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1 -   Introduction:

Polarization of light has been used, for a long time, as an important measurement tool 
for  studying  phenomena  in  astronomy,  optics,  crystallography…  and  more  recently  in 
computer vision. The main difference between these applications is the ability to control the 
light source illuminating the environment to be characterized. If lighting can be controlled, 
polarization is generally used to determine the Mueller matrix of the material on which the 
light wave was reflected. The estimated 4 by 4 Mueller matrix then brings information on 
observed  medium  [1,2].  The  corresponding  optical  device  is  usually  called  Mueller  
polarimeter.

Conversely, it is frequent to be unable to control lighting, in particular in the field of 
computer vision when outdoors scenes are observed. In this case it is no longer possible to 
obtain the Mueller matrix characterizing the material on which there was reflection. However 
a certain number of information can be obtained on the observed object from the estimate of 
the polarization state of reflected light wave. These information can be of physical [3,4] or 
geometrical [5] nature. 

The state  of  polarization  of  the  observed light  wave can  then  be  modeled,  in  the 
general case, by a four parameters Stokes vector  S = [S0, S1, S2, S3]T and the optical device 
allowing  to  obtain  these  information  is  usually  called  Stokes  polarimeter.  Most  of  these 
systems  are  based  on  a  fixed  linear  polarizer  and  a  rotating  retarder.  More  efficient 
polarimetric systems use voltage-controled liquid-crystal devices (LCVR) instead of rotary 
elements [6, 7]. When using polarimeter based on LCVRs, errors caused by moving parts, 
unavoidable when using mechanical rotation [8] (inertia with its acceleration and braketimes, 
misalignments of the signal on the detector,...) are eliminated. Precise rotation stages, stepper 
motors... are dispensable. However, the main well known disadvantage is that the retardation 
introduced by LCVR is temperature dependent. 

In the field of computer vision, lighting is usually not controlled but may be assumed 
to be not polarized.  A common assumption in computer vision applications [9] states that 
circular polarization component S3 of the reflected light vanished. Thus we will only focus in 
this paper on the evaluation of the first three components of the Stokes vector, i.e., those that 
represent the linear polarization.

In practice, estimation of S0, S1 and S2 requires at least three measurements of light 
intensity  at  the  output  of  the  device.  However,  the  actual  number  of  measurement  may 
increase significantly in order to have robust estimates. These measurements are made for 
multiple rotation angles θi of the retarder or phase retardations δi of the LCVR. Guarantying 



the value of the tuning parameters θi or δi over time (errors caused by moving of retarder or 
temperature dependence of LCVR) is nevertheless difficult. 

When a quasi real-time estimation of polarization information is needed, the device 
based on LCVR components is a usual solution. With this device,  the thermal drift  is the 
major drawback that can be addressed in order to built a robust estimation of the polarization 
information. One solution is to hold constant the LCVR temperature by using a thermostated 
environment  but  this  is  not  always  possible  (power  consumption  in  remote  sensing  for 
instance). It was shown [10] that in this case it is necessary to calibrate the LCVR just before 
carrying out measurement and do this again approximately every ten minutes. 

So, in order to avoid these difficulties, this article proposes a method to measure the 
partially  linearly polarized  Stokes vector of the reflected light  wave without knowing the 
values  of the retardations  δi  of a  liquid-crystal  imaging Stokes  polarimeter. A robust  and 
accurate solution to this question is described. It is based on self-calibration principle [11,12]. 
Unlike  methods  previously  exposed  in  the  literature,  our  estimate  of  these  polarization 
parameters is independent of the accurate knowledge of the polarimeter variable retardations 
values and does not require a calibration process at regular intervals [10].

This article is organized in 5 sections. In section 2, a description of the experimental 
set-up is presented. A parametric model of the LCVRs used in the device is determined in 
section  3.  Some  results  are  shown in  section  4  and summary  and some  conclusions  are 
presented in section 5.

2 -   Materials and methods:

Figure 1 shows a schematic diagram of the proposed experimental device. 

The partially  linearly  polarized  light  S  reflected  by the  scene is  observed through 
several optical components. Each of these components modifies the polarization state of the 
light according to the Mueller formalism. The Stokes vector corresponding to the polarization 
state of the wave at the output of each optical component is then obtained by multiplication of 
the Mueller matrix characterizing the component by the Stokes vector of the light wave at the 
input.

The LCVRs's retardances δ1 for LCVR1 and δ2 for LCVR2. are the variable parameters of the 
proposed device (see Fig.1).
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Fig. 1: Measuring device



These parameters are controlled by the amplitude of a rectangular alternative voltage applied 
to  the  LCVR  (meadowlark  LRC-300  device)  via  a  command  interface  board  (National 
Instruments PCI-6713). 
Since δ value is only valid for a monochromatic light, a monochromatic filter is placed at the 
device input. The monochromatic filter used is centered over a wavelength λ0 = 633 nm. 

The theoretical Mueller matrix MLCVR(δ) of the LCVR [13] given by 
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where cos 2 vrc θ= and sin 2 vrs θ= . The θvr  angle is the orientation of the LCVR's fast axis with 
respect to the horizontal reference Equation (1) transforms the input Stokes vector  S of the 
observed partially linearly polarized light into the output Stokes vector S’ according to
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The Mueller matrix of a rotated linear polarizer is given [13] by:
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As we can see in Eq. (3), the fourth column of the Mueller matrix of a linear polarizer 
is null, and this is for any values θ of the principal axis rotation. The Stokes vector of the light 
wave at the polarizer output is thus independent of the fourth Stokes parameter at the input. 
So, in order to keep the fourth independent relation of Eq. (2) (S’3 parameter), a second LCVR 
is required. It is placed between LCVR1 and the linear polarizers. 

The Stokes vector S’’’ at the output of the polarizer is then given by Eq. (4).

2 2 1 1 1 2''' ( ) ( ) ( , )POL LCVR LCVR globalS M M M S M Sδ δ δ δ= = (4)

A 12  bits  CCD sensor  (see  Fig  1)  measures  the  intensity  I  at  the  polarizer  output  that 
corresponds to the first parameter of the Stokes vector S’’’. 



If we make the assumption that the values of the LCVRs retardances  δ1 and  δ2 are 
accurately known (thermostated device), the input Stokes vector S is usually computed by the 
use of 4 measures (and then 4 different values of the couple of retardances (δ1,δ2)) given by 
Eq. (5). 
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Where Mgene is a 4x4 matrix formed by the first lines of Mglobal  (termed Mglobal(1,..)) computed 
for the four couples of retardances (δ1,δ2) of the LCVRs. 
In  practice  all  the  parameters  of  the  device  must  be  adjusted  in  order  to  obtain  a  well  
conditioned matrix  Mgene with a low condition number [14]. Therefore, in our experimental 
process these parameters are adjusted at  θvr1=72,4°,  θvr2=27,4° and  θ=0°. The four optimal 
couples of retardances  are (δ11,δ21)=(135°,135°),  (δ12,δ22)=(135°,315°),  (δ13,δ23)=(315°,135°) 
and (δ14,δ24)=(315°,315°). With these values the condition number of  Mgene is equal to  √3
[15].

3-   An experimental parametric model of the LCVR:

The well known drawback of LCVR is that the retardation strongly depends on temperature 
Τ°.
Estimating  the  Stokes  parameters  by  using  the  classical  measuring  device  of  Fig.  1  and 
considering the retardances δ1 (for LCVR1) and δ2 (for LCVR2) introduced by each LCVR as 
unknown parameters leads nevertheless to an underdetermined equations system whatever can 
be the number of acquisitions. We obtain N equations for N acquisitions (N different couples 
of retardance values (δ1,δ2)) but N+3 unknowns (S0, S1, S2, (δ1N, δ2N)).

Furthermore the theoretical model given by Eq. (1) for LCVR Mueller matrix may be just 
regarded as an approximation [16]. So, instead of using this theoretical model MLCVR(δ) of the 
LCVR component into the derivation of matrix  Mgene, the use of an experimental parametric 
model is preferred.

Under  this  requirement,  we  measure,  according  to [15],  the  Mueller  matrix 
12 2 2 1 1( ) ( )LCVR LCVR LCVRM M Mδ δ=  for  the  four  driving  voltage  couples  (V1,V2)  that 

correspond to the four couples of retardance (δ1,δ2)=(135°,135°), (135°,315°), (315°,135°). 
and  (315°,315°)   at  T°=24°C. These  couples  of  voltages  are  then  respectively  adjusted  at 
(V1,V2)=(2.21V,2.31V), (2.21V,1.38V), (1.39V,2.31V) and (1.39V,1.38V). 

Experimental measurements of the mueller matrix MLCVR12 are made for different temperatures 
Τ°  and for each pixel. So we obtain 16 characteristic curves for each couples of voltages. 
Given the measurement noise, the Mueller matrices of the block are filtered to be physically 
admissible. We use filtering matrices algorithm proposed in reference [17].



For  example,  Fig.  2  shows,  the  coefficients  of  the  Mueller  matrix  MLCVR12 versus  the 
temperature  T°  measured  for  an  arbitrary  chosen  pixel  and  for  a  driving  voltage  couple 
adjusted to (1.39V, 1.38V). As we can see several coefficients (a2,2, a2,3, a2,4, a3,2,...) evolve 
noticeably versus temperature. These measurements confirm that the theoretical matrix MLCVR  

(Eq. 1) is just an approximation of the actual behavior of LCVR.

In  order  to  use  a  more  precise  LCVR  parametric  model  than  Eq.  (1),  a  polynomial 
interpolation is therefore applied for each pixel of the image and for each MLCVR12 coefficient 
and each couple of driving voltage (V1,V2). A parametric model ai,j=AT2+BT+C (whereT is 
the temperature in °Celsius) is then obtained for the sixteen entries of  MLCVR12.  We find for 
example the equations given by Eq. (6) for ai,j coefficients:
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With this parameterization, we obtain a non linear system given by Eq. (7):

1

2
1 2

3

4

(( , ), )gene

I
I

M V V T S
I
I

 
 
  =
 
 
  

(7)

It is important to notice that under this parametric modelization of  MLCVR12, N measures (N 
different  couples  of  driving voltages)  give  N equations  (measured  intensities)  but  only  4 
unknowns (S0, S1, S2, Τ). The problem is now well defined and can be solved for each pixel of 
the image by using a classical non linear optimization algorithm.

Fig. 2: Coefficients of the Mueller matrix MLCVR12  as function of temperature for a 
driving voltage equal to (1.39V,1.38V).



We use a Levenberg-Marquardt least squares algorithm [18] implemented with MATLAB to 
solve the non linear system of Eq. (7). Results are reported in the following paragraph. These 
results  are  obtained  for  four  couples  of  driving  voltage  (V1,V2)=(2.21V,2.31V), 
(2.21V,1.38V), (1.39V,2.31V) and (1.39V,1.38V).

4 -   Experimental results:

One of the main advantages of the proposed measurement approach is that the optimal MLCVR12 

parametric model is evaluated independently for each pixel, no temperature sensor or thermal 
control is required. Assuming a homogeneous temperature distribution over the LCVR is thus 
absolutely not necessary.

Fig. 3 shows the estimation of the Stokes parameters S0,  S1,  S2 and temperature T versus 
temperature fluctuation, for an arbitrary 10 by 10 set of chosen pixels. The observed light is 
the output of a linear polarizer oriented at 0°. The normalized Stokes vector to estimated is S 
= [1, 1, 0, 0]T. This vector simulates for example the polarization state of an unpolarized light 
reflected by a dielectric surface at the Brewster angle (polarization degree equal to 1).



For each temperature we use a statistical representation of the results compute for the 10 by 
10 set of pixels for wich the Stokes parameters are assumed to be equal. On each box, the 
central mark is the median and the edges of the box are the 25th and 75th percentiles.
The  dotted  curves  correspond  to  the  estimation  of  Stokes  parameters  by  conventional 
polarimeter  [19]  where  the  LCVRs  mueller  matrices  are  assumed  to  be  temperature 
independent  for  four couples  of retardance.  These parameters  are adjusted respectively to 
(δ1,δ2)=(135°,135°), (135°,315°), (315°,135°). and (315°,315°)  at T°=24°C. The solid curves 
show the estimation by the proposed approach. In order to reduce noise effect each intensity I 
of Eq. (7) is obtained by averaging 32 frames grabbing.

As we can see, estimation of the Stokes vector is robust with the proposed approach under 
thermal drift. The estimated Stokes parameters are still constant when the temperature drifts.

Fig. 4 and 5 show respectively the corresponding polarization angle φ and degree P computed 
according to 

(a) (b)

(c) (d)

Fig. 3: Estimation of the temperature and the Stokes parameters of a linearly 
polarized light wave as function of temperature: (a) S0, (b) S1, (c) S2, (d) T.
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Fig. 4: Estimation of the polarization angle of a linearly 
polarized light wave as function of temperature

Fig. 5: Estimation of the polarization degree of a linearly 
polarized light wave as function of temperature



We can see that the result of the estimation of these parameters, using the proposed measuring 
approach, is independent of temperature.

The second experimentation is shown in Fig. 6. It corresponds to the estimation of a partially 
linearly  polarized  light.  This  light  is  obtained  by  the  reflection  of  an  unpolarized  light 
reflected by a glass (refractive index equal 1.5) oriented at 25° with an observation angle at 
45°. 
Under this experimental condition, the theoretical linear polarization degree is 0.83. As we 
can see Fig. 6(d) the proposed measuring device estimates this parameter equal to 0.8 and this 
estimation is not affected by temperature contrary to the estimation using the conventional 
polarimeter approach. The polarization angle Fig. 6(e) is also more robust versus temperature 
as compared to conventional polarimeter and is close to the surface orientation.

(a)

(c) (d)

(b)



5- Discussion and summary

Using  LCVR  components  when  designing  a  polarimeter  allows  to  estimate  polarization 
information  in  quasi  real-time.  However  the  main  well  known  disadvantage  is  that  the 
retardation introduced by LCVR depends on temperature. So it is recommended to calibrate 
the device every ten minutes or to use a thermostated environment. 

In the presented work we experimentally model the 16 LCVR coefficients as functions of the 
temperature and derive a parametric model in order to characterize the behavior of the two 
LCVRs under thermal drift. 

We  proposed  a  new  approach  where  the  estimation  of  the  observed  Stokes  vector  is 
independent of the thermal drift. The classical solution needs to recalibrate the device during 
time of use or to control temperature. These drawbacks disappear with the proposed approach. 
An  offline  calibration  of  the  LCVRs  is  only  required.  Sixteen  characteristic  curves  are 
obtained from this calibration process for each LCVRs couple of driving voltage. So  if N 
couples of voltages are used, then 16N characteristic curves are needed. During the online 
measurement process, the operating point of the LCVRs and the Stokes vector are jointly 
estimated. 

In  the case  of  an imaging polarimeter,  the  estimations  of  the  operating  point  and Stokes 
parameters are achieved independently for each pixel of the image. So no temperature sensor 
and thermal homogeneity of the optical component are required. 

Fig. 6: Estimation of the polarization parameters of a partially linearly polarized light wave as 
function of temperature: (a) S0, (b) S1, (c) S2, (d) polarization degree, (e) polarization angle

(e)



The presented solution deals only with the partially linearly polarized light. Therefore, the 
circular polarization component S3 is supposed to have a zero value that is a usual assumption in 
computer vision applications. We are currently investigating an other approach based on two 
branches measuring device in order to estimate the complete Stokes vector.
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