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Abstract: Cancer cells co-cultured in vitro reveal unexpected differential growth

rates that classical exponential growth models cannot account for. Two non-

interacting cell lines were grown in the same culture, and counts of each species

were recorded at periodic times. The relative growth of population ratios was

found to depend on the initial proportion, in contradiction with the traditional ex-

ponential growth model. The proposed explanation is the variability of growth

rates for clones inside the same cell line. This leads to a log-quadratic growth

model that provides both a theoretical explanation to the phenomenon that was

observed, and a better fit to our growth data.

Keywords: cell growth; log-linear model

Introduction

Since emergence of resistant cells underlies time to relapse for cancer pa-

tients undergoing chemotherapy, the growth rate of these tumor cells is a cru-

cial issue. Cancer therapies usually yield undetectable levels of residual and

resistant cancer stem cells (CSC) in patients. Upon repeated mitosis however,

CSC can seed a cell progeny that progressively reconstitutes tumors, but the

proportion and mitotic rate of such CSC are highly variable in treated patients.

The classical exponential growth model predicts that the relative growth of the

fast-growing clones should increase exponentially with time, regardless of their

initial rates in patients. On the other hand however, this model is challenged by

heterogeneity of the clonal progeny from a cancer cell and the resulting Dar-

winian selection in this progeny for access to nutriments.1,2 To investigate this,

we grew either separately or together, two different non-interacting human can-

cer cell lines, in cell cultures with unlimited medium supply, and modeled the

cell growth rates observed in the co-cultures. The exponential growth model

is so elementary and has been known for such a long time,3,4 that it seems

almost too simple to actually fit real cell growth data.5 Yet, for a given cell

line grown in unlimited supporting medium, an excellent linear fit is usually ob-

served for the logarithm of population size against time.6,7 Our experiments

were conducted with two well known lab strains: RL (non-Hodgkin’s lymphoma

B cell line: ATCC CRL-22618) and THP-1 (cell line derived from an acute mono-

cytic leukemia patient: TCC TIB-2029). As a control experiment, the two cell

lines were grown separately. An excellent log-linear fit was observed. Then,

both strains were grown in the same solution. No interaction between the two
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species could occur, other than possible competition for nutrient from culture

medium. This was avoided again by maintaining a sufficient supply of medium

by volume, and continuous renewal. The initial proportions of the faster grow-

ing strain RL were fixed at 0.5%, 1%, 5%, and three replicates were made for

each initial proportion. With the classical exponential growth model, the rela-

tive proportion of RL vs. THP-1 would be predicted to increase exponentially

in time, at a rate which is independent from the initial proportion. Somewhat

unexpectedly, this turned out to be false. Figure 1 presents a plot of the ratio

of observed RL vs THP-1 counts on a logarithmic scale. The time scales have

been shifted so that the origin corresponds to the time at which each proportion

reaches 5%. The slope of the regression line decreases as the initial propor-

tion of the faster strain increases: the slope with an initial proportion 5% (red)

is smaller than that with initial proportions 1% (green) and 0.5% (blue).

In vitro experiments with simulateous growth of two or more microorganisms

have long been carried through: see Dykhuizen10 for a review. The variability

of growth rates in human leukemia cell clones has been studied by Tomelleri et

al.11 However, to the best of our knowledge, this is the first instance describing

an experiment with two different cancer lines, and showing the phenomenon of

dependence of the ratio growth rate on the initial condition, illustrated on Figure

1.

The objective of this paper is to propose a stochastic growth model explain-

ing the phenomenon, and show that the fit of the data by that model is better

than with the exponential growth model.

It has long been known that exponential proliferation is a valid approxima-

tion, only on a certain fraction of the observation time.12 Many different models

have been proposed as growth curves.13,14 At the beginning of a cell growth

experiment, a lag phase15,16,17 is usually observed; this is the case in our data.

The lag phase could partly account for the phenomenon investigated here. In-

deed, when starting from a 0.5% proportion, the lag phase has elapsed when

reaching 1%, but if one already starts with a 1% proportion, the lag phase only

begins. Yet the lag phase does not explain differential growth rates after all

cultures have reached a 5% proportion, since at that time, the lag phase has

elapsed in the first two cases. Another simple explanation is proposed here:

intrinsic variability of growth rates.5,11 Here, the notion of growth rate is under-

stood in the sense of branching processes,4 as a “large scale approximation”

that applies to the whole clone stemming from a given cell, and not just to
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Figure 1: Logarithms of ratios of RL/THP-1. The three replicates for each initial condition are
marked by circles, triangles and squares. All curves have been shifted to the first day where the
proportion RL/THP-1 passes 5%. Red marks correspond to an initial proportion of 5%, green
marks to 1%, blue marks to 0.5%. The three regression lines are represented with corresponding
colors. The slopes (time unit: hour) are 0.0084 (red line, initial proportion 5%), 0.0138 (green line,
initial proportion 1%), and 0.0154 (blue line, initial proportion 0.5%).
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that cell. Therefore, the variation of growth rates can only be genetic: to each

cell present at the beginning of the experiment is associated one value, which

will be the growth rate of the whole clone stemming from that cell. If growth

rates among RL vary, the proportion of fast dividing mitotic cells among RL cell

clones will gradually increase. When reaching the proportion of 5%, there will

be more fast breeders among RL if the initial proportion was 0.5%, than if it was

1%. This intuitively explains why the estimated growth rate over a given time

interval, is larger when the proportion of RL reaches 5%, after starting from

0.5%.

Mathematically, it will be shown that assuming variable growth rates among

the cells of a same species, naturally leads to a log-quadratic model on the

population growth, instead of the traditional log-linear (or exponential) model.

It will be shown that the log-quadratic model induces a better fit on our data.

Using that model, the observed phenomenon can be explained and quantified.

Indeed, if the actual growth is log-quadratic instead of log-linear, the fit of a

log-linear model yields estimated slopes that vary with the initial condition: Fig-

ure 2 illustrates that theoretical explanation. The derivation of the log-quadratic

model from the hypothesis of variable growth rates uses the cumulant gen-

erating function of the random growth rates. A similar explanation had been

proposed by Hansen.18

Material and methods

Experimental methods

The cell line THP-1 (ATCC TIB-202) derives from human acute monocytic

leukemia. It has a monocyte morphology and expresses the cell surface marker

CD13. The cell line RL (ATCC CRL-2261) was derived from human non-

Hodgkin’s lymphoma and expresses the cell surface marker CD20. These two

cell lines were cultured as indicated by the supplier (ATCC www.lgcstandards-

atcc.org) at 37oC and 5% CO2 in liquid medium RPMI-1640 (LONZA, Levallois,

France) supplemented with 10% heat-inactivated fetal calf serum (FCS), 2mM

L-glutamine, 100 U/ml penicillin and 100g/ml streptomycin (Invitrogen, Cergy

Pontoise, France). This medium contains inorganic salt, amino acid, vitamins

and D-glucose (2g/L). THP-1 and RL, alone and in competition, were cultured

in T75 flasks with 50mL of medium without agitation. At the beginning of the

culture, for all the conditions, cells were seeded at 0.3 × 106 cells/mL. Daily,
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Figure 2: Theoretical explanation for observed differential growth rates. The figure represents a
quadratic growth in time, at 3 different intercepts: log(0.05) (red), log(0.01) (green), log(0.005)
(blue). The three solid curves are parabolas. The green and blue dashed lines are linear fits over
an interval starting at the point where the corresponding parabola reaches log(0.05). The green
and blue solid lines are time shifts, illustrating the differential slopes.
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the differents cell cultures were counted and if necessary, diluted with com-

plete medium if the cell concentration was higher than 0.7 × 106 cells/mL to

adjust at 0.3 × 106 cells/mL. These concentrations lead to no competition for

nutrient. The dilutions of the culture were adjusted to the cell growth in each

flask: RL cell culture was more diluted than THP-1 cell culture for example.

Cells from competition cultures were also analysed by flow cytometry to de-

termine the percentage of each cell line in the culture: Cells were centrifuged,

washed with PBS and incubated 10 min with antibodies against CD20 coupled

with the fluorochrome APC-Cy7 to identify RL cells, and against CD13 coupled

with the fluorochrome PE (BD Biosciences, Pont de Claix, France) to identify

THP-1 cells. Cells from single cell line culture were used as controls. The

fluorescence of 50000 cells was then analysed using a BD LSR II cytometer.

Two sets of experiments were carried through 35 days, with daily measure-

ments. In the first set, the two cell lines RL and THP-1 were grown in separate

culture flasks, in duplicate. In the second set, the two cell lines were grown in

the same culture flask, in triplicate, with unlimited amount of nutrient in each

case. Three initial proportions of RL (the faster growing strain) were consid-

ered: 0.5%, 1%, and 5%. For each set of experiment, each day of culture, and

each replicate, numbers of cells of each type were recorded. The dataset is

available upon request. On these data, different least square fits of the log-

quadratic model (6) were performed, for each of the two separate growths (first

set of experiments), and for simultaneous growth (second set).

Mathematical model

In this section, a mathematical derivation of a log-quadratic growth model,

based on variable growth rates, is proposed.

Consider first the classical model of exponential growth for a single clone,

stemming from the general theory of branching processes.19,20,4 From a single

cell at time 0, the clone grows to size N(t) at time t. Under fairly general

hypotheses on the division time distribution, there exists a positive constant b,

the growth rate (also called Malthusian parameter), such that almost surely:

lim
t→+∞

e−btN(t) = C , (1)

where C is a random variable with finite expectation and variance. This is one

of the basic results of the theory of branching processes.19,20 Thus it is rea-

sonable to assume N(t) = Cebt as a model of growth curve for a single clone.

Assume now that the population grows from a large number n of identical initial

7



cells. For i = 1, . . . , n, let Ni(t) be the size at time t of the clone stemming from

cell i:

Ni(t) = ebtCi , (2)

where the Ci are independent identically distributed random variables. The

total population at time t is:

N(t) =
n
∑

i=1

Ni(t) .

By the law of large numbers, almost surely:

lim
n→∞

N(t)

n
= eνtE(C) ,

where E(C) denotes the mathematical expectation of the random variable C.

This justifies the classical log-linear model:

log(N(t)) = a+ bt , (3)

where a = log(N(0)). General references on log-linear models are Mair21 and

von Eye and Mun.22

Consider now a second population growing according to the same model,

and denote by M(t) its size at time t.

log(M(t)) = a′ + b′t .

Assume b > b′ (the first population grows faster). Then the ratio R(t) =

N(t)/M(t) also follows a log-linear model.

log (R(t)) = (a− a′) + (b− b′)t .

Whatever the interval of time it is observed on, the growth rate b − b′ does not

depend on the interval nor on the initial proportion. This is contradicted by our

observation (Figure 1).

Assume now that clones stemming from different initial cells may have dif-

ferent growth rates. The new model is:

Ni(t) = eBitCi , (4)

where (Bi, Ci) are independent and identically distributed copies of a random

couple (B,C). The joint distribution of (B,C) is of course unknown, and we

shall make the technical assumptions that B and C are independent, and that
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B has faster than exponential decaying tails. By the same argument of law of

large numbers, the global population N(t) should satisfy:

log(N(t)) = a+ log
(

E
(

eBt
))

.

Note that the function log
(

E
(

eBt
))

exists for all t > 0 if the distribution of B has

faster than exponential decaying tails. This function is the cumulant generating

function of B,23 well known in large deviation theory.24 Let µ be the expectation

of B, σ its standard deviation and γ1 its skewness. Then the first three terms of

the Taylor expansion of log
(

E
(

eBt
))

are:

log
(

E[eBt]
)

= µ t+
σ2

2
t2 +

σ3γ1
6

t3 + o(t3) , (5)

In the particular case where B follows the Gaussian distribution, the first two

terms give the exact expression:

log(E[eBt]) = µ t+
σ2

2
t2 .

In that case, the growth of N(t) is quadratic in logarithmic scale:

log(N(t)) = a+ bt+ ct2 , (6)

with a = E[N0], b = µ, and c = σ2/2. Equation (6) will be referred to as log-

quadratic model: see Chapter 9 of von Eye and Mun,22 and Stone et al25 for an

application in a similar context. Assuming that the distribution of B is Gaussian

may seem unrealistic, but whatever the distribution of B, if its expectation is

µ = b and variance σ2 = 2c, equation (6) remains true as a second order

approximation, because of (5). This justifies the use of (6) as a model, in case

of variable growth rates.

If two populations grow according to a log-quadratic model, then the ratio of

the two population sizes does too. Denote again that ratio by R(t), assuming

that the choice has been made to put the faster growing population on the

numerator, so that R(t) increases.

log(R(t)) = a+ bt+ ct2 , (7)

with a = log(R(0)) and b, c > 0. In practice, growth rates are estimated by a

log-linear regression over a given interval, say [T1, T2]. This amounts to ap-

proximating (7) by:

log(R(t)) = α̂+ β̂t ,
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where α̂ and β̂ are optimal in the sense of mean squares:

(α̂, β̂) = argmin

∫ T2

T1

(a+ bt+ ct2 − α− βt)2 dt . (8)

The solution of (8) is easily obtained:

α̂ = a−

c

6
(T 2

1 + T 2
2 + 4T1T2) and β̂ = b+ c(T1 + T2) .

For a fixed span T2 − T1, the “equivalent growth rate” β̂ increases as T1 in-

creases (see Figure 2 for an illustration). This explains the phenomenon evi-

denced by Figure 1. More precisely, let T1 be the time at which R reaches the

value R1 > R(0):

T1 =
1

2

(

−b+

√

b2 + 4c log

(

R1

R(0)

)

)

.

The equivalent growth rate on a time interval of duration t after T1 will be β̂ =

b+ c(2T1 + t). It will be larger than the growth rate on an interval of same width

starting at 0, which is b+ ct.

Thus the log-quadratic model (6) provides a theoretical explanation for the

phenomenon of differential growth rates, that has been observed. As will be

shown in the next section, it also provides a better fit to our data.

Results

Separate growth of RL

Let Yik denote the logarithm of cell count at time tk and replicate i (i = 1, 2).

We consider the following model :

Yik = a+ btk + ct2k + εik , (9)

where εik are centered Gaussian random variables with common standard-

deviation. For RL cells, it turned out that the coefficient c, that we shall call

“curvature”, was not significantly different from zero (P = 0.698). Therefore a

linear model without quadratic term was fitted. Table 1 reports the estimated

coefficients. Figure 3 presents the residual analysis. The two coefficients a and

b are significantly different from zero. The 95% confidence interval of the mean

RL growth rate b is [0.0311; 0.0315]. This corresponds to a doubling time be-

tween 22 and 22.3 hours. The proportion of the variation of Yik explained by the
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Coefficient Estimate Std. Error P
a 12.21 3× 10−2 < 2× 10−16

b 0.0313 9× 10−5 < 2× 10−16

Table 1: Estimations for the logarithm of RL cell counts.

Coefficient Estimate Std. Error P
a 12.37 5× 10−2 < 2× 10−16

b 0.0212 4× 10−4 < 2× 10−16

c 5× 10−6 7× 10−7 8.6× 10−11

Table 2: Estimations for the logarithm of THP-1 cell counts.

fitted model is excellent (R2 = 0.99). The QQ-plot of residuals (figure 3) is close

to linear, the plot of residuals vs. time does not show any mis-specification of

the non-random part nor heteroscedasticity problem. The Durbin-Watson test

(P = 0.12) and the runs test (P = 0.69) indicate no violation of the hypothesis

of error independence.

Separate growth of THP-1

The model remains the same, see equation (9). At first, it was fitted to the

full data set. Three observations at the end of the experiment period, were

detected as outliers, and therefore excluded from the final analysis. Table 2

reports the estimated coefficients. Figure 4 presents the residual analysis.

Contrarily to the RL case, the curvature c is significantly positive (P = 8.6 ×

10−11). The proportion of the variation of Yik explained by the fitted model is

excellent (R2 = 0.99). The 95% confidence interval of the mean THP-1 growth

rate b is [0.0204; 0.0227]. This corresponds to a doubling time between 30.5 and

34 hours, i.e. slightly below the values given in Tsuchiya et al9 (35 to 50 hours),

and above those of Tsuchiya et al26 (24 to 30 hours).

The QQ-plot of residuals (figure 4) is close to linear, the plot of residuals

vs. time does not show any mis-specification of the non-random part nor het-

eroscedasticity problem. The Durbin-Watson test (P = 0.16) and the runs test

(P = 0.75) indicate no violation of the hypothesis of error independence.

As expected, the growth rate of THP-1 is significantly smaller than that of

RL (P < 0.0001).
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Figure 3: Fit and validation of the log-linear model: RL cells.
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Figure 4: Fit and validation of the log-quadratic model: THP-1 cells.
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Simultaneous growth of RL and THP-1

Let Yijk denote the logarithm of the ratio of RL by THP-1 cell counts at time

tk, where i denotes the replicate (i = 1, 2, 3) and j the initial nominal value of

the ratio, that will be called dilution. Indices j = 1, 2, 3 correspond to dilutions

0.5%, 1%, 5%. Four different models were considered:

Yijk = a+ aj + btk + ǫijk (M0)

Yijk = a+ aj + btk + bjtk + ǫijk (M1)

Yijk = a+ aj + btk + bjtk + ct2k + ǫijk (M2b)

Yijk = a+ aj + btk + ct2k + cjt
2
k + ǫijk (M2c)

Yijk = a+ aj + btk + bjtk + ct2k + cjt
2
k + ǫijk (M3)

Model (M0) is the simplest: the expected log ratio Yijk is modeled by a straight

line, the slope b of which does not depend on dilution. In model (M1), the

slopes b + bj may depend on dilution. In the actual fit, the slopes are found to

decrease as the initial proportion of RL increases. This is coherent with Figure

1. However, it hides the relevance of the quadratic models. Model (M3) is the

complete log-quadratic model: both the slopes b+ bj and the curvatures c+ cj

may depend on dilution. Models (M2b) and (M2c) are embedded into (M3): in

model (M2b) the slope does not depend on dilution and in (M2c) the curvature

does not depend on dilution.

For all four models, the linear fit was computed, then pairs of embedded

models were tested by the Fisher test of analysis of variance. The results are

presented in Table 3: the degrees of freedom df, the Fisher test statistic F, and

the significance p-values are given. The conclusions are the following. The

first three comparisons are significant, ie the bigger model is better than the

embedded one. The (M3) vs. (M2c) comparison is not. The conclusion of the

four comparisons is that the best fitted model is (M2c). This indicates that if

curvatures are included in the model, the slopes do not significantly depend

on dilution. This is coherent with the theoretical derivation of the log-quadratic

model (7). In model (M2c) the estimated slope is b̂ = 6.1 × 10−3 and 95%

confidence interval on b is [5.6 × 10−3; 6.6 × 10−3]. Recall from (7) that the

slope b of (M2c) should be understood as the difference between the slopes of

models (9) for RL and THP-1. From the two previous sections, the estimated

difference is 1.01× 10−2, which is above the confidence interval on b in (M2c).

Next, we tested the three pairwise differences of curvatures cj in the ac-

cepted model (M2c). The results are presented in Table 4: the value of the

14



Embedded models df F p-value

(M3) vs. (M2b) (2, 291) 24.67 1.3× 10−10

(M2b) vs. (M1) (1, 293) 22.8 8× 10−39

(M1) vs. (M0) (2, 294) 118 1.8× 10−38

(M3) vs. (M2c) (2, 291) 2.68 0.0705

Table 3: Tests of embedded models for the log ratio of RL vs THP-1 cell counts.

null hypothesis t p-value

c1 = c2 2.4 0.016
c1 = c3 17.9 6.3× 10−49

c2 = c3 16.1 4.5× 10−42

Table 4: Pairwise tests for differences in curvatures cj in model (M2c).

Student test statistic t, and the p-value are given (degrees of freedom: 293).

All three differences are significant. The estimated values of the curvatures

c + cj ’s are given in Table 5. It turns out that c1 > c2 > c3. So the curvature

c + cj decreases as the initial proportion of RL increases. This is a similar

phenomenon as was observed on Figure (1). Indeed, when curvatures are

neglected (model (M1)), the slopes were found to be decreasing as the initial

proportion of RL increases. The theoretical explanation is given by the mathe-

matical model. Model (M1) amounts to keeping only the first term in the Taylor

expansion (5). Since the next term is positive, the adjusted values of the slopes

increase with time. Model (M2c) considers the first two terms in (5), neglecting

the third one. If that neglected term is positive, then the same effect will occur:

ajusted values of curvatures increase with time. The third term is proportional

to the skewness of B. Observing decreasing curvatures as in Table 5 is an

indication that the skewness of B may be positive, where B is the (random)

difference in growth rate between RL and THP-1. Koutsoumanis and Lianou5

have proposed a logistic distribution as a model for growth rate variability. That

distribution has null skewness. We conjecture that distributions with positive

skewness provide better models for variable growth rates.

Conclusion

That unchecked populations grow exponentially fast is a well known fact,

backed up by countless experiments, which validate the mathematical theory
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Dilution j c+ cj
j = 1 (0.5%) 5.3× 10−6

j = 2 (1%) 4.96× 10−6

j = 3 (5%) 1.6× 10−6

Table 5: Estimated curvatures c+ cj in model (M2c).

of branching processes.4 To any clone stemming from a single cell can be

associated an exponential growth rate, also called Malthusian parameter. It can

be seen as the slope over a large interval of time, of the line fitting logarithms

of the number of cells against time. What is questioned here, is the idea that

clones stemming from different cells in a given strain, should have the same

growth rate. Unlike Koutsoumanis and Lianou5 or Tomelleri et al,11 we do not

provide direct evidence for the intrinsic variablility of growth rates, but instead

an indirect proof, coming from a simultaneous growth experiment.10

It consisted in growing in the same vessels two cancer cell lines, RL8 and

THP-1.9 If there existed a single growth rate for all RL clones, and another for

all THP-1 clones, then the ratio should grow exponentially, the rate being the

difference of the two growth rates. In that case, the growth rate of the ratio

should not depend on the initial proportion of RL vs. THP-1. Our observations

disproved this: the growth rate of the ratio was found to increase as the initial

proportion of RL decreased (Figure 1). Assuming that growth rates may vary

among clones provides both intuitive, and theoretical explanations.

The intuitive explanation is the following. Consider a growth rate as attached

to each cell of a given clone. If clones may grow at different rates, the propor-

tion of cells in faster growing clones will gradually increase. In other words,

the distribution of growth rates at increasing times will be shifted toward larger

values. This explains why, when the initial proportion of RL cells is 0.5%, at the

time it reaches 5%, the population of RL contains more fast breeders than at

time 0. Therefore, the (apparent) growth rate for an initial proportion of 0.5% is

larger than for an initial proportion of 5%.

The theoretical explanation is the following. If growth rates of different

clones are considered as independent random variables with a positive vari-

ance, then the model fitting the logarithms of cell numbers against time must

contain a quadratic term, proportional to the variance of growth rates: variable

growth rates imply that higher order terms must be added to the classical log-

linear model. Now if a population grows according to a log-quadratic model,
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and a log-linear model is fitted instead, then the estimated slope over an inter-

val of time should increase as the interval moves to the right (see Figure 2).

This will overestimate the mean growth rate.

To validate our theoretical explanation, we had to compare the fits of the

log-linear and log-quadratic models on our experimental data. On separate

growth data, the log-linear model was better than the log-quadratic model on

RL, the contrary was true for THP-1. On simultaneous growth data, the log-

quadratic clearly provided a better fit. This may seem paradoxical: indeed, the

same model should be adopted for separate and simultaneous growths. The

explanation of this apparent contradiction is statistical. The estimated curva-

ture terms are in all cases smaller by several orders of magnitude than the es-

timated slopes. Therefore, the log-linear and log-quadratic models can hardly

be distinguished when the cell counts range over several orders of magnitude,

as in separate growths. This cannot be the case on simultaneous growth data,

where the ratios range from a few percents to 100%. We believe that, on a sep-

arate growth experiment, if more values were collected at the beginning, then

the log-quadratic model would provide a better fit.

There remains the issue of a probabilistic model to be fit on variable growth

rates. Our derivation of the cumulant generating function shows that classical

models of positive random variables, such as Gamma, Log-normal, or Logistic

distributions5 cannot be used here. Indeed their exponentially decaying tail im-

plies that the equivalent growth rate would become infinite at finite time, which

is not realistic. So a truncated model would have to be used instead. In any

case, there would remain to adjust the chosen distribution to actual data. Ide-

ally, these data should be collected from the observation of colonial growth of

individual cells, such as reported by Koutsoumanis and Lianou for Salmonella

enterica,5 or Tomelleri et al11 on leukemia cells. This will be the object of future

work.
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