
HAL Id: hal-01071784
https://hal.science/hal-01071784

Submitted on 8 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large scale statistical analysis of GEO datasets
Bernard Ycart, Konstantina Charmpi, Sophie Rousseaux, Jean-Jacques

Fournié

To cite this version:
Bernard Ycart, Konstantina Charmpi, Sophie Rousseaux, Jean-Jacques Fournié. Large scale statistical
analysis of GEO datasets. Gene Technology, 2014, 4 (1), pp.113:1-9. �10.4172/2329-6682.1000113�.
�hal-01071784�

https://hal.science/hal-01071784
https://hal.archives-ouvertes.fr


Large scale statistical analysis of GEO datasets

Bernard Ycart∗1,2,3 , Konstantina Charmpi1,2,3, Sophie Rousseaux1,4, Jean-Jacques Fournié3,5,6,7

1 Université Grenoble Alpes, France
2 Laboratoire Jean Kuntzmann, CNRS UMR5224, Grenoble, France
3 Laboratoire d’Excellence TOUCAN, France
4 INSERM, UMR823, Institut Albert Bonniot, Grenoble, France
5 INSERM UMR1037-Cancer Research Center of Toulouse, Toulouse, France
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Abstract

The problem addressed here is that of simultaneous treatment of several gene expression datasets, possibly

collected under different experimental conditions and/or platforms. Using robust statistics, a large scale statistical

analysis has been conducted over 20 datasets downloaded from the Gene Expression Omnibus repository. The

differences between datasets are compared to the variability inside a given dataset. Evidence that meaningful

biological information can be extracted by merging different sources is provided.

Background

Many genomewide expression datasets have been published during the past ten years. Repositories, such

as the Gene Expression Omnibus (GEO) database [1], have made available an impressive wealth of data.

Using them as a whole, instead of restricting statistical studies to one particular dataset, is tantalizing. Two

recently published R/Bioconductor packages [2, 3] provide various tools for merging datasets coming from

different studies. However, a serious doubt has been cast by Haibe-Kains et al. [4], after comparing two large

scale pharmacogenomic studies: whereas both studies had a good overall correlation, important discordances

could be observed. Thus, the following crucial question remains to be answered: is it statistically legitimate

to merge datasets coming from different studies? An attempt at answering this question is reported here.

Merging different datasets, requires prior checking that the information they contain is compatible,

and hence that detected differences between gene expressions under different conditions are not artifacts,

due to experimental or data processing methods. An obvious obstacle to simultaneous treatment is that

expression data collected under different experimental conditions and/or platforms usually have incompatible
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distributions, which differ sometimes by several orders of magnitude [5,6]. A solution is provided by robust (or

distribution-free) statistics [7,8]. Robust methods amount to replacing actual values by ranks, or equivalently

by empirical distribution functions or van der Waerden’s normal scores [7, p. 309]. This idea has already

been applied to expression data in several papers, including [9–11]. However, to the best of our knowledge, a

large scale analysis assessing the reproducibility of information from one dataset to another, is still missing.

We have conducted such an analysis over 20 GEO datasets, totalling 17 745 genomewide expression samples.

For the data treatments presented here, the statistical language R [12] has been used. Our set of functions,

together with a manual, has been made available online as supplementary information. Throughout the

article, we consider data matrices (also called assay data in [13]) as containing expression data relative to

a set of genes. Each row corresponds to a different gene symbol, or feature, each column to a different

data vector or sample (see Table 2 in [1]). Such a matrix is deduced from raw datasets, available on the

GEO repository, though standard treatments: annotation and reduction [14]. Several R packages [15, 16]

that perform these operations and output data matrices such as considered here, are available. We have

encoded our own functions. We have chosen a data structure in which each data matrix is paired with its

information matrix. The columns of the information matrix are labelled by the same numbers as the paired

data matrix. Its rows contain the different information fields of the data. Our focus here is on overexpression

or underexpression of genes, in different tissues or cancer types.

Our objective was twofold. On the one hand, we wanted to check whether the information on genes,

contained in different data matrices, was compatible, and to which extent. This was done on a set of 20

different matrices. Various statistical treatments were performed. The first one consisted in computing

correlations between median columns of the matrices. Vectors of pairwise correlations between rows were

also compared. Then multivariate analysis over assays of gene symbols was applied: Wilcoxon and Kruskal-

Wallis tests, factor and principal component analysis (PCA). The results were compared to those obtained

by sorting a single matrix according to different keywords. All comparisons showed not perfect, but highly

significant correlations. However, it was also found that in all cases, a sizeable proportion of symbols were

good discriminators of the different matrices. But this was also found to hold between two submatrices

inside a given dataset. Therefore, it cannot be regarded as an obstacle to merging different datasets. On the

other hand, we wanted to know whether biological information could be consistently retrieved from matrices

collated from different sources. Two merged sets of matrices were made. The first one came from general

cancer cell datasets, from which samples of breast and lung tumors were extracted. The second one was

made of blood RNA datasets, coming from healthy individuals, or from leukemias. In both cases, evidence

that already known biological information could be extracted from merged matrices was found.

Methods

The datasets available from the GEO repository [1], collate sets of expression vectors, or samples. Several

R/Bioconductor packages can be used to download and format the data [15,16]. We have chosen to encode

in R our own functions. Our R script has been made available online, together with a user manual. Our

formatting choices are described below.

In a GEO dataset two types of information are available for each sample. The first type consists of

numeric values corresponding to a set of probes. The second type are character-type informations on the
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experimental setting. We have chosen to separate the two types into data matrices and information matrices.

In the data matrix, probes are associated to gene symbols with the use of different Bioconductor annotation

packages according to the platform [17–20]. After annotation, some symbols are duplicated. Several methods

can be used to eliminate duplicates. We have chosen to keep the row with the largest interquartile range, as

in [14], because we believe that this is the most statistically coherent choice. After annotation and reduction,

the data matrix, with gene symbols as row names, and series numbers as column names, is saved as a single

R object for future use. The information matrix has the same column names as the corresponding data

matrix. Its rows correspond to the different fields.

Our merging function reduces data matrices to common row names. For information matrices, differ-

ent sets of data usually have different information fields. This was taken into account when merging two

information matrices, by indexing the rows of the merged matrix by the union of row names in the initial

information matrices.

Two R/Bioconductor packages have recently been issued for merging GEO datasets [2, 3]. In [2], quan-

tile discretization, normal discretization normalization, gene quantile normalization, median rank scores,

quantile normalization (QN) are proposed. In [2,3], the Batch Mean-Centering method, Distance-Weighted

Discrimination, Z-score standardization, and the Cross-Platform Normalization method are proposed. An

Empirical Bayes (EB) method is available in both packages. For the results reported here, only classical

methods were used, and we consider them as sufficient to establish our main points, our focus being on

overexpression or underexpression of genes, in different tissues or cancer types.

As in [9–11], we have made the choice to use robust statistics [7, 8]. This implies changing the columns

of a data matrix into distribution free values. The usually proposed transformation replaces the i-th value

xi by its rank Ri if xi is the Ri-th smallest value in the column. However, ranks range between 1 and the

number of rows. The problem is that different matrices may have different numbers of rows (gene symbols).

In order to get a unique range of values for all matrices, it seems preferable to use a scale free score. The

simplest such score is the Empirical Cumulative Distribution Function (ECDF): its value at xi is Ri/n, if n

is the number of rows. Graphical displays look more familiar if another score is used: the van der Waerden’s

normal score [7, p. 309]. It consist of replacing xi by φ(Ri/(n+ 1)), where φ is the quantile function of the

standard normal distribution. With the ECDF, the distribution of each column becomes uniform on the

interval [0, 1], whereas with the normal score it becomes standard normal. Results reported above have been

obtained with the normal score, but they are not essentially different if the ECDF is used instead.

In statistical inference, the choice of robust statistics must be made coherent. This is the reason why we

have replaced the usual normal-sample techniques by their robust equivalent, and used medians instead of

means, Spearman’s correlation instead of Pearson’s [7, p. 422-431], Wilcoxon (or Mann-Whitney) location

test instead of Student’s t-test [7, p. 268-278], Kruskal-Wallis test instead of one-way analysis of variance [7,

p. 363-372]. When comparing several matrices to detect location diffferences, the Kruskal-Wallis test was run

over all common rows. When differentiating overexpression from underexpression, a one-sided Wilcoxon test

was run. The same test being used for a large number of features, a False Detection Rate (FDR) correction

of p-values by the Benjamini-Yekutieli method [21] was systematically applied. Features were ranked from

most to least significant, either by sorting p-values in increasing order, or by sorting the values of the test

statistic instead. We considered as significant, any feature with a (FDR-corrected) p-value smaller than 5%.

Once a set of (significant) features had been selected, the corresponding rows were concatenated into single
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vectors. These vectors were taken as variables, and the samples as individuals, for a PCA. Figures 3 to 5

were obtained by projecting the samples as points onto the first principal plane, and differentiating their

initial data matrices by colors. Precise R commands can be found in the user manual made available online.

Results

The 20 datasets that were downloaded from the GEO repository are detailed in Table 1. They were selected

on a criterion of size (number of samples: 500 or more). The 20 matrices together amount to 17 745 samples.

To each study, a three-letter acronym was attached; these acronyms will be used in what follows.

acronym reference series number platform number symbols (rows) samples (columns)
EPO [22] 2109 570 20 184 2158
PMM [23] 2658 570 20 184 559
AML [24] 6891 570 20 184 537
HBI [25] 7307 570 20 184 677
MIL [26] 13159 570 20 184 2 096
MDS [27] 15061 570 20 184 870
PLE [28] 20142 6947 19 626 1 240
MMD [29] 24080 570 20 184 559
DLB [30] 31312 570 20 184 498
PRS [31] 33828 10558 20 768 881
CCL [32] 36133 15308 18 722 917
BEC [33] 36192 6947 19 628 911
WBS [34] 36382 6947 19 628 991
GSC [35] 36809 570 18 260 812
MBI [36] 37069 570 18 260 590
CCC [37] 39582 570 20 184 566
PVA [38] 48152 6947 19 628 705
HPS [39] 48348 6947 19 628 734
XMD [40] 48433 570 20 184 823
HAV [41] 48762 6947 19 628 621

Table 1: Twenty GEO series have been chosen, coming from four different platforms. To each of them a three
letters acronym was associated. The table gives the acronym, a recent reference, the GEO series number,
the platform number. For the data matrix (or assayData), the number of symbols after annotation and
reduction, and the number of columns (samples) are given. All 20 data matrices had 15 562 gene symbols in
common.

In the results reported here, each data matrix has been transformed by replacing its column values, by

the corresponding van der Waerden normal scores [7, p. 309]. Similar results were obtained when replacing

column values by their empirical distribution function (see methods section).

The first treatment that was applied consisted in computing, for each dataset, the median of all rows,

reduced to the 15 562 common gene symbols. This gave 20 vectors of length 15 562, the correlation matrix

of which is given in Table 2. A positive (negative) correlation between vectors of size 15 562 is significant at

threshold 5% if it is larger than 0.013 (smaller than −0.013); thus all correlations of Table 2 can be regarded

as significant.

Figure 1 shows a factor analysis of the 20 variables. Fifteen of them can be clustered into four groups.
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EPO PMM AML HBI MIL MDS PLE MMD DLB PRS

EPO 1.00 0.80 0.71 0.92 0.63 0.82 0.55 0.48 0.59 0.18

PMM 0.80 1.00 0.75 0.79 0.63 0.81 0.56 0.63 0.55 0.19

AML 0.71 0.75 1.00 0.68 0.76 0.85 0.61 0.58 0.59 0.18

HBI 0.92 0.79 0.68 1.00 0.58 0.76 0.53 0.46 0.53 0.18

MIL 0.63 0.63 0.76 0.58 1.00 0.78 0.58 0.67 0.61 0.14

MDS 0.82 0.81 0.85 0.76 0.78 1.00 0.69 0.52 0.60 0.18

PLE 0.55 0.56 0.61 0.53 0.58 0.69 1.00 0.40 0.45 0.22

MMD 0.48 0.63 0.58 0.46 0.67 0.52 0.40 1.00 0.50 0.11

DLB 0.59 0.55 0.59 0.53 0.61 0.60 0.45 0.50 1.00 0.12

PRS 0.18 0.19 0.18 0.18 0.14 0.18 0.22 0.11 0.12 1.00

CCL 0.81 0.74 0.69 0.75 0.65 0.77 0.55 0.54 0.56 0.20

BEC 0.56 0.49 0.43 0.65 0.38 0.48 0.63 0.32 0.35 0.21

WBS 0.57 0.58 0.62 0.54 0.58 0.70 0.94 0.40 0.46 0.23

GSC 0.59 0.61 0.69 0.57 0.63 0.74 0.66 0.46 0.49 0.15

MBI 0.60 0.63 0.70 0.58 0.65 0.75 0.64 0.48 0.50 0.15

CCC 0.77 0.62 0.64 0.67 0.59 0.67 0.50 0.49 0.53 0.15

PVA −0.09 −0.10 −0.13 −0.09 −0.14 −0.16 −0.30 −0.09 −0.09 0.16

HPS 0.62 0.62 0.66 0.58 0.62 0.74 0.93 0.43 0.49 0.24

XMD 0.90 0.81 0.72 0.84 0.65 0.83 0.56 0.51 0.56 0.19

HAV 0.60 0.60 0.64 0.56 0.61 0.73 0.89 0.42 0.48 0.21

CCL BEC WBS GSC MBI CCC PVA HPS XMD HAV

EPO 0.81 0.56 0.57 0.59 0.60 0.77 −0.09 0.62 0.90 0.60

PMM 0.74 0.49 0.58 0.61 0.63 0.62 −0.10 0.62 0.81 0.60

AML 0.69 0.43 0.62 0.69 0.70 0.64 −0.13 0.66 0.72 0.64

HBI 0.75 0.65 0.54 0.57 0.58 0.67 −0.09 0.58 0.84 0.56

MIL 0.65 0.38 0.58 0.63 0.65 0.59 −0.14 0.62 0.65 0.61

MDS 0.77 0.48 0.70 0.74 0.75 0.67 −0.16 0.74 0.83 0.73

PLE 0.55 0.63 0.94 0.66 0.64 0.50 −0.30 0.93 0.56 0.89

MMD 0.54 0.32 0.40 0.46 0.48 0.49 −0.09 0.43 0.51 0.42

DLB 0.56 0.35 0.46 0.49 0.50 0.53 −0.09 0.49 0.56 0.48

PRS 0.20 0.21 0.23 0.15 0.15 0.15 0.16 0.24 0.19 0.21

CCL 1.00 0.56 0.56 0.56 0.59 0.74 −0.08 0.61 0.92 0.60

BEC 0.56 1.00 0.64 0.37 0.37 0.45 −0.13 0.65 0.57 0.59

WBS 0.56 0.64 1.00 0.64 0.63 0.49 −0.29 0.95 0.57 0.88

GSC 0.56 0.37 0.64 1.00 0.94 0.61 −0.19 0.66 0.57 0.64

MBI 0.59 0.37 0.63 0.94 1.00 0.62 −0.17 0.66 0.59 0.64

CCC 0.74 0.45 0.49 0.61 0.62 1.00 −0.09 0.53 0.75 0.51

PVA −0.08 −0.13 −0.29 −0.19 −0.17 −0.09 1.00 −0.27 −0.08 −0.26

HPS 0.61 0.65 0.95 0.66 0.66 0.53 −0.27 1.00 0.62 0.90

XMD 0.92 0.57 0.57 0.57 0.59 0.75 −0.08 0.62 1.00 0.60

HAV 0.60 0.59 0.88 0.64 0.64 0.51 −0.26 0.90 0.60 1.00

Table 2: For each of the 20 data matrices of Table 1, the median column value of each gene symbol was
computed. This gave 20 vectors with length 15 562 (number of common symbols). The table gives pairwise
correlations between the 20 vectors.

• PMM, EPO, XMD, HBI, CCL, CCC. Among these six datasets, four are generalist studies involving

different tissues and conditions (EPO, HBI, XMD, CCL); CCC concerns colon cancer, and PMM

multiple myelomas. Observe that CCL, which was obtained under a platform different from the five

others, has excellent correlations with them (between 0.74 and 0.92).

• WBS, PLE, HPS, HAV. All four correspond to blood RNA samples from healthy patients.

• MIL, AML, MDS. All three correspond to leukemias.

• GSC, MBI. These two matrices correspond to similar tissues (blood samples), and similar conditions

(critical injuries and burn injuries). Moreover, they were produced on the same platform, by the same
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Figure 1: Factor analysis of median columns for 20 datasets. The 20 variables are projected onto the first
principal plane of the PCA. Four clusters are identified.

organization. Their excellent correlation (0.94) is not a surprise.

Three datasets, BEC, DLB, MMD have relatively good correlations with those of the above four groups

(around 0.5), but no particular links with those groups, nor between themselves. The relative surprise comes

from the weak correlations of PRS, and the negative correlations of PVA. Both come from blood RNA

samples, and they could have been expected to be close to the WBS, PLE, HPS, HAV group. That PRS

and PVA are far from any other matrix, can be explained by their inner heterogeneity. It is illustrated for

PVA on Figure 2, where the values over features ALPP and CA4 are represented: samples separate into 4

clusters, according to over- or underexpression of the two genes. As an example, if PVA is split into samples

for which the value of ALPP is positive (overexpression), or negative (underexpression), and the row medians

are calculated over the two submatrices as before, a correlation of −0.69 is found: thus one half of PVA has

a strong negative correlation with the other half. Similar results are obtained for many other features. We

considered that the heterogeneity of PVA and PRS did not qualify them for merging.

For each matrix, we also computed all possible pairwise row correlations: 20 vectors of more than 121

millions of pair-correlations were obtained: this is the technique used to evaluate genes for cross-platform

consistency of expression patterns in [42]. As expected, the correlation matrix had smaller values than that of

Table 2. For instance, the correlation of CCL with XMD was 0.53 instead of 0.92, but still highly significant

because of the large number of values.

Correlations between column medians or pair-correlations, is too crude a criterion to judge the homo-
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Figure 2: Values of PVA on CA4 versus ALPP. Samples separate into 4 clusters, according to over- or
underexpression of the two genes.

geneity of two datasets. As an example, GSC and MBI have an excellent median correlation of 0.94, and

several good reasons to be similar. Yet, when each feature is tested for significant differences by the Kruskal-

Wallis test, 14 800 significant features out of 18 260 are detected (see methods section for details). The same

occurred for any pair of datasets: the distributions of rows had significantly different location parameters,

for a majority of features. This means that, for a majority of genes, the ranks of their expressions in the

first dataset are significantly smaller or larger than in the second.

Since discrepancies appear to be observed between any two datasets, it must be decided whether they are

due to actual biological information, or to a statistical artifact, induced by the experimental setting or the

platform. For this, we focused on the dataset MIL (GSE13159 [26]), that has 2 096 samples. The samples

were sorted into six submatrices, according to six keywords: Healthy (74 samples), ALL (acute lymphoblastic

leukemia, 750 samples), AML (acute myeloid leukemia, 542 samples), CLL (chronic lymphocytic leukemia,

448 samples), CML (chronic myelogenous leukemia, 750 samples), MDS (myelodysplastic syndrome, 202

samples). Then the same treatments as before were applied. Firstly the six median columns were computed,

and their correlation matrix was obtained (Table 3).

The values are between 0.85 and 0.99, which is in the range of the best correlations of Table 2. As a control,

we made a partition of the same matrix into 6 random subsets, with the same numbers of samples as above,

and computed the correlation matrix in the same way. On the control random partition, all correlations

were above 0.997. This proves that the partition into keywords does contain meaningful differences. Indeed,
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Healthy ALL AML CLL CML MDS
Healthy 1.00 0.92 0.96 0.86 0.98 0.99
ALL 0.92 1.00 0.95 0.91 0.90 0.91
AML 0.96 0.95 1.00 0.89 0.96 0.97
CLL 0.86 0.91 0.89 1.00 0.84 0.85
CML 0.98 0.90 0.96 0.84 1.00 0.98
MDS 0.99 0.91 0.97 0.85 0.98 1.00

Table 3: The data matrix MIL was partitioned according to the 6 keywords Healthy, ALL, AML, CLL,
CML, MDS. For each of the six submatrices, the median column of each feature was computed. This gave
6 vectors with length 20 184 (number of symbols in MIL). The table gives the correlations of the 6 vectors.

these differences were detected by the Kruskal-Wallis test: out of the 20 184 features, 18 301 were found

significant. Twenty-two features had Kruskal-Wallis p-value below 10−300: SOX4, SYNGR2, ERLIN1, FAH,

C7orf23, PSMA6, RTN3, UHRF1, ADAM28, BLK, FUCA2, CD79A, ADA, MYL6B, HEBP1, LEF1-AS1,

LEF1, AFF3, COL9A2, MICALL2, MPO, PPM1K. A PCA of the corresponding rows of MIL was run, and

the samples projected as points onto the first principal plane, differentiating submatrices by colors (Figure

3). The two submatrices ALL (blue points) and CLL (brown points) are clearly separated from the rest.

Differences inside a given dataset can be induced by several factors. Two factors may not induce differ-

ences of the same order of magnitude. However, there is no statistical reason why a dataset like MIL should

not be used as a whole, and many ways to verify that the observed differences correspond to actual biological

information. Here is an example. Stirewalt et al. [43] list a group of 7 genes displaying increased expression in

acute myeloid leukemia samples: BIK, CCNA1, FUT4, IL3RA, HOMER3, JAG1, WT1. When a one-sided

Wilcoxon test is applied to the submatrix AML versus the rest of MIL, those 7 genes are among the most

significant: their p-values range between 6.7 × 10−130 and 4.3 × 10−42. The most significant, HOMER3,

ranks 54-th among the 20 184 features of MIL.

If observed differences between two datasets (like GSC and MBI) are of the same order of magnitude as

differences inside a given dataset, such as caused by a significant factor (see figure 3), it can be admitted as

statistically legitimate to merge the two datasets. That meaningful information can be obtained from the

merging, remains to be proved. In the following experiments, matrices to be merged were selected in the

clusters detected by factor analysis (Figure 1).

Our first experiment consisted in extracting samples corresponding to breast and lung tumors, from the

three matrices CCL, EPO, and XMD. CCL has 56 samples of breast tumors, and 166 of lung tumors, EPO

has 367 and 143, XMD has 32 and 152. Two matrices “Breast” and “Lung” were made by merging the six

submatrices three by three, according to tissues. They had 18 466 features in common, by 455 samples for

Breast, and 461 for Lung.

The Kruskal-Wallis test was run on the six separated submatrices, then on the two matrices Breast

and Lung. The ten most significant symbols were extracted, and a PCA was run as before. The results

are displayed on Figure 4. Significant symbols when the 6 matrices are separated (left panel) are different

from significant symbols separating Breast and Lung (right panel). On the left panel, it is clear that the

information on the dataset (CCL, EPO, or XMD) dominates the separation Breast vs. Lung: samples

coming from CCL are on the left, from EPO on the right, from CCL in the middle. But on the right panel,
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Figure 3: Dataset MIL, partitioned into 6 submatrices according to keywords Healthy, ALL, AML, CLL,
CML, MDS. PCA of the 22 symbols with Kruskal-Wallis p-value under 10−300: SOX4, SYNGR2, ER-
LIN1, FAH, C7orf23, PSMA6, RTN3, UHRF1, ADAM28, BLK, FUCA2, CD79A, ADA, MYL6B, HEBP1,
LEF1-AS1, LEF1, AFF3, COL9A2, MICALL2, MPO, PPM1K. Samples are represented by points, with six
different colors.

the two types of tumors are also clearly separated. Separators include GATA3 on the right side (Breast),

IGF2BP3 on the left side (Lung). Two articles, among others, show the importance of GATA3 for breast

cancer [44, 45]. In [46], the link of IGF2BP3 to lung cancer is explicitly stated.

Further information was obtained by running a one-sided Wilcoxon test to detect symbols separating

both types of tumor. Then the Molecular Signature database C2 [47] was searched for symbols matching

them. Among the 20 genes found most significantly overexpressed in breast tumors by our test, 11 were

inside genesets of C2 relative to breast cancers, and outside all genesets relative to lung tumors: EFHD1,

IRX5, MUCL1, PRLR, PTGER3, RGL2, TRIL, TRPS1, VAV3, WWP1, ZG16B. Seven of these genes can

be found in the G2SBC database [48] and for 10 out of 11, we have found at least one reference relating

it to breast cancer. Conversely, among the most significant genes for lung tumor, the following were found

in C2 genesets related to lung and not in those related to breast: ALDH3B1, DARS, PRPSAP2, FAM96B,

MBIP, LRRC20. The overexpression of ALDH3B1 in lung tumors has been reported in [49]. Santarius et

al. [50] gives lists of genes, the overexpression of which is associated to different types of human cancers.

The genes detected as significantly overexpressed in Breast by our test, that were also among class III genes

related to breast cancer in Table 1 of [50], were FGFR1, BAG4, MDM2, YWHAB, ZNF217. For Lung, they

were EGFR, MET, YWHAZ, MYC, NKX2-1, DCUN1D1. These findings would require further confirmation
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Figure 4: Principal component analysis of two assays of 10 symbols in 6 submatrices, extracted from CCL,
EPO, and XMD according to keywords “Breast” and “Lung”. The six submatrices are separated on the
right panel, they have been merged on the right panel. In each case the 10 most significant features for the
Kruskal-Wallis test are taken as variables. The two sets of 10 symbols are disjoint. Samples are represented
by red points (Breast) or blue points (Lung).

over larger datasets. Yet they provide evidence that meaningful biological information can be extracted by

merging generalist matrices such as CCL, EPO and XMD.

Our next experiment consisted in merging the two groups of blood RNA datasets, found to be homoge-

neous on the correlation analysis (Figure 1): HAV, HPS, PLE, WBS for healthy individuals, AML, MDS,

for leukemias. The samples of MIL were separated into MILh (Healthy), and MILl (leukemias). The left

panel of Figure 3 shows the first plane of the PCA for the same 22 features as in Figure 2, the 8 matrices

being represented by different colors. It turns out that the samples corresponding to MILh are mixed on

the representation with the other MIL points. Thus they were removed from the matrix “Healthy”, whereas

“Leukemia” was made by merging AML, MDS, and MILl. The Kruskal-Wallis test between Healthy and

Leukemia, detected 16 977 significant features out of 17 691, among which 7 970 had a null p-value. The

right panel of Figure 5 shows the PCA over 10 of them.

The one-sided Wilcoxon test was run to detect which symbols were significantly overexpressed in

leukemias. For that test, a set of 4 191 symbols had a null p-value. A second set of symbol was extracted from

C2: those appearing in leukemia-related genesets. The C2 set has 5 688 symbols, and the intersection with

the first contains 1 617, which is highly significant for Fisher’s hypergeometric test (P = 1.36× 10−51). The

ten symbols found most significant for leukemia by the Wilcoxon test were RPL34, GABARAP, RPL36A,

H2AFV, CSDE1, DNTTIP2, OPHN1, PABPC3, PNRC1, RPSA. Among those 10, 8 appeared in the

leukemia-related genesets of C2. The symbol H2AFV is found in six of them. Another noteworthy re-

sult concerns the pair of genes NUP98-TOP1, shown to be related with leukemia in [51]. When genes are
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Figure 5: On the left panel, PCA of HAV, HPS, PLE, WBS, MILh (Healthy = red points), and AML, MDS,
MILl (Leukemia = blue points), for the same 22 features as in Figure 2. On the right panel, HAV, HPS, ML,
WBS, have been grouped into Healthy, AML, MDS, MILl into Leukemia. The assay is made of 10 random
features among the 7 970 having a null Kruskal-Wallis p-value.

ranked by decreasing order of significance, NUP98 and TOP1 have ranks 187 and 65 respectively, which

confirms their link with leukemia.

Another experiment was run on the same matrices, by separating acute myeloid leukemia samples, from

all other samples. Thus the same calculations that had been run inside MIL before, were repeated over

a larger number of samples. The acute myeloid leukemia samples were taken from AML and MIL (1 076

samples), others were obtained by merging HAV, HPS, PLE, WBS, MDS, with the non-AML samples of

MIL (6 010 samples). The one-sided Wilcoxon test of comparison was run. For the 7 genes signaled as

overexpressed in AML by [43], the results were much more significant as before: the least significant p-

value was that of BIK: 8.4 × 10−35, whereas FUT4 and HOMER3 had p-values below machine precision.

Contrarily to the study that had been conducted inside MIL, a clear confirmation was also obtained for the

genes reported by [43] to be underexpressed in case of AML. Five of them were in the common features of

our matrices, four had p-values smaller than 10−100 for underexpression in AML. In particular, PELO and

PLXNC1 who had not been found significantly underexpressed in the first experiment, now had p-values

3.5× 10−238 and 4.4× 10−168 in the test on merged matrices.

Discussion

A new set of R functions has been developed. Like other packages [15,16], it performs the usual formatting

operations. It also offers new functionalities for sorting lists of datasets according to information keywords.

Various robust statistics techniques are encoded. The script and a user manual have been made available

online. Using these R functions, a large scale study of 20 GEO datasets, totalling 17 745 samples, has been
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conducted.

Our first conclusion is that Haibe-Kains et al. [4] were right in observing that inconsistencies between

datasets make it dangerous to merge them without precautions. The risk is to declare as biologically

significant, observations which are actually statistical artifacts. The first precaution is to transform the data

into distribution-free values, i.e. to use robust statistics. This implies replacing the data of each sample

by their empirical distribution function, or some other distribution-free score [7, 8]. Even after data have

been homogenized, important discrepancies remain. For this reason, checking comparability between studies

before merging them is imperative. One possible measure of similarity (among others, see for instance [42]) for

two datasets is the correlation between medians, which has been used here. Two sets of samples corresponding

to different conditions inside one given homogeneous dataset usually have correlations of medians above 0.8

(see Table 3). Arguably, it can be considered that two different datasets can safely be merged, if all paired-

correlations between medians are above 0.8. This is not always the case, even between datasets coming

from the same tissues, obtained under the same platform (see Table 2). Further ways of investigating

possible discrepancies involve multivariate statistics. Graphical methods include Factor Analysis, Principal

Component Analysis, Discriminant Analysis [52]. Inference can be done using the robust equivalents of usual

normal-sample methods, i.e. Wilcoxon test instead of Student’s t-test, Kruskal-Wallis instead of one-way

anova, etc. When repeatedly applying such a test to a set of symbols, a False Detection Rate (FDR) correction

must be applied to the p-values. We have chosen the Benjamini-Yekutieli method [21]. Our observation was

that, even after FDR correction, the tests usually detect a sizeable proportion of all symbols as significant

for discrimination, either between several different datasets, or between different types of samples within the

same dataset. We believe that relevant biological information can be obtained from applying a discriminating

test, then ranking features according to their degree of significance, i.e. ordering the values obtained over

each feature by the test statistic. In the cases considered here (breast tumors against lung tumors, healthy

blood samples against leukemias, acute myeloid leukemia against other blood RNA samples), it was observed

that among the most significant symbols, a large proportion of them were already known as being related

to the corresponding cancers. This can be viewed as evidence that meaningful biological information can be

extracted by merging different datasets. We believe that important new findings could be obtained by the

same method, being aware that a statistical listing of significant symbols does not necessarily imply that all

listed symbols correspond to true biological information. Such a list must necessarily be expert-curated for

biochemical validation.
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Additional material has been provided as a compressed directory available online:

http://ljk.imag.fr/membres/Bernard.Ycart/publis/sagd.tgz

It contains:

1. a R script file sagd.r: the R functions implementing the method described here,
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2. a pdf file sagd manual.pdf: user manual for the R functions.
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