
HAL Id: hal-01071980
https://hal.science/hal-01071980

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Magnetic properties of a fourfold degenerate state:
Np4+ ion diluted in Cs2ZrCl6 crystal

Dayán P. Hernández, Hélène Bolvin

To cite this version:
Dayán P. Hernández, Hélène Bolvin. Magnetic properties of a fourfold degenerate state: Np4+ ion
diluted in Cs2ZrCl6 crystal. Journal of Electron Spectroscopy and Related Phenomena, 2014, 194,
pp.74-80. �10.1016/j.elspec.2014.03.002�. �hal-01071980�

https://hal.science/hal-01071980
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Magnetic properties of a
 
fourfold

 
degenerate

 
state: Np4+ ion diluted in

Cs2ZrCl6 crystal

Dayán Páez Hernández, Hélène Bolvin ∗

Laboratoire de Chimie et de Physique Quantiques, IRSAMC, Université de Toulouse III, 118 route de Narbonne, 31062 Toulouse Cédex 04, France

The magnetic properties of the octahedral cluster NpCl2−
6

diluted in Cs2ZrCl6 crystal have been calcu-

lated using a first principle method, SO-CASPT2. The spin Hamiltonian parameters modeling the fourfold

degenerate ground state are extracted from calculations according to a first principle procedure. The

agreement with the model parameters issued from experimental EPR data is good. The spin and orbital

contributions to the model parameters are evaluated. Calculations are compared to crystal field theory

at the different steps of calculations: while this theory is a very good framework to explain the main

magnetic behavior, it is shown that it is not able to render precisely all the small effects.

1. Introduction

Magnetic properties of actinide compounds are relatively unex-
plored due to the difficulties of experimental work. For lanthanides,
the magnetic properties can be usually analyzed as a small pertur-
bation of the free ion properties by the crystal field (CF) created by
the environment since the 4f orbitals are well shielded by the closed
shell 5s and 5p orbitals. In actinide complexes, the interaction of
the ion with the environment is much larger and leads to novel
properties since the spin-orbit (SO) coupling is important in these
compounds. Most of the work in this field deals with the magnetic
properties in the solid state. Relatively little work has been done in
molecular chemistry until recently. Molecular magnetism of U(III)
complexes arouses interest due to their Single Molecule Magnets
properties. These molecules have complex structures and quantum
chemical studies have shown to provide information complemen-
tary to experiment [1,2]. In the 50s and 60s, many EPR experiments
were performed on diluted actinide ions in highly symmetric non-
magnetic crystals [3]. These magnetic data can be modeled by spin
Hamiltonians and due to the high symmetry of the CF environ-
ment of the paramagnetic ion, EPR spectra can be rationalized by
the use of few model parameters. The complexes with 5f1 config-
uration are easy to interpret since there is no need to build any
many-electron wave functions. The 5f1 AnXq−

6 series has been well
determined experimentally and has served as benchmark for quan-
tum chemical methods: either based on wave function theory [4,5]
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or on Density Functional Theory [6–8]. A recent study of the NpO2+
2

cation with different equatorial ligands has confirmed the capa-
bility of these methods to calculate the g factors of both ground
and excited states [33]. In these studies, it was shown that CF the-
ory permits to model accurately the computed properties of these
highly symmetrical 5f1 complexes. A very recent study [9] applies
this theory in order to analyze the bonding scheme in U(V) com-
plexes. We should also mention the work of Seijo and Barandiaran
[10] who calculated the spectrum of excited states of Pa4+ in the
Cs2ZrCl6 crystal. The aim of this work is to calculate the magnetic
properties of a symmetrical 5f3 complex and to discuss the results
in the light of CF theory.

We present calculations from first principles of the magnetic
properties of a 5f3 complex in an octahedral environment: Np4+

diluted in Cs2ZrCl6 crystal. A 5f3 paramagnetic ion in an octahe-
dral site has a fourfold degenerate ground state of symmetry F3/2u

according to Mulliken’s notation [11] (� 8 according to Bethe’s nota-
tions [3]). This state can be split in two Kramers doublets due to
geometric distortions of the environment. It seems to be the case
in the Cs2NpCl6 crystal according to the measurement of magnetic
susceptibility [12] and in the (Ph4P)2NpCl6 crystal where X-ray
spectroscopy shows a distortion within the NpCl2−

6 cluster [13].

The magnetic properties of the NpCl2−
6 cluster diluted in the cubic

Cs2ZrCl6 crystal have been characterized by EPR spectroscopy by
Bray in 1978 [14]; Bray concludes to the presence of a ground
quadruplet. Magnetic properties of ground states can be efficiently
modeled by spin Hamiltonians; these model Hamiltonians act in a
model spin space spanned by the |M̃S〉 kets which are eigenvectors
of the S̃z pseudospin operator. The value of the pseudospin S̃ and
consequently the size of the model space is chosen according to the
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degeneracy of the ground state; in the case of a fourfold degener-
acy, S̃ = 3/2. Bleaney and Abragam [15,3] have shown that the spin
Hamiltonian describing a F3/2u state takes the form

ĤS = �Bg ˆ̃
S · B + �BG

(

Bx
ˆ̃S

3

x + By
ˆ̃S

3

y + Bz
ˆ̃S

3

z

)

(1)

where �B is the Bohr magneton, B is the applied magnetic field and
g and G are two scalar model parameters. The magnetic properties
of the ground state are entirely defined by these two parameters g

and G.
The ground state of the free Np4+ ion is 4I9/2. The degeneracy

of this term is removed by the CF of the octahedral environment
in 2F3/2u ⊕ E1/2u. For f elements, the CF operator in a cubic point
symmetry acting in a J manifold can be written as

V̂CF = ˇ (J) A4〈r4〉
(

Ô0
4(J) + 5 Ô4

4(J)
)

+  (J) A6〈r6〉
(

Ô0
6(J) − 21 Ô4

6(J)
)

(2)

where Ôq
k

are the Stevens operators, Ak〈rk〉 the CF parameters, and
ˇ(J) and (J) the parameters issued from the Wigner–Eckart theo-
rem, depending on the fn configuration and on the representation
used to determine the state [16]. Lea, Leask and Wolf (LLW) have
rewritten this operator on the following form [17]

V̂CF = W

[

x
Ô4

F(4)
+ (1 − |x|) Ô6

F(6)

]

(3)

with Ô4 = Ô0
4(J) + 5 Ô4

4(J) and Ô6 = Ô0
6(J) − 21 Ô4

6(J). F(4) and F(6)
are factors dependent on the value of J. There are two indepen-
dent CF parameters for f elements in a cubic field. In Eq. (2), these
parameters are A4〈r4〉 and A6〈r6〉; they are independent of the cho-
sen representation and are characteristic of the compound. In Eq.
(3), the two parameters are W and x; they depend on the J manifold
but are useful since x characterizes the ratio between 4th and 6th
order CF operators while W plays the role of a scaling parameter.
LLW have plotted the energies of all the states issued from a J mani-
fold according to x. In general, x determines the nature of the ground
state for a given sign of W. In the case of J = 9/2, since there are two
F3/2u states in this manifold, x determines the ratio between these
two states and consequently determines the magnetic properties
as shown in Fig. 1 and in Appendix 2.

The first fitting of the EPR spectrum of Np4+ diluted in Cs2ZrCl6
by Bray led to x = −0.567, g = 0.40 and G = −1.7 [14]. These results
were startling since x should be positive in the case of an octahe-
dral CF. One year later, Bernstein and Dennis fitted the experimental
data using the full information about the dependency on the ori-
entation of the magnetic field; this new analysis led to new values
for the parameters g = −0.516, G = 0.882 and x = 0.475 [18]. It shows
that in some cases, the extraction of model parameters from exper-
imental data is not obvious and can lead to erroneous results.

The aim of this article is a first principle description of the mag-
netic properties of the ground state of the NpCl2−

6 cluster diluted in
Cs2ZrCl6. The SO-CASPT2 method has been chosen since it has suc-
cessfully reproduced the g factors in the case of octahedral actinide
compounds with twofold degenerate ground states and, using the
properties of symmetry, allowed to deduce the sign of the g factors
from first principle arguments [19]. In the first section we describe
the computational details of the calculations. Then we present the
results, compare them to the available experimental data and dis-
cuss them in the light of CF theory. Both CF and spin Hamiltonian
parameters are calculated from the computed observables.

2. Computational details

Calculations have been performed using the MOLCAS-78 suite
of programs [20]. The active space consists of three electrons in the
seven 5f orbitals of the Np atom. First, a SF-CASSCF (Spin-Free Com-
plete Active Space Self Consistent Field) calculation is performed
[21] with 35 and 84 roots for spin quartets and doublets respec-
tively. This first step provides the zeroth order multiconfigurational
wave function without spin-orbit. Dynamical correlation is added
using the SF-CASPT2 (Spin-Free Complete Active Space Perturba-
tion Theory at 2nd order) method [22] without any level shift. This
step includes the correlation of the movement of the electrons.
The corresponding states at the SF-CASSCF and SF-CASPT2 lev-
els span irreducible representations of the simple point group. SO
coupling is included by a state interaction between the SF-CASSCF
wave functions by the RASSI (Restricted Active Space State Interac-
tion) method [23]; one gets the SO-CASSCF results which include
the SO but not the dynamical correlation effects. In order to com-
bine SO and dynamical correlation, the SO matrix is dressed with
the CASPT2 energies giving rise to the SO-CASPT2 method. Both
the SO-CASSCF and SO-CASPT2 methods provide states spanned
by the irreducible representations of the double group. Calcu-
lations have been performed without any symmetry restriction.
Scalar relativistic effects are taken into account by means of the
Douglas–Kroll–Hess transformation [24] and SO integrals are calcu-
lated using the AMFI (Atomic Mean-Field Integrals) approximation
[25]. The cluster NpCl2−

6 is described by all-electron basis sets ANO-
RCC of TZP quality (Np: 9s8p6d4f2g1h; Cl: 5s4p2d1f) [26,27]. The
first shells of the 8 Cs+ cations, the 48 Cl− anions and the 12 Zr4+

cations are described by model potentials without basis sets [10].
The rest of the crystal is represented by 352 point charges. We have
performed some calculations where the first shell of Cs cations is
described using basis sets and the results were very similar to those
presented in this work. Model potentials and point charges are pos-
itioned according to the Cs2ZrCl6 lattice [28]. The charges have been
determined by a LOPROP analysis [34] of a B3LYP calculation on the
ZrCl2−

6 ion; +1.30 for Zr, −0.55 for Cl and +1.00 for Cs. When using
the pure ionic charges (Np +4.00 and Cl -1.00) the relative energy
of the states varies within some 10 of cm−1. The Np–Cl distance
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Fig. 1. P and Q in �B units (left) and g and G (right) as a function of x for the lowest F3/2u state in the frame of CF theory.
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has been optimized by a DFT calculation using the ADF code [29];
the [NpCl6Cs8]6+ cluster was described by TZ2P basis sets [30] and
the rest by point charges. Only the Np–Cl distance was optimized
using the B3LYP functional [31] while the geometry of the rest of
the crystal was kept fixed. A distance of 2.643 Å was found, result-
ing in a slightly longer distance than the crystallographic Zr–Cl one
(2.60175 Å), as can be expected from ionic radius of Np4+ (0.87 Å)
larger than the Zr4+ one (0.72 Å). In the (Ph4P)2NpCl6 crystal, the
average Np–Cl distance is 2.61 Å. SO-CASPT2 calculations have been
performed using both the optimized and the crystallographic dis-
tances. Matrix elements of orbital, spin and total angular momenta
within the SO wave functions are determined by a local program
using results of the RASSI code.

3. Results and discussion

The Np4+ ion is surrounded by six chloride anions in an octa-
hedral environment. The next shell consists of 8 Cs+ cations. The
structure is shown in Fig. 2. According to the calculations where
the Cs+ cations are described by basis sets, there is no charge
transfer between the NpCl2−

6 cluster and the Cs+ cations. The
5f orbitals of the neptunium cation are split according to the
a2u ⊕ t2u ⊕ t1u scheme, as expected by CF theory. From the canoni-
cal energies of these orbitals for the multistate CASSCF calculation,
the � = t2u − a2u and � = t1u − t2u energy gaps have been evalu-
ated as 988 and 1448 cm−1, respectively. They correspond to the
CF parameters A4 < r4 > =593 cm−1 and A6 < r6 > =29 cm−1; in Ref.
[4], octahedral 5f1 complexes were considered and for example,
in PaCl2−

6 , which has a similar metal ligand distance (2.64 Å), � and
� were found to be equal to 1390 and 2430 cm−1 respectively. In
the present case, Np4+ has a 5f3 configuration and most of the SF
states are highly multideterminantal. The multistate CASPT2 step
mixes SF roots, such that it is difficult to analyze the final states in
term of orbitals. The state scheme is represented in Fig. 3. The SF
states issued from the ground SF free ion term 4I order at SF-CASSCF
level according to 4A2u, 4T2u, 4Eu, 4T1u, 4A1u,4T2u (see Table 1).
This ordering of the states corresponds exactly to the splitting of
a L = 6 manifold by an octahedral environment as shown by LLW
[17]. One retrieves the states of Fig. 5 of Ref. [17] with a negative
value of W′ and for x′ in the range 0.4–0.5. We have determined
the CF parameters from the energies of these six SF states by a

Fig. 2. The NpCl2−
6

cluster and the first shell of ions described by ECPs.
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Fig. 3. States of the NpCl26
6

cluster at the CASPT2 level for a Np–Cl distance of 2.643 A.

Table 1

Calculated energy gaps and model parameters compared to the experimental data.

All energies are in cm−1 .

dNp−Cl (Å) 2.643 2.60175 exp

SF-CASSCF SF-CASPT2 SF-CASPT2

4A2u 0 320 283
4T2u 614 0 0
4Eu 1133 761 801
4T1u 1919 1537 1634
4A1u 1979 1548 1647
4T2u(2) 2247 2348 2491

x′b 0.47 0.44 0.43

W′ −11 −12 −13

rms 50 273 277

A4< r4 > 735 733 782 520c

A6< r6 > 69 82 88 150

SO-CASSCF SO-CASPT2 SO-CASPT2 Qa SO-CASPT2 exp

F3/2u 0 0 0 0 0e

E1/2u 327 266 408 258 900

F3/2u(2) 1094 1115 1258 1417 982

E5/2u 5738 5980 4251 5730 5836

xc 0.70 0.73 0.70 0.76

W −19 −20 −22 −25

A4< r4 > 784 833 884 1100

A6< r6 > 59 55 70 64

g −0.182 −0.406 −0.362 −0.411 −0.516f

G 0.657 0.785 0.712 0.779 0.882

P (�B) 1.948 2.040 1.858 2.012 2.203

Q (�B) −0.010 −0.105 −0.092 −0.108 −0.148

xd 0.63 0.51 0.51 0.51

rms 0.14 0.098 0.21 0.10

a State interaction restricted to spin quartets.
b Deduced from a least square procedure from SF energy gaps.
c Deduced from SO energy gaps.
d Deduced from a least square procedure from P(x) and Q(x) in Eq. (18).
e Absorption spectrum of Cs2NpCl6 [32].
f From Ref. [18].
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least square procedure (see Appendix 1). At the SF-CASPT2 level,
we found x′ = 0.44, W = −12 cm−1 leading to A4 < r4 > =733 cm−1 and
A6 < r6 > =82 cm−1. These values are quite different from the previ-
ous ones deduced from orbital considerations. The values deduced
for SF-CASSCF are given in Table 1. It has to be pointed out that the
SF-CASSCF levels are much better fitted by CF theory than the SF-
CASPT2 ones; the ordering of the states is not the same for the two
levels of calculations, and more precisely the ground state is not the
same: at the CASPT2 level, the ground state is a 4T2u state and there
is no value of x′ that predicts this state to be the ground one. Con-
sequently, the rms (root mean square) is small for the SF-CASSCF
level but becomes much larger at the SF-CASPT2 level.

The SO states are calculated by a state interaction between the
SF states using the SO-RASSI code. The three first states of sym-
metry F3/2u E1/2u and F3/2u are well separated from the other ones
by more than 4000 cm−1: these states are those arising from the
4I9/2 term of the free ion. Again, the ordering corresponds to the
one calculated by LLW for a J = 9/2 manifold (see Appendix 1). x and
W can be calculated from the energies of these three states (the
reader is reminded that x and W depend on the considered mani-
fold since they include the Wigner–Eckart coefficients ˇ and  , see
Appendix 1). Since in this case one models two energy gaps by two
parameters, the rms is zero and the extraction of these parame-
ters from first principles data is less significant than in the SF case.
One finds x = 0.73 and W = −20 cm−1 leading to A4 < r4 > =833 cm−1

and A6 < r6 > =55 cm−1, values different but relatively close to the CF
parameters deduced in the SF step. The extraction of x from exper-
imental data seems to be problematic. In Table 5 of Ref. [18], values
of −0.561, +0.475 and 0.764 are given, depending on the fit. In the
text, the authors conclude “Since x = 0.535 and x = 0.453 obtain for
Pa4+ and U4+ respectively, the value x = 0.475 for Np4+ seems more
reasonable than does the value of x = 0.764”. This last sentence is
not clear since the value of x depends on the number of f electrons
and is not transferable from one ion to another.

The matrices of the total angular momentum operator
components M̂x, M̂y and M̂z are calculated in the basis set
{|� 1

a 〉, |� 1
b
〉, |� 1

c 〉, |� 1
d
〉} of the kets issued from the SO-RASSI

calculations. These wave functions have no specific symmetry
properties. We are looking for the rotation within this space, such
that the connection between the three matrices Mx, My and Mz

and the corresponding model matrices can be established. The spin
Hamiltonian

ĤS = �Bg ˆ̃S · �B + �BG

(

Bx
ˆ̃S

3

x + By
ˆ̃S

3

y + Bz
ˆ̃S

3

z

)

= −�BM̂mod · �B (4)

leads to the following expression for the model magnetic momen-
tum

M̂mod
k = −g ˆ̃Sk − G ˆ̃S

3

k (5)

for k = x, y, z. In the basis set {|3̃/2〉, |1̃/2〉, | − 1̃/2〉, −|3̃/2〉} of the
model space, the angular momentum matrices M

mod
x , M

mod
y and

M
mod
z take the following forms, in units of �B

M̂mod
x

3̃
2

1̃
2

− 1̃
2

− 3̃
2

3̃
2

0 −
√

3(1
2
g + 7

8
G) 0 −3

4
G

1̃
2

−
√

3(1
2
g + 7

8
G) 0 −(g + 5

2
G) 0

− 1̃
2

0 −(g + 5
2
G) 0 −

√
3(1

2
g + 7

8
G)

− 3̃
2

−3
4
G 0 −

√
3(1

2
g + 7

8
G) 0

(6)

M̂mod
y

3̃
2

1̃
2

− 1̃
2

− 3̃
2

3̃
2

0 i
√

3(1
2
g + 7

8
G) 0 −i 3

4
G

1̃
2

−i
√

3(1
2
g + 7

8
G) 0 i (g + 5

2
G) 0

− 1̃
2

0 −i (g + 5
2
G) 0 i

√
3(1

2
g + 7

8
G)

− 3̃
2

i 3
4
G 0 −i

√
3(1

2
g + 7

8
G) 0

(7)

M̂mod
z

3̃
2

1̃
2

− 1̃
2

− 3̃
2

3̃
2

−3
2
g − 27

8
G 0 0 0

1̃
2

0 −1
2
g − 1

8
G 0 0

− 1̃
2

0 0 1
2
g + 1

8
G 0

− 3̃
2

0 0 0 3
2
g + 27

8
G

(8)

In the case of twofold degenerate states, the connection between
the “physical” space and the model one is done by analyzing the
properties of rotation of the spin operator [19]. We propose a proce-
dure to build the kets {|� 3/2〉, |� 1/2〉, |�−1/2〉, |�−3/2〉} as a rotation
of the initial basis set {|� 1

a 〉, |� 1
b
〉, |� 1

c 〉, |� 1
d
〉} in Appendix 3. As

already pointed out by Bleaney [15], there are two equivalent solu-
tions. The matrices Mx, My and Mz expressed in this new basis set
can be connected to the model matrices of Eqs. (6)–(8) such that
g and G can be determined by a least square procedure. Results
are summarized in Table 1. The values of P = −〈�3/2|M̂z |�3/2〉 ≡
−〈3̃/2|M̂mod

z |3̃/2〉 and Q = −〈�1//2|M̂z |�1//2〉 ≡ −〈1̃/2|M̂mod
z |1̃/2〉

are given. We focus on one of the solutions, since the other one
can be obtained by a simple transformation (see Appendix 3). The
values of x can be deduced from P(x) and Q(x) given in Eq. (18):
we found x = 0.51 a value very different from the one deduced from
the energy gaps. It should be pointed out that Q= 0.11 for x = 0.73;
it shows that for the value of x deduced from the energy gaps, Q

has the wrong sign and the magnetic properties are poorly repro-
duced. It means that we are not able to deduce CF parameters
that reproduce correctly both energy gaps and spin Hamiltonian
parameters.

The values of g and G calculated from SO-CASPT2 results are
closer to experiment than the SO-CASSCF ones; the dynamical cor-
relation thus plays an important role. It changes the nature of SF
ground state from 4A2u to 4T2u and the composition of the ground
state in terms of SF states. The SO-CASSCF wave function is 39.0%
4T2u, 21.5% 4A2u 14.3% 4Eu while the SO-CASPT2 one is 38.3% 4T2u,
17.5% 4A2u 13.8% 4Eu. The change in the composition of the wave
function must be the origin of the change in the magnetic proper-
ties. The doublets contribute for 17% in the ground wave function;
their effect is evaluated by making a state interaction restricted to
the quartet states (3rd column of Table 1). One can see that their
impact on the magnetic properties is quite small, but their effect on
the energy gap between the ground F3/2u and first excited state E1/2u

is more important. The comparison of the results for the optimized
distance with the crystallographic one shows that the effect of the
distance is small. The results for the shortest Np–Cl distance are
closer to the experimental ones. Menzel and Gruber [32] have mea-
sured the absorption spectrum of the Cs2NpCl6 crystal. The energy
gap for the F3/2u → E1/2u transition is much higher than the one we
find. Actually, they have observed many low lying bands (58; 117;
128; 182; 260; 331; 900; 966 cm−1). We propose that the two bands
at 900 and 966 cm−1 arise from the splitting of the F3/2u states due

to the lowering of symmetry of the NpCl2−
6 that was not evidenced

at the time of the experiment and that the band corresponding to
the F3/2u → E1/2u transition is either at 260 or/and 331 cm−1 bands.
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Table 2

Spin and orbital contributions to the model parameters (SO-CASPT2 results for a

Np–Cl distance of 2.643 Å).

Total Spin Orbital

g −0.406 0.027 −0.460

G 0.785 −0.250 1.285

P (�B) 2.040 −0.803 3.647

Q (�B) −0.105 −0.017 −0.069

The matrices of spin and orbital momenta have been calculated
in the {|� 3/2〉, |� 1/2〉, |�−1/2〉, |�−3/2〉}basis set. These matrices have
exactly the shape of Eqs. (6)–(8) such these contributions can be
modeled by the spin Hamiltonian of Eq. (4) with model parameters
gS, GS and gL, GL respectively. The results are reported in Table 2.
It can be checked that gL + 2gS = g and GL + 2GS = G as expected. The
orbital contribution is the largest and is opposite in sign to the spin
one except in the case of Q where both contributions have negative
signs. The opposite sign and the largest orbital contribution can be
understood from the free ion properties: in the ground term 4I9/2,
L and S have opposite signs and L is the largest.

4. Conclusion

In this work, we have presented the first ab initio calculations
of magnetic properties of a fourfold degenerate state. In order to
compare the computed magnetic momenta to the experimental
ones modeled by a spin Hamiltonian, a rotation within the physical
space generated by the four wave functions describing the ground
state has to be done. In the new basis set, magnetic momentum
matrices can be matched with those of the model Hamiltonian
in the model space and spin Hamiltonian parameters can be cal-
culated from first principles. We have proposed a procedure to
achieve this point. The model parameters calculated in this man-
ner compare well with the experimental ones. It should be noticed
that calculation of the model parameters from experimental data
is not obvious. The first set of model parameters proposed by Bray
[14] was wrong. Then, the parameters proposed by Bernstein and
Dennis were performed using figures taken from previous publica-
tions. The fitting of the data was not as good for Np4+ as expected
“probably due to an internal inconsistency in the experimental
data”. They conclude “Finally, we wish to emphasize that the � 8

spin Hamiltonian parameters reported in Table II for Np4+/Cs2ZrCl6
are probably accurate only to within about ±5%.” Our calcula-
tions have permitted to calculate the spin and orbital contributions
to spin parameters; as can be expected from the respective val-
ues of L and S in the ground term of the free ion, spin and
orbital contributions have opposite signs and the orbital one is the
largest.

At each step of the calculation, CF parameters have been calcu-
lated from first principle data. The variation of the CF parameters
depending on the observables they have been extracted from is
important. It can be due to the fact that the calculation giving val-
ues of g and G closest to the experimental ones is the SO-CASPT2 one
including the effect of more than 80 doublet states. Both the inclu-
sion of dynamical correlation and the interaction with the excited
SF spin doublet states influence the numerical results and these
two effects are not taken into account by CF theory. It is important
to emphasize, that CF theory provides a framework that permits to
rationalize and understand the results. Though, the only exceptions
in this work is the nature of the ground SF state at SF-CASPT2 level
and the sign of Q if CF parameters deduced on energetic criteria is
used. Otherwise, CF theory provides the correct ordering of states.
But this work shows that quantitative analysis of numerical results
is not possible in the framework of this theory.

Finally, this work confirms that the SO-CASPT2 approach is a
valuable tool for the description of magnetic properties of actinide
complexes. On the one hand, it reproduces well the available exper-
imental data and on the other hand it provides access to properties
that are not accessible by the experiment.
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Appendix 1. Crystal field equations according to LLW

scheme

In a l = 3 manifold

ˇ(l) = 2
495 , (l) = − 4

3861

E(a2u) = −48 W ′′

E(t1u) = 4 W ′′ (−5 + 11x′′)

E(t2u) = −4 W ′′ (−9 + 11x′′)

(9)

In a L = 6 manifold

ˇ(L) = − 2
16335 , (L) = − 10

891891

E(A1) = −2 W ′ (−8 + 71x′)

E(A2) = −22 W ′ (−8 + 5x′)

E(E) = 6 W ′ (−8 + 27x′)

E(T1) = −8 W ′ (−1 + 13x′)

E(aT2) = W ′ (−5 + 10x′ +
√

784 − 1442x′ + 1079x′2)

E(bT2) = W ′ (−5 + 10x′ − 784 − 1442x′ + 1079x′2)

(10)

In a J = 9/2 manifold

ˇ(J) = − 136
467181 , (J) = − 1615

42513471

E(E1/2) = 4

5
W(−80 + 129x)

E(aF3/2) = 1

5
W(80 − 129x − 5 1360 − 1152x + 513x2)

E(bF3/2) = frac15W/5(80 − 129x + 5 1360 − 1152x + 513x2)
(11)

Comparison of CF and LLW schemes

By comparing Eqs. (6)–(8), one obtains
A0

4 < r4 >= Wx/(ˇF(4)) and A0
6 < r6 >= W(1 − x)/(F(6))

For example, A4 < r4 > =800 cm−1 and A6 < r6 > =88 cm−1 lead to

• x′′ = 1.51 and W′′ = 32 cm−1 in the l = 3 manifold.
• x′ = 0.44 and W′ = -13 cm−1 in the L = 6 manifold.
• x = 0.62 and W = -22 cm−1 in the J = 9/2 manifold.

Appendix 2. Magnetic properties in the F3/2u state

The free ion ground state is characterized by the following quan-
tum numbers: L = 6, S = 3/2, J = 9/2 and gJ = 8/11
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The composition of each MJ state is obtained from the

Clebsch–Gordan coefficients |MJ〉 =
∑L

ML=−L

∑S

MS=−S
〈L MLS MS

|S MJ〉|ML MS〉.
In the basis set of the |MJ〉, the two operators 1/F(4)Ô4 and

1/F(6)Ô6 give rise to the following matrices

Ô4

F (4) ±9
2

±1
2

∓7
2

±9
2

126
5

3
√

14 0

±1
2

3
√

14 126
5

5
√

14

∓7
2

0 5
√

14 −154
5

Ô6

F (6) ±9
2

±1
2

∓7
2

±9
2

6 −15
√

14 0

±1
2

−15
√

14 −16 −3
√

14

∓7
2

0 −3
√

14 −22

O4

F (4) ±5
2

∓3
2

±5
2

−119
5

5
√

21

∓3
2

5
√

21 21
5

O6

F (6) ±5
2

∓3
2

±5
2

20 8
√

21

∓3
2

8
√

21 12

(12)

The diagonalization of V̂CF = W[x O4/F(4) + (1 − |x|)O6/F(6)]
leads to three states of energies given by Eq. (11). In the region
x < 0.83 and for W < 0, the ground state is the fourfold degenerate
bF3/2 one. The corresponding eigenvectors are

|�1〉 = a(x)|9

2
〉 + b(x)|1

2
〉 + c(x)| − 7

2
〉

|�2〉 = a(x)| − 9

2
〉 + b(x)| − 1

2
〉 + c(x)|7

2
〉

|�3〉 = d(x)|5

2
〉 + e(x)| − 3

2
〉

|�4〉 = d(x)| − 5

2
〉 + e(x)|3

2
〉

(13)

with

a(x) = −(35 − 9x +
√

1360 − 1152x + 513x2)/(3N)

b(x) = (38 − 17x + 1360 − 1152x + 513 ∗ x2)/(
√

14N)

c(x) = (−3 + 8x)/N

d(x) = −(4 − 18x + 1360 − 1152x + 513x2)/(
√

21N′)

e(x) = (−8 + 3x)/N′

(14)

One deduces the matrices for the three M̂u (u = x, y, z) operators

M̂x |Ψ2 Ψ3 Ψ4 Ψ1

Ψ2| 0 8
√

6
11

be + 16
11

cd 0 24
11

ac + 20
11

b2

Ψ3| 8
√

6
11

be + 16
11

cd 0 8
√

21
11

ed 0

Ψ4| 0 8
√

21
11

ed 0 8
√

6
11

be + 16
11

cd

Ψ1| 24
11

ac + 20
11

b2 0 8
√

6
11

be + 16
11

cd 0

(15)

M̂y |Ψ2 Ψ3 Ψ4 Ψ1

Ψ2| 0 −i(8
√

6
11

be + 16
11

cd) 0 i(24
11

ac + 20
11

b2)

Ψ3| i(8
√

6
11

be + 16
11

cd) 0 −i8
√

21
11

ed 0

Ψ4| 0 i8
√

21
11

ed 0 −i(8
√

6
11

be + 16
11

cd)

Ψ1| −i(24
11

ac + 20
11

b2) 0 i(8
√

6
11

be + 16
11

cd) 0

(16)

M̂z |Ψ2 Ψ3 Ψ4 Ψ1

Ψ2| −36
11

a2 − 4
11

b2 + 28
11

c2 0 0 0
Ψ3| 0 20

11
d2 − 12

11
e2 0 0

Ψ4| 0 0 −20
11

d2 + 12
11

e2 0
Ψ1| 0 0 0 36

11
a2 + 4

11
b2 − 28

11
c2

(17)

The comparison of these three matrices with Eqs. (21)–(23)
results in two solutions for P(x) and Q(x)

P(x) = 36

11
a2(x) + 4

11
b2(x) − 28

11
c2(x)

Q (x) = −20

11
d2(x) + 12

11
e2(x)

(18)

or

P(x) = 20

11
d2(x) − 12

11
e2(x)

Q (x) = −36

11
a2(x) − 4

11
b2(x) + 28

11
c2(x)

(19)

It should be noticed that

√
3

4

(

36

11
a2(x) + 4

11
b2(x) − 28

11
c2(x) − 20

11
d2(x) + 12

11
e2(x)

)

= 8
√

6

11
b(x)e(x) + 16

11
c(x)d(x)

36

11
a2(x) + 4

11
b2(x) − 28

11
c2(x)

20

11
d2(x) − 12

11
e2(x)

= 24

11
a(x)c(x) + 20

11
b2(x)

(20)

It follows

g(x) = − 1

12
P(x) + 27

12
Q (x)

G(x) = 1

3
P(x) − Q (x)

The first solution is represented in Fig. 1 since it is the solution
matching the experimental data.

Appendix 3. Spin Hamiltonian parameters from first

principles calculations

In the basis set {|3̃/2〉, |1̃/2〉, | − 1̃/2〉, | − 3̃/2〉} of the model
space, the angular momentum matrices M

mod
x , M

mod
y and M

mod
z

take the forms of Eqs. (6)–(8). The SO-RASSI calculation provides
a basis set {|� 1

a 〉, |� 1
b
〉, |� 1

c 〉, |� 1
d
〉} in which the total angular matri-

ces Mx, My and Mz are calculated. We are looking for the rotation
in the space generated by these wave functions such the three
matrices Mx, My and Mz have the shape of Eqs. (6)–(8). We have
followed the following procedure: (i) one diagonalizes Mz and its
eigenvectors give a new set {|� 2

a 〉, |� 2
b
〉, |� 2

c 〉, |� 2
d
〉} with eigenval-

ues ±P and ±Q. (ii) One determines the phase factors such Mx in
the basis set {|� 3

1 〉 = |� 2
1 〉, }|� 3

2 〉 = ei˛|� 2
2 〉, |� 3

3 〉 = eiˇ|� 2
3 〉, |� 3

4 〉 =
ei |� 2

4 〉} becomes a real matrix. (iii) One finds the permutation

such in basis set ±|�3
i
〉, ±|�3

j
〉, ±|�3

k
〉, ±|�3

l
〉
}

, Mx, My and

Mz can be written as in Eqs. (6)–(8). Actually, there are precisely
two of them (except to a global change of phase factors of all
the wave functions). Let us call {|�3/2〉, |�1/2〉, |�−1/2〉, |�−3/2〉}
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one of them.

M̂x Ψ3/2 Ψ1/2 Ψ−1/2 Ψ−3/2

Ψ3/2 0
√

3
4

(P + Q) 0 1
4
(P − 3Q)

Ψ1/2

√

3
4

(P + Q) 0 1
4
(3P − Q) 0

Ψ−1/2 0 1
4
(3P − Q) 0

√

3
4

(P + Q)

Ψ−3/2
1
4
(P − 3Q) 0

√

3
4

(P + Q) 0

(21)

and

M̂y Ψ3/2 Ψ1/2 Ψ−1/2 Ψ−3/2

Ψ3/2 0 −i
√

3
4

(P + Q) 0 i 1
4
(P − 3Q)

Ψ1/2 i
√

3
4

(P + Q) 0 −i 1
4
(3P − Q) 0

Ψ−1/2 0 i 1
4
(3P − Q) 0 −i

√

3
4

(P + Q)

Ψ−3/2 −i 1
4
(P − 3Q) 0 i

√

3
4

(P + Q) 0

(22)

M̂z Ψ3/2 Ψ1/2 Ψ−1/2 Ψ−3/2

Ψ3/2 −P 0 0 0
Ψ1/2 0 −Q 0 0
Ψ−1/2 0 0 Q 0
Ψ−3/2 0 0 0 P

(23)

In the final form, the matrix elements of Mx and My that
are supposed to be zero are all lower than 10−3 (in units of
�B). The spin Hamiltonian parameters g and G are deduced from
these matrices by a mean square procedure since there are two
parameters for many matrix elements. The only permutation that
preserves the correct forms of Eqs. (6) and (7) for Mx and
My is {� 3/2 ↔ �−1/2 ; �−3/2 ↔ � 1/2} corresponding to P′ = − Q and
Q′ = − P. This leads to a set of new parameters g′ = (−40g − 91G)/12
and G′ = (4g + 10G)/3. The existence of these two solutions was
already pointed out by Bleaney [15] and the two last equations can
be found in his article.

We should point out that this procedure supposes that Mx,
My and Mz are calculated with x, y and z being the fourfold
rotation axis of the octahedron. Since x, y and z are equivalent, a

permutation between the three matrices leads to the same results.
We have checked that first diagonalizing Mx, then making My real
leads to the same values for g and G.
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