 5 to 7 are concerned with the second order approach, with applications to bounded difference inequalities and triangle counts.

In Section 8 we give some estimates under mixing assumptions.

First order approach for time series

This section is devoted to bounds for the Laplace transform of S in the case of time series (spatial processes are considered in the forthcoming section). The corresponding deviation probabilities will be obtained in Section 4.1 through classical arguments.

In Theorem 1 we present bounds which generalize known results concerning martingales.

In Theorem 4 we give a Hoeffding bound which is valid in both cases (time series and random fields), and Theorem 5 gives a Bennett bound for random fields which does not exactly generalizes (11) because the quadratic variation X is changed into the more drastic upper bound v.

The applicability of the following theorem depends on the way one can bound the quadratic variations involved. In the forthcoming examples, we shall consider only Equation (11) through a bound on X ∞ ; however Equations ( 12) and ( 13) have the advantage of not involving m.

Theorem 1. Let us consider a sequence of centred random variables (X i ) 1 i n with the filtration defined by [START_REF] Catoni | Laplace transform estimates and deviation inequalities[END_REF]. We define

m = sup 1 k n ess sup X k S = n k=1 X k [X] = n k=1 X 2 k X = n k=1 E[X 2 k |F k-1 ] [X + ] = n k=1 (X k ) 2 + X -= n k=1 E[(X k ) 2 -|F k-1 ] q = n k=1 k-1 i=1 X i ∞ E[X k |F i ] ∞ + 1 3 n k=1 X k ∞ E[X k |F k-1 ] ∞
where the notation

x 2 + (resp. x 2 -) stands for x 2 1 x>0 (resp. x 2 1 x<0 ). Then E exp S - X m 2 (e m -m -1) e 3q (11) 
E exp S - 1 2 [X + ] - 1 2 X - e 3q (12) 
E exp S - 1 6 [X] - 1 3 X e 3q . ( 13 
)
If S k = X 1 + X 2 + . . . X k is a supermartingale, these inequalities hold true with q = 0.

Remark. We recommend [START_REF] Bercu | Exponential inequalities for self-normalized martingales with applications[END_REF] for an account on recent work concerning exponential inequalities for martingales.

Proof. The key of the proof will be to use pairs of functions θ(x) and ψ(x) such that ψ 0, e x-θ(x) 1 + x + ψ(x).

These functions are meant to be O(x 2 ) in the neighbourhood of 0. Three examples of such functions are

θ(x) = 0, ψ(x) = e x -x -1 θ(x) = ζ(x + ), ψ(x) = ζ(x -), ζ(x) = e -x + x -1 θ(x) = x 2 6 , ψ(x) = x 2 3 .
Inequality ( 14) for these functions is proved in Proposition 15 of the Appendix. Set

T k = k i=1 X i -θ(X i ) -log(1 + ξ i ), where ξ i = E[ψ(X i )|F i-1 ].
Then

E[e Tn ] = E[e Xn-θ(Xn) (1 + ξ n ) -1 e Tn-1 ] E[(1 + X n + ψ(X n ))(1 + ξ n ) -1 e Tn-1 ] = E[X n (1 + ξ n ) -1 e Tn-1 ] + E[e Tn-1 ]
In the supermartingale case one gets

E[e Tn ] E[e Tn-1 ]. ( 15 
)
In the general case we proceed as follows

E[e Tn ] E[X n ((1 + ξ n ) -1 -1)e Tn-1 ] + E[X n e Tn-1 ] + E[e Tn-1 ] = r 1 + r 2 + E[e Tn-1 ]. (16) 
We have

r 1 = E[E[X n |F n-1 ]e Tn-1 ξ n /(1 + ξ n )] E[|E[X n |F n-1 ]|e Tn-1 ]( ψ(X n ) ∞ ∧ 1). (17) 
The above defined function ψ is convex with ψ(0) = 0, ψ(-1) 1 and ψ(1) 1. Hence |ψ(x)| ∧ 1 |x| and therefore

r 1 X n ∞ E[X n |F n-1 ] ∞ E[e Tn-1 ]. Let ∆ i = T i -T i-1
; the second remainder is bounded as follows:

r 2 = E n-1 i=1 X n (e Ti -e Ti-1 ) = E n-1 i=1 X n tanh(∆ i /2)(e Ti + e Ti-1 ) E n-1 i=1 |E[X n |F i ] tanh(∆ i /2)|(e Ti + e Ti-1 ) n-1 i=1 E[X n |F i ] tanh(∆ i /2) ∞ 2 sup j n-1 E[e Tj ].
Equation (68) of the Appendix implies that

| tanh(∆ i /2)| 3 X i ∞ /2, hence r 2 3 n-1 i=1 X i ∞ E[X n |F i ] ∞ sup i n-1 E[e Ti ]. (18) 
Finally, bringing together ( 16), ( 17) and ( 18)

E[e Tn ] (1 + ρ n ) sup i n-1 E[e Ti ], ρ n = X n ∞ E[X n |F n-1 ] ∞ + 3 n-1 i=1 X i ∞ E[X n |F i ] ∞ exp(ρ n ) sup i n-1 E[e Ti ]
and we get by induction that

sup i k E[e Ti ] exp k i=1 ρ i .
The right hand side can be set to 1 in the supermartingale case (cf. ( 15)). In particular

E exp n i=1 X i -θ(X i ) -log(1 + E[ψ(X i )|F i-1 ]) exp(3q) hence E exp n i=1 X i -θ(X i ) -E[ψ(X i )|F i-1 ] exp(3q).
This leads to the three bounds by using the three pairs of functions and by noticing that for m 0 and

x m ϕ(x) ϕ(m), ϕ(x) = e x -x -1 x 2 (19) 
which is a consequence of L'Hospital's rule for monotonicity [START_REF] Pinelis | l'Hospital type rules for monotonicity, with applications[END_REF], and that for x ≥ 0

ζ(x) x 2 2
since the function x 2 /2 -ζ(x) has a non-negative derivative.

Next theorem concerns an inequality which only involves [X] (and not X ). The advantage is that no boundedness assumption is required since q does not appear. A definition is needed [START_REF] Bercu | Exponential inequalities for self-normalized martingales with applications[END_REF]: Definition 2. We shall say that an integrable random variable Y is heavy on left if

∀a > 0, E[T a (Y )] 0, where T a (y) = min(|y|, a) sign(y)
is the truncated version of y.

Many classical distributions satisfy this property for a reasonably large subset of parameter values [START_REF] Bercu | Exponential inequalities for self-normalized martingales with applications[END_REF]. Our definition differs slightly from [START_REF] Bercu | Exponential inequalities for self-normalized martingales with applications[END_REF] in the sense that we do not require Y to be centred; thus Theorem 3 below may be seen as an extension of Lemma C.1 of [START_REF] Bercu | Exponential inequalities for self-normalized martingales with applications[END_REF] to supermartingales: Theorem 3. Let us consider a sequence of non-necessarily centred random variables (X i ) 1 i n with the filtration defined by [START_REF] Catoni | Laplace transform estimates and deviation inequalities[END_REF]. If for all k, the variable X k is conditionally heavy on the left in the sense that

∀a > 0, E[T a (X k )|F k-1 ] ≤ 0, ( 20 
)
then

E exp S -1 2 [X] 1. ( 21 
)
Proof. Using the classical inequality log cosh x ≤ x 2 /2, and the identity cosh x = e x /(1 + tanh x) we get

e x-x 2 /2 1 + tanh x. Thus exp S -1 2 [X] n i=1 1 + tanh X k .
On the other hand since tanh(

x) = - ∞ 0 tanh ′′ (a)T a (x)da, one has E[tanh(X k )|F k-1
] ≤ 0, and the above product is clearly a supermartingale.

Next theorem is a Hoeffding inequality. A weaker version of this theorem could be obtained by using (13):

Theorem 4. Assume that we are in the setting described in the introduction, with a family of σ-fields satisfying [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF]. The variables X k are centred. We define now q as the first term in the expression of q:

q = n k=1 k-1 i=1 X i ∞ E[X k |F i ] ∞ .
If the variables are lower and upper bounded with probability one:

a i X i a i + b i ( 22 
)
the following inequality holds

E exp S -1 8 i b 2 i e 8q . ( 23 
)
In the supermartingale case (i.e. E[X i |F i-1 ] 0), this inequality remains true if we allow a i and b i to be an F i-1 -measurable random variables. It is well known that the first term of the right hand side, say e c , is smaller than exp(b 2 /8) independently of a (this a key step for proving the Hoeffding inequality, see for instance Appendix B of [START_REF] Pollard | Convergence of Stochastic Processes[END_REF]). On the other hand, it is clear that c a + b (bound e a with e a+b in the expression of e c ). Hence, if we define c i and d i with the equations

c i = min b 2 i 8 , a i + b i , d i = e ai e bi -1 b i
we have

e x e ci + d i x, a i x a i + b i .
Now let the random variables T j be defined as

T k = k i=1 (X i -c i )
We obtain

E[e Tn ] = E[e Xn e Tn-1-cn ] E[(e cn + d n X n )e Tn-1-cn ]
In the supermartingale case, the term involving d n is 0 and this equation gives immediately the result. We assume now that we are not necessarily in this case but a i and b i are deterministic. We can assume in addition, without loss of generality, that a i and b i are chosen so that ( 22) is tight. Notice that in this case we also have a i 0 a i + b i since E[X i ] = 0. The previous equation implies

E[e Tn ] d n e -cn E[X n e Tn-1 ] + E[e Tn-1 ] = d n e -cn E n-1 i=1 X n (e Ti -e Ti-1 ) + E[e Tn-1 ] = d n e -cn r 2 + E[e Tn-1 ]. ( 24 
) Let ∆ i = T i -T i-1 = X i -c i ;
bounding r 2 as in the proof of Theorem 1 we get

r 2 = E n-1 i=1 X n tanh(∆ i /2)(e Ti + e Ti-1 ) E n-1 i=1 |E[X n |F i ]∆ i |(e Ti + e Ti-1 )/2 n-1 i=1 E[X n |F i ]∆ i ∞ sup j n-1 E[e Tj ]
and since

|∆ i | max(a i + b i -c i , c i -a i ) b i 2 X i ∞
(b i is the difference between the essential supremum and the essential infimum) we get that

r 2 2ρ n sup i n-1 E[e Ti ], with ρ n = n-1 i=1 X i ∞ E[X n |F i ] ∞ .
On the other hand, since a i 0, Equation (70) in Proposition 16 of the appendix leads to d n e -cn 4, and Equation (24) becomes finally

E[e Tn ] (1 + 8ρ n ) sup i n-1 E[e Ti ] e 8ρn sup i n-1 E[e Ti ].
Hence

E[e Tn ] exp 8 n i=1 ρ i .
and we obtain (23) by using that c i b 2 i /8 in the expression of T n .

We introduce now a theorem which is almost a consequence of (11), except that q has been replaced by q. Its real interest is that unlike Theorem 1, this result will extend to the more general setting given by Equation (6).

Theorem 5. Assume that we are in the setting described in the introduction, with a family of σ-fields satisfying [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF]. The variables X k are centred. We define

v = n k=1 E[X 2 k |F k-1 ] ∞ ,
m as in Theorem 1, and q as in Theorem 4. Then for any t > 0

E[e S ] exp v m 2 (e m -m -1) + q . ( 25 
)
Proof. We set

S i = X 1 + X 2 + • • • + X i , i n
and S 0 = 0. Equation [START_REF] Maurey | Construction de suites symétriques[END_REF] implies that

e Xn 1 + X n + X 2 n ϕ(m) hence E[e S ] E[(1 + X n + X 2 n ϕ(m))e Sn-1 ] = E n-1 i=1 X n (e Si -e Si-1 ) + E[(1 + X 2 n ϕ(m))e Sn-1 ] = E n-1 i=1 X n tanh(X i /2)(e Si + e Si-1 ) + ϕ(m)E[X 2 n e Sn-1 ] + E[e Sn-1 ] E n-1 i=1 E[X n |F i ]X i ∞ (e Si + e Si-1 )/2 + ϕ(m)E[E[X 2 n |F n-1 ]e Sn-1 ] + E[e Sn-1 ] (1 + qn + ϕ(m)v n ) sup i n-1 E[e Si ] e qn +ϕ(m)v n sup i n-1 E[e Si ]
where qn and v n are the terms corresponding to k = n in the definition of q and v. This proves the result by induction.

3 First order approach for spatial processes

The proofs Theorem 4 and Theorem 5 are based on a recursion like

E[e Sn ] e qn E[e Sn-1 ].
(Note that this is not the case in Theorem 1 since in its proof we consider E[e Tn ] whose definition depends on the initial ordering of variables because of the conditionings.) At each step, the variables can be reordered in a more suitable order, as explained in the introduction. The proofs can be performed in the same way and we get Theorem 6. Assume that we are in the setting described in the introduction, with a family of σ-fields satisfying [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF]. The variables X k are centred. We define

q = n k=1 k-1 i=1 X k i ∞ E[X k |F k i ] ∞ (26) v = n k=1 E[X 2 k |F k-1 ] ∞ , (27) 
Then Theorem 4 and Theorem 5 hold true.

The m-dependent case. Let us consider the case of a m-dependent process in the following sense:

• for each k, there exist a set

I k of m k indices (k included) such that E[X k |X i , i / ∈ I k ] = 0. ( 28 
)
One can start with an arbitrary initial ordering of the random variables. For any k, we can choose the sequence X k j in such a way that if k -j m k , X k j = X i for some i / ∈ I k , in order to get

E[X k |X k j , j k -m k ] = 0. ( 29 
)
F k i are the corresponding σ-fields. In this case

q = n k=1 j<k E[X k |F k j ] ∞ X k j ∞ sup j X j ∞ n k=1 (m k -1) E[X k |F k-1 ] ∞ 4 

Applications of first order bounds

We postpone the discussion concerning spatial processes over a metric space to Section 8.

Deviation bounds

In this section we give the deviation inequalities that can be deduced from the preceding exponential inequalities. We generalize the Bernstein inequality in Equations ( 30) and (34), and the Hoeffding inequality in Equation (33); one could get Bennett inequalities through a similar process, we refer to Appendix B of [START_REF] Pollard | Convergence of Stochastic Processes[END_REF]. In the martingale case, Equations ( 31) and (32) do not assume that the variables are bounded, but sums of squares are involved.

Theorem 7. With the notations of Theorem 1 we have for any A, y > 0

P (S A, X y) exp - A 2 2(y + 6q) + 2Am/3 (30) 
P (S A, [X + ] + X - y) exp - A 2 2(y + 6q) (31) 
P (S A, [X] + 2 X 3y) exp - A 2 2(y + 6q) . ( 32 
)
With the notations of Theorem 4, 5 and 6 we have for any A, y > 0

P (S A, i b 2 i 4y) exp - A 2 2y + 32q (33) 
P (S A) exp - A 2 2(v + 2q) + 2Am/3 . ( 34 
)
In the martingale case, (33) remains true if we allow a i and b i to be an F i-1 -measurable random variable.

Remark. Equation ( 33) is analogous to Corollary 3(a) of [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF].

Proof. Applying the bound (11) to the variables tX i for some t > 0, we get

log P (S A, X y) log E[exp{t(S -A) - t 2 X -t 2 y t 2 m 2 (e tm -tm -1)}] 3t 2 q + y m 2 (e tm -tm -1) -tA y + 6q m 2 (e tm -tm -1) -tA.
The optimization of this expression w.r.t. t 0 is classical in the theory of Bennett and Bernstein inequalities and delivers (30); see for instance the Appendix B of [START_REF] Pollard | Convergence of Stochastic Processes[END_REF]. The second inequality is deduced from (12) with the same method: for

V = [X + ] + X -or V = ([X] + 2 X )/3 one has log P (S A, V y) log E[e tS-tA-t 2 (V -y)/2 ] 3t 2 q + y t 2 2 -tA
and we take t = A/(y + 8q). Equations ( 33) and (34) are obtained similarly.

Deviation bounds for normalized sums. They are obtained through the following result (in the spirit of [START_REF] De La Peña | Self-normalized processes: exponential inequalities, moment bounds and iterated logarithm laws[END_REF]):

Theorem 8. If S and D are two random variables, D 0, such that for any t > 0

E exp tS -1 2 t 2 D 1 (35)
then, for any p > 1 and x, y > 0

P S √ a + D > x e -x 2 2p (xy) -1/p , a = y 2 E[S 1/(p-1) + ] 2(p-1) . ( 36 
)
Proof. Notice that for any variable Y ∼ N(0, 1/a), s ∈ R and d > 0

E e sY -1 2 dY 2 = exp - d + a 2 (y - s d + a ) 2 + s 2 2(d + a) √ a dy √ 2π = a d + a exp s 2 2(d + a)
.

Consequently, taking (s, d) = (S, D) independent of Y in this equation and using (35) we get

E a D + a exp S 2 2(D + a) 1 S>0 = E e Y S-1 2 Y 2 D 1 S>0 E e S|Y |-1 2 DY 2 1.
Hence

P S √ a + D > x E S √ D + a 1/p exp S 2 2p(D + a) 1 S>0 x -1/p e -x 2 2p E[S q/p + ] 1/q E a D + a exp S 2 2(D + a) 1 S>0 1/p a -1/2p x -1/p e -x 2 2p E[S 1/(p-1) + ] (p-1)/p a -1/2p x -1/p e -x 2 2p .
We get (36) because of the specific choice of a.

This theorem can be applied with equations (12), ( 13) , ( 21) , (23) but not (11) or (25) because of the constant m in these equations which make the scaling impossible. For instance, [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] implies that for t > 0

E exp tS - t 2 6 [X] - t 2 3 X -3t 2 q 1
and (36) holds with

D = 1 6 [X] + 1 3 X + 3q
where q is defined in Theorem 1.

Bounded difference inequalities

The above results lead straightforwardly to bounded difference inequalities by using a classical martingale argument of Maurey [START_REF] Maurey | Construction de suites symétriques[END_REF]. Equation ( 38) is the McDiarmid inequality [START_REF] Mcdiarmid | On the method of bounded differences[END_REF]. Equation ( 39) is a Bernstein inequality in the same context; an advantage of this inequality is that it may give results even if the function D k of (37) is not bounded (37)

Set S = f (Y ) -E[f (Y )] m = sup k ∆ k ∞ .
Then for any A > 0

P (S A) exp - 2A 2 k δ 2 k , δ k = D k ∞ (38) P (S A) exp - A 2 2 k δ ′ k 2 + 2Am/3 . δ ′ k = D k (Y k , Y ′ k ) 2 (39)
where Y ′ k is an independent copy of Y k . Remark. Let us mention that if f has the form f (Y ) = sup g∈Γ g(Y ) for some finite class of functions Γ then, with obvious notations,

D k (a, b) = sup Y sup g∈Γ g(Y 1 , . . . Y k-1 , a, Y k+1 . . . Y n ) -sup g∈Γ g(Y 1 , . . . Y k-1 , b, Y k+1 . . . Y n ) sup Y sup g∈Γ g(Y 1 , . . . Y k-1 , a, Y k+1 . . . Y n ) -g(Y 1 , . . . Y k-1 , b, Y k+1 . . . Y n ) = sup g∈Γ D g k (a, b)
in particular δ k sup g∈Γ δ g k . This is a classical argument in the theory of concentration inequalities. Proof. We shall utilize (33) and (30) with

X k = E[f (Y )|F k ] -E[f (Y )|F k-1 ] F k = σ(Y 1 , . . . Y k ).
We have already pointed out that q = 0 since X k is a martingale difference. Let us define the random variables

L k = inf y E[f (Y 1 , . . . Y k-1 , y, Y k+1 . . . Y n )|F k-1 ] U k = sup y E[f (Y 1 , . . . Y k-1 , y, Y k+1 . . . Y n )|F k-1 ].
The equation

L k E[f (Y )|F k ] U k implies L k -E[f (Y )|F k-1 ] X k U k -E[f (Y )|F k-1 ]
and since U k -L k = D k ∞ we can apply (33) with b k = D k ∞ and get (38).

On the other hand, if we set

∆ k = f (Y ) -f (Y 1 , . . . Y k-1 , Y ′ k , Y k+1 . . . Y n ),
clearly X k can be rewritten as

X k = E[∆ k |F k ] hence E[X 2 k |F k-1 ] E[∆ 2 k |F k-1 ] δ ′ k 2
, and (39) follows from (30).

Inequalities for suprema of U-statistics

For some problems of adaptive estimation and testing, it is very important to be able to control the supremum of U-statistics [12]. We give here a bound in this direction. Consider a sequence of i.i.d. random variables Y 1 , . . . Y n with values on some measurable space E and a finite family H of measurable symmetric functions on E d and set for h ∈ H

Y I = {Y i , i ∈ I}, I ⊂ {1, . . . n} Z h (Y ) = 1 n d I⊂{1,...n},|i|=d h(Y I ) S = sup h∈H Z h (Y ) -E[ sup h∈H Z h (Y )] (40) 
where the sum is restricted to the subsets with cardinality d; since the kernel h is symmetric there is no ambiguity regarding the notation h(Y A ). We assume that h is centred:

E[h(Y 1 , . . . Y d )] = 0.
It is well known that if Z h is non degenerate, that is

E[h(Y 1 , . . . Y d )|Y 1 ] ≡ 0,
then the variance of Z h has order n -1 , cf [START_REF] Lee | [END_REF] p.12. We give in the following corollary a deviation bound for S which corresponds to a Gaussian approximation with variance of the same order of magnitude. In the case of degenerate U-statistics we do not get good bounds; this is apparent in the case H has only one element since an abundant literature exists concerning deviation of degenerate U-statistics [START_REF] Giné | Exponential and moment inequalities for U-statistics[END_REF][START_REF] Major | A multivariate version of Hoeffding's inequality[END_REF][START_REF] Bretagnolle | A new large deviation inequality for U-statistics of order 2[END_REF]. The function L below may be bounded by 2 h ∞ , and (41) should be generally good enough unless Y 1 takes a specific value with high probability in which case (42) may become significantly better: Corollary 10. If the symmetric function h satisfies for some function L(x, y)

|h(y 1 , . . . y d ) -h(y ′ 1 , y 2 , . . . y d )| L(y 1 , y ′ 1 ).
Then, for any A > 0

P (S A) exp - 2nA 2 d 2 L 2 ∞ , (41) 
P (S A) exp - nA 2 d 2 E[L(Y 1 , Y ′ 1 ) 2 ] + 2Ad L ∞ /3 . ( 42 
)
Proof. Fix k, a and b and set with y a = (y 1 , . . . y k-1 , a, y k+1 , . . . y n ), then sup

h,y Z h (y a ) -sup h Z h (y b ) sup h (Z h (y a ) -Z h (y b ))
thus, with the notation of Theorem 9,

|D k (a, b)| sup h |Z h (y a ) -Z h (y b )|. But |Z h (y a ) -Z h (y a )| 1 n d I∋k h(y a I ) -h(y b I ) 1 n d n -1 d -1 L(a, b) = d n L(a, b). Hence D k (a, b) d n L(a, b
) and the result is now just a consequence of Theorem 9.

Second order approach for time series

In this section we consider a sequence of centred random variables (X i ) 1 i n with the filtration defined by [START_REF] Catoni | Laplace transform estimates and deviation inequalities[END_REF]. We set

S k = k i=1 X i . ( 43 
)
The idea is to use the following decomposition

e Sn = 1 - n j=1 e S k -e S k-1 ≃ 1 - n k=1 X k e S k
This is why we will need to control X k e S k , for each k. This will be done by using again a similar decomposition:

Lemma 11. Consider a sequence of centred random variables (X i ) 1 i n with the filtration by ( 5) and the partial sums (43). Then

E[X k e S k ] -E[X k S k ]E[e S k ] w k sup j≤k E[e Sj ]
with

w k = 1 2 j k E[X k |F j ] ∞ X j 2 ∞ + j k i j E[X k X j |F i ] -E[X k X j ] ∞ X i ∞ + j k |E[X k S j-1 ]| X j ∞ . ( 44 
)
Proof.

X k e S k = X k + k j=1 X k (e Sj -e Sj-1 -X j e Sj ) + k j=1 X k X j e Sj = X k + k j=1 X k (e Sj -e Sj-1 -X j e Sj ) + k j=1 j i=1 X k X j (e Si -e Si-1 ) + k j=1 X k X j = X k + k j=1 X k (e Sj -e Sj-1 -X j e Sj ) + k j=1 j i=1 (X k X j -E[X k X j ])(e Si -e Si-1 ) - k j=1 k i=j+1 E[X k X j ](e Si -e Si-1 ) + k j=1 E[X k X j ](e S k -1) + k j=1 X k X j = X k + R 2 + R 3 + R 4 + E[X k S k ]e S k -E[X k S k ] + X S k .
Concerning R 2 , we notice that

|e y -1 -y| 1 3 y 2 ( 1 2 e y + 1)
(this is due to the fact that for ε = ±1, f ε (y) = 1 3 y2 ( 1 2 e y + 1) + ε(e y -1 -y) is a convex function which satisfies f ′ ε (0) = f ε (0) = 0, thus f ε 0). Replacing y by -y and multiplying by e y we get

|1 -e y + ye y | 1 3 y 2 ( 1 2 + e y )
hence, using this inequality in each term of R 2 with y = X j :

|E[R 2 ]| E j k |E[X k |F j ]| 1 3 X 2 j ( 1 2 e Sj-1 + e Sj ) 1 2 j k E[X k |F j ] ∞ X j 2 ∞ sup j k E[e Sj ].
Using now the identity e u -1 = (e u + 1) tanh(u/2), we have

|E[R 3 ]| = E j k i j (E[X k X j |F i ] -E[X k X j ]) tanh(X i /2)(e Si + e Si-1 )| j k i j E[X k X j |F i ] -E[X k X j ] ∞ X i ∞ sup j k E[e Sj ]
and similarly

|E[R 4 ]| = E k i=2 i-1 j=1 E[X k X j ] tanh(X i /2)(e Si-1 + e Si ) i k |E[X k S i-1 ]| X i ∞ sup j k E[e Sj ]
Theorem 12. Consider a sequence of centred random variables (X i ) 1 i n with the filtration by ( 5) and the partial sums (43). Then

E[e Sn ]e -1
where

δ 0 = 1 j<k n E[X k X j ] -(x -= -x1 x<0 ) (46) w = n k=1 w k (47)
and w k is given by (44). In particular, for any t > 0

E[e tSn ] e 1 2 t 2 E[S 2 n ]+t 2 δ0+t 3 w . ( 48 
)
Remark. In the martingale case δ 0 = 0 and

w n = 1 2 X n 3 ∞ + i n-1 E[X 2 n |F i ] -E[X 2 n ] ∞ X i ∞ .
Proof. We consider the piecewise linear interpolation of the sequence S n

S(t) = S k + (t -k)X k+1 , t ∈ [k, k + 1] = S [t] + (t -[t])X [t]+1 . Consider t ∈ (n -1, n), i.e. t = n -1 + τ , τ ∈ (0, 1), then S(t) = S n-1+τ = S n-1 + τ X n
The previous lemma, applied where X n is replaced with τ X n , and with S(t) in place of S n , implies that s) ] with w(t) = w n .

τ E[S ′ (t)e S(t) ] -E[S ′ (t)S(t)]E[e S(t) ] τ w(t) sup s t E[e S(
We set

f (t) = E[e S(t) ] f * (t) = sup s t f (s) g(t) = 1 2 E[S(t) 2 ]. then f ′ (t) -g ′ (t)f (t) w(t)f * (t) (49) 
In particular

(f e -g ) ′ = wf * e -g
for some function w(t) such that

| w(t)| w(t).
Hence

f (t)e -g(t) = 1 + t 0 w(s)f * (s)e -g(s) ds. ( 50 
)
We need now a first estimate of f * . From (49) we get

f (t) 1 + t 0 (g ′ (s)f (s) + w(s)f * (s))ds implying, if t * is the index such that f * (t) = f (t * )
, and if we set g ′ (t) + = g ′ (t)1 g ′ (t)>0 ,:

f * (t) 1 + t * 0 (g ′ (s)f (s) + w(s)f * (s))ds 1 + t 0 (g ′ (s) + + w(s))f * (s)ds
and by the Gronwall Lemma

f * (t) ≤ exp t 0 (g ′ (s) + + w(s))ds
Inserting this back in (50):

|f (t)e -g(t) -1| t 0 w(s) exp s 0 (g ′ (u) + + w(u))du e -g(s) ds = t 0 w(s) exp s 0 (|g ′ (u)|1 g ′ (u)<0 + w(u))du ds exp t 0 |g ′ (u)|1 g ′ (u)<0 du t 0 w(s)e s 0 w(u)du ds e t 0 |g ′ (u)|1 g ′ (u)<0 du e t 0 w(s)ds -1 . If [u] = k -1 then g ′ (u) = E[X k S k-1 ] + (u -k + 1)E[X 2 k ] -E[X k S k-1 ] - hence k k-1 |g ′ (u)|1 g ′ (u)<0 du = k k-1 (-g ′ (u)) + du E[X k S k-1 ] -.
This implies (45). Equation ( 48) is obtained by noticing that (45) implies

E[e Sn ]e -1 2 E[S 2 n ] -1 e δ0 e w -1
and by an elementary scaling argument.

6 Second order approach for spatial processes

As mentioned in the introduction, in order to get better results, we shall have to control conditional expectations of products X k X j ; actually, our procedure will rather lead to products like X k X k j ; hence we are led to introduce for any pair (k, j) a sequence X k,j i corresponding to increasing dependence with (X k , X k j ). More precisely:

Second order setting (i) For any 1 k n is given a sequence X k j , j = 1 . . . k, which is a reordering of (X j , j = 1, . . . k) with X k k = X k . We attach to each k the σ-algebras

F k j ⊃ σ(X k i , i j), j k. (51) 
(ii) For 1 j k n, the sequence (X k,j i ) i j is a reordering of (X k i ) i j and

H k,j i ⊃ σ(X k,j i , i j). (52) 
In other words the σ-field F k j is made by taking off F k j+1 the "closest" variable to X k . The σ-field H k,j i is made by continuing this process after F k j (hence i < j) in a way which may depend on k and j.

This set-up is essentially, in a somewhat more general context, what is considered in [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF]. For time series, we have

X k i = X i and F k i = H k,j i = F i = σ(X l , l i).
This setting is adequate for dealing with mixing random fields in which case each index k corresponds to some point P k of the space; for each k, the sequence (X k j ) j will be obtained by sorting the original sequence (X j ) in decreasing order of the distance d(P j , P k ), and H k j will be the σ-field generated by the random variables setting on the j more distant points from P k , say P k 1 ,. . . P k j ; it is natural to define X k,j i as X l where P l is the i-th more distant point from {P k , P k j }, but the choice

X k,j i = X k i , H k,j i = F k i
, is typically suboptimal but good enough for random fields over the Euclidean space (see Section 8).

Theorem 13. Consider a sequence of centred random variables (X i ) 1 i n with the filtrations (51) and ( 52). Set

w = n k=1 w k w k = 1 2 j k E[X k |F k j ] ∞ X k j 2 ∞ + j k i j E[X k X k j |H k,j i ] -E[X k X k j ] ∞ X i ∞ + j k |E[X k S k j-1 | X k j ∞ S k j = j i=1 X k i .
Then ( 45) and (48) hold true.

Proof. We can work out Lemma 11 as before except that expressions like

k j=1 j i=1 X k X j (e Si -e Si-1 ) will become k j=1 j i=1 X k X k j (e S k,j i -e S k,j i-1 ), S k,j i = i l=1 X k,j l .
and since S k,j i is H k,j i -measurable, these σ-fields appear in the expression of w k . Since S k = S kk k and S k j = S kj j , we get as before

E[X k e S k ] -E[X k S k ]E[e S k ] w k sup i j k E e S kj i w k sup α∈[0,1] n E e k j=1 αj Xj (53) 
and the proof goes as the proof of Theorem 12 with a slight complication due to α. We still define t) ]

S(t) = i t X i + (t -[t])X [t]+1 f (t) = E[e S(
g(t) = E[S(t) 2 ]
and, as we obtained ( 49) and (50), we get here

f ′ (t) -g ′ (t)f (t) w(t)f * (t) (54) 
which implies

f (t)e -g(t) = 1 + t 0 w(s)f * (s)e -g(s) ds. ( 55 
)
with | w(s)| ≤ w(s). In order to bound f * , we define for any α ∈ {0,

1} n S α (t) = i t α i X i + (t -[t])α [t]+1 X [t]+1 f α (t) = E[e Sα(t) ] g α (t) = E[S α (t) 2 ] f * (t) = sup α∈[0,1] n ,s t f α (s). = sup α∈[0,1] n f α (t)
Equation ( 53) can be applied with α k X k instead of X k and this leads to

|f ′ α (t) -g ′ α (t)f α (t)| w t f * (t).
As before we get for any α

f α (t) 1 + t 0 (g ′ α (s)f α (s) + w s f * (s))ds 1 + t 0 ((g ′ α (s)) + f α (s) + w s f * (s))ds
and this leads to

f * (t) 1 + t 0 (g ′ * (s)f * (s) + w s f * (s))ds with now g ′ * (s) = sup α g ′ α (s) + .
The Gronwall Lemma leads to

f * (t) ≤ exp t 0 (g ′ (s) * + w(s))ds .
We need now a bound on g ′ * :

g ′ * (s) = sup α α [s] E[X [s]+1 S α (s)] + i t E[X [s]+1 X i ] + + (t -[t])E[X 2 [s]+1 ] = g ′ (s) + i t E[X [s]+1 X i ] -.
Inserting this back in (55):

|f (t)e -g(t) -1| 7 Applications of second order bounds

Deviation inequalities

In this section we give the deviation inequalities that can be deduced from the preceding exponential inequalities. The bound (56) is analogous to the bound or Corollary 3 (b) in [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF] p.85, but in this paper the variance E[S 2 ] is amplified with an extra factor 2e 2 and w takes a slightly different value.

Theorem 14. With the notations of Theorem 12 and Theorem 13, we have for any A > 0

P (S A) exp - A 2 2E[S 2 ] + 4δ 0 + 2 2Aw/3 . ( 56 
)
Remark. We recall that in the martingale case δ 0 = 0 and

w n = 1 2 X n 3 ∞ + i n E[X 2 n |F i ] -E[X 2 n ] ∞ X i ∞ .
Proof. Using (48) we get

log P (S A) log E[e t(S-A) ] ( 1 2 E[S 2 ] + δ 0 )t 2 + w t 3 3 -tA.
We choose t = A/(E[S 2 ] + 2δ 0 + 2Aw/3); in particular t 3A/2w hence log P (S A)

( 1 2 E[S 2 ] + δ 0 )t 2 + 2Aw/3 t 2 2 -tA = - tA 2 = - A 2 2E[S 2 ] + 4δ 0 + 2 2Aw/3 .
7.2 m-dependency processes and triangle counts

m-dependent processes

Let us consider the case of a (m, n)-dependent process in the following sense:

• for each k, there exist a set

I k of m k indices (k included) such that E[X k |X i , i / ∈ I k ] = 0 (57) 
• for each pair (j, k), there exist a set J j,k of n k indices such that

E[X j X k |X i , i / ∈ J j,k ] = E[X j X k ]. (58) 
One can start with an arbitrary initial ordering of the random variables. For any k, we can choose the sequence X k j in such a way that if k -j m k , X k j = X i for some i / ∈ I k , in order to get

E[X k |X k j , j k -m k ] = 0. ( 59 
)
Similarly we can choose the sequence X k,j i in such a way that

E[X k j X k |X k,j i , i j -n k ] = E[X j X k ]. (60) 
F k i and H k,j i are the corresponding σ-fields. In this case, for the calculation of w k from Theorem 13 we notice that

1 2 j k E[X k |F k j ] ∞ X k j 2 ∞ 1 2 m k ξ 2 X k ∞
and for the second term, if we set ξ = sup i X i ∞

j k i j E[X k X k j |H k,j i ] -E[X k X k j ] ∞ X i ∞ n 2 k ξ 2 X k ∞
and for the third one

j k |E[X k S k j ]| X k j-1 ∞ = k j=k-m k +1 j i=k-m k +1 |E[X k X k i ]| X k j-1 ∞ ξ 2 X k ∞ k j=k-m k +1 j i=k-n k +1 1 ξ 2 X k ∞ 1 2 m k (m k + 1) hence w k 1 2 (m k + 1) 2 ξ 2 X k ∞ + n 2 k ξ 2 X k ∞ .
Thus we can take

w = ξ 2 k X k ∞ 1 2 (m k + 1) 2 + n 2 k , ξ = sup i X i ∞ . (61) 

Triangle counts

We shall show that the standard Gaussian approximation is asymptotically valid for triangle counts in the moderate deviation domain.

In the Erdös-Rényi model of an unoriented random graph with n vertices, edges are represented by n We set p = E[Y 12 ] and

X abc = Y ab Y bc Y ac -p 3 S = {a,b,c} Y ab Y bc Y ac -p 3 = {a,b,c} X abc = τ ∈T X τ ( 62 
)
where T is the set of subsets of {1, . . . n} with three elements, |T | = n 3 . For any τ = {a, b, c}, define A τ the set elements of T such that at least two points are in common with τ (τ , {a, b, d}, {a, d, c}, . . . ); this makes 1 + 3(n -3) elements and (X σ ) σ / ∈Aτ is independent of X τ . Hence we can take m k = 1 + 3(n -3). Similarly, for any pair τ, τ ′ , define by B τ,τ ′ the set of σ which have not two points in common with τ or τ ′ . Then σ(X σ , σ ∈ B τ,τ ′ ) in independent of (X τ , X ′ τ ). Since the complement of B τ,τ ′ has at most 2m 1 variables, we can take

n k = 2m 1 . Finally, since X i ∞ 1 w 1 2 (m 1 + 1) 2 + 4m 2 1 |T | 9 2 (3n) 2 1 6 n 3 7n 5
and since δ 0 = 0 (covariates are positively correlated) Equation (56) implies

P (S A) exp - A 2 2V ar(S) + 2 14n 5 A/3 . (63) 
Let us recall that (see [START_REF] Boucheron | Concentration inequalities using the entropy method[END_REF])

V ar(S) = n 3 (p 3 -p 6 ) + n 4 4 2 (p 5 -p 6 ).
This has order n 4 due to the covariance terms. Let us briefly compare with the bound of [START_REF] Boucheron | Concentration inequalities using the entropy method[END_REF]; this paper delivers a bound for P (S A) which is slightly larger than

exp - A 2 6nE[Z] + 16 E[Z]A , E[Z] = n(n -1)(n -2) 6 p 3 (64) 
(the actual formula is much more complicated; we have used that min(a -1 , b -1 ) 2/(a + b) to obtain this from Theorem 18 of [START_REF] Boucheron | Concentration inequalities using the entropy method[END_REF]). One has 6nE[Z] 2 p 2 -p 3 2V ar(S). For p fixed and n large, the square root term in (63) is residual if A ≪ n 3 ; this is the moderate deviation case since the centring term in (62) has order n 3 (notice that S n 3 w.p.1), and we get the right variance. In (64), a change occurs when n 5/2 ≪ A, and if we set A = Bn 5/2 with B large, (64) leads to exp(-cnB) while (62) behaves like exp(-cnB 2 ).

Evaluation of constants under ϕ-mixing assumptions

We give here informally some arguments to convince the reader that under standard ϕ-mixing assumptions the constant q has the same order as the variance of the sum, and that w will be small.

For more details about mixing we refer to [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF], [START_REF] Doukhan | Mixing: Properties and Examples[END_REF] and [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions. Update of, and a supplement[END_REF] (particularly Section 8 concerning random fields).

The ϕ-mixing constant between two σ-fields A and B is defined as

ϕ(A, B) = sup A∈A,B∈B |P (B|A) -P (B)|.
It is well known, see reference [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF] p.27 or [START_REF] Hall | Martingale Limit Theory and its Applications[END_REF] p.278, that this implies that if Z is a zero-mean B-measurable random variable

E[Z|A] ∞ 2ϕ(A, B) Z ∞ .
Assume that X is a field over a part of Z d : each variable X k of the field sits on some P k ∈ Z d . F k j is the σ-field generated by the j more distant points from P k different from X 1 ,...X k-1 , and we take for simplicity H k,j i = F k i . Denote by P k j the the jth closest point to P k , when the points P 1 , . . . P k-1 have been excluded. Thus X k j sits on P k k-j+1 . The distance of P k to P k j , is at least cj1/d , for some constant c. This implies that standard ϕ-mixing assumptions between σ(X k ) and F k j can be rewritten as

ϕ(F k j , σ(X k )) ϕ ∞,1 ((k -j) 1/d ) (65) 
for some decreasing function ϕ ∞,1 (for example exponential decay holds for finite range 1 shift-invariant Gibbs random fields [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] pp. 158-159; this contains a lot of examples). The subscripts ∞ and 1 on ϕ mean that there is no restriction on the number of random variables contained in the first σ-field, F k j , and there is only 1 variable in the second, σ(X k ); we use this traditional notation, in particular for compatibility with [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF].

On the other hand for i < j, j -i is smaller than the number of points in the annulus {x : P k j -P k x -P k P k i -P k }, in particular, for some c j -i c P k i -P k d-1 P k j -P k i .

Hence P k j -P k i is at least c(j -i)i -1+1/d for some c. This implies that standard ϕ-mixing assumptions between σ(X k , X k j ) and F k i can be rewritten as ϕ(F k i , σ(X k , X k j )) ϕ ∞,2 ((j -i)(k -i + 1) -1+1/d ), i j (66)

for some decreasing function ϕ ∞,2 . Equations ( 65) and (66) will imply, for i j k, and any measurable bounded functions f and g

E[f (X k )|F k j ] ∞ 2 f (X k ) ∞ ϕ ∞,1 ((k -j) 1/d ) E[g(X k , X k j )|F k i ] -E[g(X k , X k j )] ∞ 2 g(X k , X k j ) ∞ ϕ ∞,2 ((j -i)(k -i + 1) -1+1/d ).
The first equation leads to

E[X k |F k j ] ∞ 2 X k ∞ ϕ ∞,1 ((k -j) 1/d ) E[X k X k j |F k i ] -E[X k X k j ] ∞ 2m E[X k |F k j ] ∞ 4m X k ∞ ϕ ∞,1 ((k -j) 1/d )
with m = sup i X i ∞ , and the second

E[X k X k j |F k i ] -E[X k X k j ] ∞ 2m X k ∞ ϕ ∞,2 ((j -i)(k -i + 1) -1+1/d ).
For the first term, since j + 1 k -j and 1 2 (k + 1) k -j: The third term in w is bounded as

k j k |E[X k S k j-1 | X k j ∞ m 2 k k j=1 i<j E[X k |F k i ∞ = m 2 k i<k (k -i) E[X k |F k i ∞ 2m 2 k i<k (k -i) X k ∞ ϕ ∞,1 ((k -i) 1/d ) 2m 2 k j>0 j X k ∞ ϕ ∞,1 (j 1/d ) 2m 2 m 1 j>0 j j-1 (x + 1)ϕ ∞,1 (x 1/d )dx = 2dm 1 m 2 ∞ 0 (1 + y d )y d-1 ϕ ∞,1 (y)dy. 
Putting everything together we finally get

w 1 2 m 3 + 11dm 2 m 1 ∞ 0 (1 + y d )y d-1 (ϕ ∞,1 (y) + ϕ ∞,2 (y))dy
The integral in the right hand side is essentially the D(φ) of [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF] page 86. If we refer to the independent case (X k of order 1/ √ n) the factor m 2 m 1 is of order 1/ √ n, what makes the factor of t 3 in (48) residual as far as t is smaller than √ n (moderate deviations). Proof. Everything will be more or less based on the inequality e x 1 + x. Equation ( 67) is obvious for the first pair of functions. In the second case we have only to check for x > 0; since in this case x -θ(x) = 1 -e -x this reduces to proving that:

A Technical inequalities

1 -e -x log(1 + x).

The function log(1 + x) + e -x -1 has a derivative (1 + x) -1 -e -x which is 0 since e x 1 + x; hence the inequality is satisfied. The third case is the non negativity of the function

f (x) = 1 + x + x 2 3 -e x-x 2 /6 .
This function satisfies 

f ′ (x) = 1 + 2x 3 -1 - x 3 e x-

Proof.

  We start, as in the proof of the Hoeffding inequality, with the following inequality based on the upper-bound of the exponential function by the chord over the curve on [a, a + b]: e x (a + b)e a -ae a+b b + x e a+b -e a b , a x a + b.

Theorem 9 .

 9 Let Y = (Y 1 , . . . Y n ) be a zero-mean sequence of independent variables with values in some measured space E. Let f be a measurable function on E n with real values. We assume that for some functions D k (a, b) one has |f (y 1 , . . . y k-1 , a, y k+1 . . . y n ) -f (y 1 , . . . y k-1 , b, y k+1 . . . y n )| D k (a, b).

  (u) * + w(u))du e -g(s) )e w(u) duds.

2 i

 2 .i.d. Bernoulli variables Y ab , 1 a < b n, with the convention Y ab = Y ba and Y aa = 0. The number of triangles in such a model is Z = {a,b,c} Y ab Y bc Y ac .

T 1 0 2 ( 1 ( 1 j j- 1 (

 12111 j (k-1)/2 ϕ ∞,2 ((k -j) 1/d ) 2y d + 1)y d-1 ϕ ∞,2 (y)dyand for the second oneT 2 = 0 (k-1)/2<j k ϕ ∞,1 (j 1/d ) = j j + 1)ϕ ∞,1 (j 1/d ) j u + 2)ϕ ∞,1 (u 1/d )du = d ∞ 0 (y d + 2)y d-1 ϕ ∞,1 (y)dy

Proposition 15 . 1 θ 3 2

 1513 The three pairs of functionsθ(x) = 0, ψ(x) = e x -x -1 θ(x) = ζ(x + ), ψ(x) = ζ(x -), ζ(x) = e -x + x --θ(x) -log(1 + ψ(y))) m, |x|, |y| m.(68)

x 2 / 6 f 1 - 4 m

 614 ′′ (1 -x + x 2 /6)e x-x 2 /6 which is non negative since 1 -(1 -u)e u 0; f is convex. Since f ′ (0) = 0 and f (0) = 0, we conclude that f is non negative.For the last inequality, we start with an upper bound on ψ(y). In the first case ψ(y) ψ(|y|) ψ(m) e m -1.In the second case ψ(y) ψ(-m) e m -1 and in the third case ψ(y) m 2 /3 e m -1 (because of the expansion of the exponential); in any case we havelog(1 + ψ(y)) m. (69)On the one handtanh( 1 2 (x -θ(x) -log(1 + ψ(y)))) tanh( 12x) m/2 and on the other hand, thanks to (69), using that θ(x)x 2 /2 tanh( 1 2 (log(1 + ψ(y)) -x + θ(x))) tanh(m + m 2 /4) min(m + m 2 /4, 1)5 by considering separately the cases m < 1 and m > 1.

E[S 2 n ] -1 e δ0 (e w -1),(45)

This means the existence of a constant c such that if k, l ∈ Z d are such that d(k, l) > c then X k and X l are independent conditionally to (X j ) j / ∈{k,l} .

Hence

We get with m 1 = X i ∞ , and setting ϕ

The integral is essentially the quantity B(φ) of [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF], and Equations ( 33) and (34) may be seen as improvements over (b)(i) and (ii) of Corollary 4 of [START_REF] Dedecker | Exponential Inequalities and Functional central limit theorems for random fields[END_REF]. The constant w in Theorem 13 is the sum of three terms. The first one is

The second term contributing to w is