Patrick Terrier 
email: patrick.terrier@univ-lille1.fr
  
Jean Michel Charbois 
  
Vincent Devlaminck 
  
Robust estimation of Stokes parameters with a partial liquidcrystal polarimeter under thermal drift

-Introduction:

Polarization of light has been used, for a long time, as an important measurement tool for studying phenomena in astronomy, optics, crystallography… and more recently in computer vision. The main difference between these applications is the ability to control the light source illuminating the environment to be characterized. If lighting can be controlled, polarization is generally used to determine the Mueller matrix of the material on which the light wave was reflected. The estimated 4 by 4 Mueller matrix then brings information on observed medium [START_REF] Antonelli | Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data[END_REF][START_REF] Tyo | Design and optimization of partial Mueller matrix polarimeters[END_REF]. The corresponding optical device is usually called Mueller polarimeter.

Conversely, it is frequent to be unable to control lighting, in particular in the field of computer vision when outdoors scenes are observed. In this case it is no longer possible to obtain the Mueller matrix characterizing the material on which there was reflection. However a certain number of information can be obtained on the observed object from the estimate of the polarization state of reflected light wave. These information can be of physical [START_REF] Jones | Recognition of shiny dielectric objects by analyzing the polarization of reflected light[END_REF][START_REF] Wolff | Constraining object features using a polarization reflectance model[END_REF] or geometrical [START_REF] Wallace | Improving depth image acquisition using polarized light[END_REF] nature.

The state of polarization of the observed light wave can then be modeled, in the general case, by a four parameters Stokes vector S = [S 0 , S 1 , S 2 , S 3 ] T and the optical device allowing to obtain these information is usually called Stokes polarimeter. Most of these systems are based on a fixed linear polarizer and a rotating retarder. More efficient polarimetric systems use voltage-controled liquid-crystal devices (LCVR) instead of rotary elements [START_REF] Hofmann | Liquid crystal-based Stokes polarimeter[END_REF][START_REF] Peinado | Optimization and performance criteria of a Stokes polarimeter based on two variable retarders[END_REF]. When using polarimeter based on LCVRs, errors caused by moving parts, unavoidable when using mechanical rotation [START_REF] Ahmad | Error analysis for rotating active Stokes-Mueller imaging polarimeters[END_REF] (inertia with its acceleration and braketimes, misalignments of the signal on the detector,...) are eliminated. Precise rotation stages, stepper motors... are dispensable. However, the main well known disadvantage is that the retardation introduced by LCVR is temperature dependent.

In the field of computer vision, lighting is usually not controlled but may be assumed to be not polarized. A common assumption in computer vision applications [START_REF] Tyo | Review of passive imaging polarimetry for remote sensing applications[END_REF] states that circular polarization component S 3 of the reflected light vanished. Thus we will only focus in this paper on the evaluation of the first three components of the Stokes vector, i.e., those that represent the linear polarization.

In practice, estimation of S 0 , S 1 and S 2 requires at least three measurements of light intensity at the output of the device. However, the actual number of measurement may increase significantly in order to have robust estimates. These measurements are made for multiple rotation angles θ i of the retarder or phase retardations δ i of the LCVR. Guarantying the value of the tuning parameters θ i or δ i over time (errors caused by moving of retarder or temperature dependence of LCVR) is nevertheless difficult. When a quasi real-time estimation of polarization information is needed, the device based on LCVR components is a usual solution. With this device, the thermal drift is the major drawback that can be addressed in order to built a robust estimation of the polarization information. One solution is to hold constant the LCVR temperature by using a thermostated environment but this is not always possible (power consumption in remote sensing for instance). It was shown [START_REF] Bueno | Polarimetry using liquid-crystal variable retarders: theory and calibration[END_REF] that in this case it is necessary to calibrate the LCVR just before carrying out measurement and do this again approximately every ten minutes. So, in order to avoid these difficulties, this article proposes a method to measure the partially linearly polarized Stokes vector of the reflected light wave without knowing the values of the retardations δ i of a liquid-crystal imaging Stokes polarimeter. A robust and accurate solution to this question is described. It is based on self-calibration principle [START_REF] Terrier | Robust and accurate estimate of the orientation of partially polarized light from a camera sensor[END_REF][START_REF] Long | Self-calibration of a moving camera from point correspondances and fundamental matrices[END_REF]. Unlike methods previously exposed in the literature, our estimate of these polarization parameters is independent of the accurate knowledge of the polarimeter variable retardations values and does not require a calibration process at regular intervals [START_REF] Bueno | Polarimetry using liquid-crystal variable retarders: theory and calibration[END_REF].

This article is organized in 5 sections. In section 2, a description of the experimental set-up is presented. A parametric model of the LCVRs used in the device is determined in section 3. Some results are shown in section 4 and summary and some conclusions are presented in section 5.

-Materials and methods:

Figure 1 shows a schematic diagram of the proposed experimental device.

The partially linearly polarized light S reflected by the scene is observed through several optical components. Each of these components modifies the polarization state of the light according to the Mueller formalism. The Stokes vector corresponding to the polarization state of the wave at the output of each optical component is then obtained by multiplication of the Mueller matrix characterizing the component by the Stokes vector of the light wave at the input. The LCVRs's retardances δ 1 for LCVR1 and δ 2 for LCVR2. are the variable parameters of the proposed device (see Fig. 1). These parameters are controlled by the amplitude of a rectangular alternative voltage applied to the LCVR (meadowlark LRC-300 device) via a command interface board (National Instruments PCI-6713). Since δ value is only valid for a monochromatic light, a monochromatic filter is placed at the device input. The monochromatic filter used is centered over a wavelength λ 0 = 633 nm.
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The theoretical Mueller matrix M LCVR (δ) of the LCVR [START_REF] Collet | Polarized light: fundamentals and applications[END_REF] given by 2 2
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. The θ vr angle is the orientation of the LCVR's fast axis with respect to the horizontal reference Equation (1) transforms the input Stokes vector S of the observed partially linearly polarized light into the output Stokes vector S' according to

' 0 0 0 ' 2 2 1 1 2 1 1 ' 2 2 2 2 1 2 ' 1 2 3 ( cos ) ( (1 cos )) ' ( ) ( (1 cos )) ( cos ) 0 sin sin LCVR S S S S S c s S sc S S M S S S sc S s c S s S c S δ δ δ δ δ δ δ        ÷  ÷  ÷ + + -  ÷  ÷  ÷ = = =  ÷  ÷  ÷ - + +  ÷  ÷  ÷  ÷  ÷  ÷ -       (2) 
The Mueller matrix of a rotated linear polarizer is given [START_REF] Collet | Polarized light: fundamentals and applications[END_REF] by: 
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As we can see in Eq. ( 3), the fourth column of the Mueller matrix of a linear polarizer is null, and this is for any values θ of the principal axis rotation. The Stokes vector of the light wave at the polarizer output is thus independent of the fourth Stokes parameter at the input. So, in order to keep the fourth independent relation of Eq. (2) (S' 3 parameter), a second LCVR is required. It is placed between LCVR1 and the linear polarizers.

The Stokes vector S''' at the output of the polarizer is then given by Eq. (4). ''' ( ) ( ) ( , )
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A 12 bits CCD sensor (see Fig 1) measures the intensity I at the polarizer output that corresponds to the first parameter of the Stokes vector S'''.

If we make the assumption that the values of the LCVRs retardances δ 1 and δ 2 are accurately known (thermostated device), the input Stokes vector S is usually computed by the use of 4 measures (and then 4 different values of the couple of retardances (δ 1 ,δ 2 )) given by Eq. ( 5). 
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Where M gene is a 4x4 matrix formed by the first lines of M global (termed M global (1,..)) computed for the four couples of retardances (δ 1 ,δ 2 ) of the LCVRs.

In practice all the parameters of the device must be adjusted in order to obtain a well conditioned matrix M gene with a low condition number [START_REF] Compain | General and Self-Consistent Method for the Calibration of Polarization Modulators, Polarimeters, and Mueller-Matrix Ellipsometers[END_REF]. Therefore, in our experimental process these parameters are adjusted at θ vr1 =72,4°, θ vr2 =27,4° and θ=0°. The four optimal couples of retardances are (δ 11 ,δ 21 )=(135°,135°), (δ 12 ,δ 22 )=(135°,315°), (δ 13 ,δ 23 )=(315°,135°) and (δ 14 ,δ 24 )=(315°,315°). With these values the condition number of M gene is equal to √3 [START_REF] Martino | Optimized Mueller polarimeter with liquid crystals[END_REF].

3-An experimental parametric model of the LCVR:

The well known drawback of LCVR is that the retardation strongly depends on temperature Τ °.

Estimating the Stokes parameters by using the classical measuring device of Fig. 1 and considering the retardances δ 1 (for LCVR1) and δ 2 (for LCVR2) introduced by each LCVR as unknown parameters leads nevertheless to an underdetermined equations system whatever can be the number of acquisitions. We obtain N equations for N acquisitions (N different couples of retardance values (δ 1 ,δ 2 )) but N+3 unknowns (S 0 , S 1 , S 2 , (δ 1N , δ 2N )).

Furthermore the theoretical model given by Eq. ( 1) for LCVR Mueller matrix may be just regarded as an approximation [START_REF] Terrier | Fast axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid crystal variable retarders[END_REF]. So, instead of using this theoretical model M LCVR (δ) of the LCVR component into the derivation of matrix M gene , the use of an experimental parametric model is preferred.

Under this requirement, we measure, according to [START_REF] Martino | Optimized Mueller polarimeter with liquid crystals[END_REF], the Mueller matrix
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for the four driving voltage couples (V 1 ,V 2 ) that correspond to the four couples of retardance (δ 1 ,δ 2 )=(135°,135°), (135°,315°), (315°,135°). and (315°,315°) at T °=24°C. These couples of voltages are then respectively adjusted at (V 1 ,V 2 )=(2.21V,2.31V), (2.21V,1.38V), (1.39V,2.31V) and (1.39V,1.38V).

Experimental measurements of the mueller matrix M LCVR12 are made for different temperatures Τ ° and for each pixel. So we obtain 16 characteristic curves for each couples of voltages. Given the measurement noise, the Mueller matrices of the block are filtered to be physically admissible. We use filtering matrices algorithm proposed in reference [START_REF] Aiello | Maximum-likelihood estimation of Mueller matrices[END_REF].

For example, Fig. 2 shows, the coefficients of the Mueller matrix M LCVR12 versus the temperature T ° measured for an arbitrary chosen pixel and for a driving voltage couple adjusted to (1.39V, 1.38V). As we can see several coefficients (a 2,2 , a 2,3 , a 2,4 , a 3,2 ,...) evolve noticeably versus temperature. These measurements confirm that the theoretical matrix M LCVR (Eq. 1) is just an approximation of the actual behavior of LCVR.

In order to use a more precise LCVR parametric model than Eq. ( 1), a polynomial interpolation is therefore applied for each pixel of the image and for each M LCVR12 coefficient and each couple of driving voltage (V 1 ,V 2 ). A parametric model a i,j =AT 2 +BT+C (whereT is the temperature in °Celsius) is then obtained for the sixteen entries of M LCVR12 . We find for example the equations given by Eq. ( 6) for a i,j coefficients: 
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With this parameterization, we obtain a non linear system given by Eq. ( 7):
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It is important to notice that under this parametric modelization of M LCVR12 , N measures (N different couples of driving voltages) give N equations (measured intensities) but only 4 unknowns (S 0 , S 1 , S 2 , Τ). The problem is now well defined and can be solved for each pixel of the image by using a classical non linear optimization algorithm. We use a Levenberg-Marquardt least squares algorithm [START_REF] Cheney | Numerical Mathematics and Computing[END_REF] implemented with MATLAB ® to solve the non linear system of Eq. [START_REF] Peinado | Optimization and performance criteria of a Stokes polarimeter based on two variable retarders[END_REF]. Results are reported in the following paragraph. These results are obtained for four couples of driving voltage (V 1 ,V 2 )=(2.21V,2.31V), (2.21V,1.38V), (1.39V,2.31V) and (1.39V,1.38V).

-Experimental results:

One of the main advantages of the proposed measurement approach is that the optimal M LCVR12 parametric model is evaluated independently for each pixel, no temperature sensor or thermal control is required. Assuming a homogeneous temperature distribution over the LCVR is thus absolutely not necessary.

Fig. 3 shows the estimation of the Stokes parameters S 0 , S 1 , S 2 and temperature T versus temperature fluctuation, for an arbitrary 10 by 10 set of chosen pixels. The observed light is the output of a linear polarizer oriented at 0°. The normalized Stokes vector to estimated is S = [1, 1, 0, 0] T . This vector simulates for example the polarization state of an unpolarized light reflected by a dielectric surface at the Brewster angle (polarization degree equal to 1).

For each temperature we use a statistical representation of the results compute for the 10 by 10 set of pixels for wich the Stokes parameters are assumed to be equal. On each box, the central mark is the median and the edges of the box are the 25th and 75th percentiles.

The dotted curves correspond to the estimation of Stokes parameters by conventional polarimeter [START_REF] Goudail | Target detection with a liquid crystal-based passive Stokes polarimeter[END_REF] where the LCVRs mueller matrices are assumed to be temperature independent for four couples of retardance. These parameters are adjusted respectively to (δ 1 ,δ 2 )=(135°,135°), (135°,315°), (315°,135°). and (315°,315°) at T °=24°C. The solid curves show the estimation by the proposed approach. In order to reduce noise effect each intensity I of Eq. ( 7) is obtained by averaging 32 frames grabbing.

As we can see, estimation of the Stokes vector is robust with the proposed approach under thermal drift. The estimated Stokes parameters are still constant when the temperature drifts. We can see that the result of the estimation of these parameters, using the proposed measuring approach, is independent of temperature.

The second experimentation is shown in Fig. 6. It corresponds to the estimation of a partially linearly polarized light. This light is obtained by the reflection of an unpolarized light reflected by a glass (refractive index equal 1.5) oriented at 25° with an observation angle at 45°. Under this experimental condition, the theoretical linear polarization degree is 0.83. As we can see Fig. 6(d) the proposed measuring device estimates this parameter equal to 0.8 and this estimation is not affected by temperature contrary to the estimation using the conventional polarimeter approach. The polarization angle Fig. 6(e) is also more robust versus temperature as compared to conventional polarimeter and is close to the surface orientation. 

5-Discussion and summary

Using LCVR components when designing a polarimeter allows to estimate polarization information in quasi real-time. However the main well known disadvantage is that the retardation introduced by LCVR depends on temperature. So it is recommended to calibrate the device every ten minutes or to use a thermostated environment.

In the presented work we experimentally model the 16 LCVR coefficients as functions of the temperature and derive a parametric model in order to characterize the behavior of the two LCVRs under thermal drift.

We proposed a new approach where the estimation of the observed Stokes vector is independent of the thermal drift. The classical solution needs to recalibrate the device during time of use or to control temperature. These drawbacks disappear with the proposed approach. An offline calibration of the LCVRs is only required. Sixteen characteristic curves are obtained from this calibration process for each LCVRs couple of driving voltage. So if N couples of voltages are used, then 16N characteristic curves are needed. During the online measurement process, the operating point of the LCVRs and the Stokes vector are jointly estimated.

In the case of an imaging polarimeter, the estimations of the operating point and Stokes parameters are achieved independently for each pixel of the image. So no temperature sensor and thermal homogeneity of the optical component are required. 
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 6 Fig. 6: Estimation of the polarization parameters of a partially linearly polarized light wave as function of temperature: (a) S 0 , (b) S 1 , (c) S 2 , (d) polarization degree, (e) polarization angle

  

  

The presented solution deals only with the partially linearly polarized light. Therefore, the circular polarization component S3 is supposed to have a zero value that is a usual assumption in computer vision applications. We are currently investigating an other approach based on two branches measuring device in order to estimate the complete Stokes vector.