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ABSTRACT

We present a generalization of Subspace Pursuit, which seeks

the k-sparse vector that minimizes a generic cost function. We

introduce the Restricted Diagonal Property, which much like

RIP in the classical setting, enables to control the convergence

of Generalized Subspace Pursuit (GSP). To tackle the prob-

lem of Poisson denoising, we propose to use GSP together

with the Moreau-Yosida approximation of the Poisson likeli-

hood. Experiments were conducted on synthetic, exact sparse

and natural images corrupted by Poisson noise. We study the

influence of the different parameters and show that our ap-

proach performs better than Subspace Pursuit or ℓ1-relaxed

methods and compares favorably to state-of-art methods.

Index Terms— Sparse regularization, Subspace Pursuit,

Poisson denoising, Greedy algorithm.

1. INTRODUCTION

Classical greedy algorithms such as MP [3] or CoSaMP [4]

that minimize a quadratic cost under a l0 sparsity constraint

have recently been generalized to other costs. [1, 2] for ex-

ample show that a k-sparse minimizer of a function can be

found if its gradient satisfies specific properties. Furthermore

these analyses lead to a better understanding of the behavior

of these greedy methods. Such generalization open the doors

to the use of greedy algorithms for general sparse optimiza-

tion problems for which the theory is developed so far almost

only when the ℓ0-semi-norm is relaxed to a ℓ1-norm.

In the context of Poisson denoising, we recently suggested

a way to fill the theoretical gap by providing a CoSaMP-like

greedy algorithm and its analysis [5]. Such effort is rele-

vant because while some Poisson denoising algorithms have

a solid theoretical ground, e.g. variance stabilization com-

bined with Gaussian methods [6, 7] or convex minimization

with ℓ1-norm for sparsity [8], others are transposition from

the Gaussian world and still need a thorough analysis, e.g.

non-local mean [9] or greedy (hybrid) algorithms [10]. In this
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paper we pursue these efforts by providing a new greedy al-

gorithm for sparse Poisson denoising and exhibiting sufficient

conditions for its convergence. Our contributions are twofold.

1) We propose the first (to our knowledge) generalization of

the Subspace Pursuit (called GSP) to generic cost with a con-

vergence theorem. 2) We devise a new algorithm for Poisson

denoising using GSP and the same regularization procedure

as in [5] and demonstrate its efficiency.

The structure of this paper is the following. In Section 2,

we present Generalized Subspace Pursuit and introduce the

Restricted Diagonal Property which ensures its convergence

for a wide class of cost function (including non-convex ones).

In Section 3, we use GSP with a Moreau-Yosida regulariza-

tion to devise a new Poisson denoising algorithm. Experi-

ments are conducted to see the behavior of this new method

depending on the sparsity, the noise level and the regulariza-

tion parameter. Finally, we compare it to state-of-art methods

like SAFIR [9], MSVST [6], the classical ℓ1-norm relaxation

method and Subspace Pursuit (SP) [11].

2. GENERALIZED SUBSPACE PURSUIT

Classical greedy algorithms such as MP, CoSaMP or SP at-

tempt to find the “best” k-sparse vector x that explains the

observed measured vector y under a linear model: y = Φx,

where “best” is understood in the ℓ2 sense which means that

these algorithms solve the following problem:

Find x ∈ argmin
x̂

‖y −Φx̂‖
2
2 s.t. ‖x̂‖0 ≤ k . (P1)

(||x||0 = Card{i : xi 6= 0} is the number of non-zero entries

of x). This can also be viewed as solving the linear inverse

problem y = Φx under the assumption of Gaussian noise and

with a hard sparsity constraint as regularization.

In many inverse problems, the quadratic cost ‖y −Φx̂‖2
is not appropriate and one rather wishes to solve:

Find x ∈ argmin f(x) s.t. ‖x‖0 6 k , (P2)

for a more complex f . A vast literature gives solutions for a

relaxed sparsity regularization (i.e. using the ℓ1-norm instead



of the ℓ0-semi-norm) in the case of convex f for example. In

contrast, only few attempts have successfully extended greedy

algorithms to Problem (P2). Indeed the convergence proofs of

MP, SP etc. heavily rely on linear algebra useful because the

gradient of ‖y −Φx‖
2
2 is affine (see [11, 4, 12]), which is not

the case for a generic f .

2.1. Algorithm

We propose an extension of Subspace Pursuit [11] designed to

solve Problem (P2) for a cost function f : Rn → R differen-

tiable. This algorithm named Generalized Subspace Pursuit

(GSP) is detailed in Algorithm 1.

Here, we denote by supp(x) the support of x: supp(x) =
{i = 1, . . . , n | xi 6= 0} and x k the restriction of x to its k
largest coefficients in magnitude.

As SP, GSP seeks the support of the solution of size k (de-

noted by T ). It updates it at each iteration by adding a set of

k candidate directions (step 3-5), obtaining an extended sup-

port set S of size 2k. The problem is solved on this extended

support (step 6). T is updated by the best support of size k
extracted from this solution (step 7). Finally, one seeks the

best solution of support T (step 8).

GSP exactly mimics SP, except for steps 3, 6 and 8 where

it accounts for f instead of ‖y −Φx̂‖
2
2. Steps 6 and 8 consist

in finding an optimal solution to the original problem on a

predefined support set, which can usually be done efficiently

(e.g. with a projected gradient descent).

Algorithm 1 Generalized Subspace Pursuit

1: initialization: â0 ← 0 .

2: for t = 0 . . . N − 1 do

3: g ←∇f(ât) , ⊲ Compute local directions.

4: G ← g k , ⊲ Select new directions.

5: S ← G ∪ supp(ât) , ⊲ Set extended support.

6: b ∈ argmin
{a:supp(a)⊆S}

f(a) , ⊲ Solve on extended support.

7: T ← supp(b k) , ⊲ Set support.

8: ât+1 ∈ argmin
{a:supp(a)⊆T }

f(a) , ⊲ Solve on the support.

9: end for

10: outputs: âN .

2.2. Theoretical guarantees

In the classical case (f = ||Φx − y||2), a sufficient condi-

tion for MP, SP or CoSaMP to converge is that the matrix Φ

satisfies the RIP condition with a small constant δk. This es-

sentially ensures that Φ acts is almost isometry on the set of

k-sparse vectors so that Φ∗
Φ which controls the increments

∇f(x)−∇f(x′) is close to the identity. It turns out that in the

generalized case, ensuring the increments of ∇f are close to

the identity on the set of k-sparse vectors also guarantees the

convergence of GSP. This condition can even be weakened by

replacing the identity by any diagonal operator bounded away

from zero and having this property hold only locally.

To state the convergence of GSP, let us introduce D1 the

set of diagonal operators bounded away by 1:

D1 = {D : Rn → R
n,D diagonal, ∀x ‖Dx‖ > ‖x‖}. (1)

Definition 1 (Restricted Diagonal Property). T is said to

have the Restricted Diagonal Property (RDP) of order k if

there exists δk > 0 such that if a, b ∈ R
n then,

Card{supp(a) ∪ supp(b)} 6 k ⇒ ∃Dab ∈ D1,

‖T(a)−T(b)−Dab(a− b)‖ 6 δk ‖a− b‖ . (2)

Remark 1. δ2k < 1 implies that T is injective on the set of

k-sparse vectors since ‖T(a)−T(b)‖ > (1− δ2k) ‖x− y‖.

Remark 2. If Dab is the Identity for all a and b, there is

a connection with RIP since then (1 − δ2k) ‖x− y‖ 6

‖T(x)−T(y)‖ 6 (1 + δ2k) ‖x− y‖ .

However the Restricted Diagonal Property is a more local

property. Let us now state the convergence theorem.

Theorem 2. Assume f : Rn → R, differentiable and (P2)

has at least one solution. Denote by a⋆ any solution of (P2)

and δ0 the unique real root of g(x) = x3 + x2 + 7x− 1.

If there exists β > 0 such that ∇f
β

has the Restricted Di-

agonal Property of order 3k with δ3k 6 δ0. Then GSP verifies

∥

∥âN − a⋆
∥

∥ 6
1
2N

∥

∥â0 − a⋆
∥

∥+ 15
β
‖∇f(a⋆) 2k‖ . (3)

The distance between the iterates of GSP and a solution

of (P2) are thus controlled by two terms. The first one de-

creases exponentially fast to zero while the second expresses

the error made, and is controlled by the gradient. Theorem 2

thus shows that if f admits global minimizer that is k-sparse,

GSP recovers it exactly (since in that case ∇f(a⋆) = 0): this

is the analog to the exact recovery case for SP, MP and the

like. Otherwise, the quality of the iterates is controlled by

the error term ‖∇f(a⋆) 2k‖, which is analog the the uncom-

pressible error term exhibited in the classical case (see [4]).

The proof of this theorem (not given here due to lack of

space) is very similar to that of [5], where a generalization of

CoSaMP is proposed and analyzed using a stronger property.

Let us pinpoint the pros and cons of the proposed analy-

sis. First, this is the first generalization of SP to non-quadratic

costs, and we provide a convergence theorem. An advantage

of extending SP versus CoSaMP (as in GRASP [2, 5]) lies

in GSP’s last step (step 8), which consists in finding the best

k-sparse vector with the updated support T of size k. This

is more costly than the simple pruning used in CoSaMP or

GRASP, but has been empirically proved to speed up the con-

vergence in the classical setting (SP vs CoSaMP). More im-

portantly, this enables to consider cost functions f incorpo-

rating hard constraints since those will be naturally respected

at all steps (not shown here).



Second, although the RDP is not easy to check in practice,

it is clear that it does not require f to be convex (for example

f(x) = xT (D + γI)x with D = diag(±1, . . . ,±1), so that

Dab = D and δk = γ). So the proposed analysis extends the

scope of greedy algorithms to non-convex costs, as opposed

to previous analyses like [2].

In the next Section we shall apply GSP to the problem

of Poisson denoising, which is a typical example where the

quadratic cost function is not adapted.

3. APPLICATION TO POISSON DENOISING

3.1. Poisson denoising under a hard sparsity constraint

Let us assume that we observe y ∈ R
n, a Poisson corrupted

version of the true image x ∈ R
n, both containing n pixels.

In our model, we also assume that x has a k-sparse represen-

tation on the dictionary Φ = (ϕ1, . . . , ϕm) ∈ R
n×m:

x = Φα =
∑

αjϕj with ||α||0 = k ≪ n ,

where the atoms are normalized (‖ϕj‖ = 1).

Our goal is to reconstruct x given the data y, the sparsity

k and the dictionary Φ, which may be done by solving:

x̂ = Φα̂, where α̂ = argmin
α∈Rm s.t. ||α||06k

Fy(Φα) , (P3)

where Fy(x̂) is a data fidelity term that quantifies how well an

estimated image x̂ fits the observed data y. A natural fidelity

term is the negative-log-likelihood Fy(x) = − logP(y|x)
which reads in the case of Poisson noise

Fy(x) = − logP(y|x) =
n
∑

i=1

f(xi, yi), with

f(ξ, η) =











−η log(ξ) + ξ if η > 0 and ξ > 0,

ξ if η = 0 and ξ > 0,

+∞ otherwise.

(4)

Notice that Fy(x) is finite only when x complies with the

data, which implies x ∈ R
n
+ and xi > 0 if yi > 0. More-

over, due to the logarithm, it gradient is not defined on its all

domain. Hence GSP may not be applied on Fy ◦ Φ. These

technical difficulties reflect a deeper conceptual problem in

solving Problem (P3): in fact the hard constraints imposed by

the Poisson negative-log-likelihood on Φα ((Φα)i > 0 for

all i and (Φα)i > 0 if yi > 0) may not be compatible with

hard ℓ0 constraint ‖α‖0 6 k.

To alleviate this problem, we substitute in (P3) Fy ◦Φ for

its Moreau-Yosida regularization [13] of parameter λ:

Mλ,Fy◦Φ(α) = inf
s∈Rm

[

1
2λ ||s− α||2 + Fy ◦Φ(s)

]

. (5)

The Moreau-Yosida envelope of a convex l.s.c. function

has full domain, its gradient is Lipschitz. Moreover, its mini-

mizer is also minimizer of the original function. It does pro-

vides a good candidate for relaxing Fy ◦Φ and using it with

GSP. To do so, we need the gradient of this function, which is

computable when the dictionary Φ is a tight frame.

Proposition 3 (Gradient of the Moreau-Yosida regularization

of the Poisson neg-log-likelihood). If Φ is a tight frame of

constant ν>0, then the gradient ofMλ,Fy◦Φ is [8]:

∇Mλ,Fy◦Φ = 1
νλ

Φ
∗ ◦ (I− proxνλFy

) ◦Φ with

proxνλFy
(x)i =

xi − νλ+
√

|xi − νλ|2 + 4νλyi
2

. (6)

In the following, we thus denoise y using GSP to solve

x̂ = Φα̂, where α̂ = argmin
α s.t. ||α||06k

Mλ,Fy◦Φ(α) . (P4)

It is not clear whether Mλ,Fy◦Φ has the RDP, however we

empirically show in the next section that the proposed algo-

rithm converges.

3.2. Experiments

The strengths and the weaknesses of our approach are as-

sessed on three kinds of experiments. For each one, the quan-

titative values are averaged over 10 realizations of the noise.

The dictionary Φ is fixed to cycle spinning wavelets with a

redundancy of 9. In the first experiment, we study the evo-

lution of the support recovery with the noise and the sparsity

levels. Next, we study the influence of the parameter of the

Moreau-Yosida regularization on the recovered support. Fi-

nally, we compare the performance of our method to that of

state-of-the-art ones.

3.2.1. Support recovery

In this experiment, we generate random k-sparse images of

size 64 × 64 with different sparsities and peak intensities.

They are subsequently corrupted by Poisson noise. Each im-

age is denoised using our method with the regularization pa-

rameter λ = 1. Fig 1(a) shows the phase diagram of support

recovery (number of atoms of the true support recovered di-

vided by k) as a function of sparsity level (k/n) and peak

intensity (higher intensity means lower noise level). As ex-

pected when the image is sparser or less degraded (lower left),

the support is easier to find.

3.2.2. Influence of the regularization

Let us asses the influence of the Moreau-Yosida parameter (λ)

on support recovery. Fig. 1(b) pictures the evolution of sup-

port recovery with λ for a sparse version of the Cameraman

(k/n = 0.15) with a peak intensity at 11 obtained by Sub-

space Pursuit. This illustrates the following facts. First, the

lower the λ is, the better we reconstruct the support. This is

expected as when λ tends to 0, the Moreau-Yosida regular-

ized function tends to the true function. Second, the quality
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(a) Support recovery (b) Influence of λ

Fig. 1. Support recovery as a function of sparsity and noise

level (a) and of the Moreau-Yosida regularization (b).

Sparse Cameraman Galaxy

PSNR MAE SSIM PSNR MAE SSIM

Noisy 19.3 1.57 0.32 22.9 0.63 0.19

GSP 28.6 0.32 0.87 26.0 0.17 0.71

SP [11] 26.1 0.55 0.63 27.6 0.28 0.55

SAFIR [9] 27.6 0.36 0.86 29.9 0.15 0.84

MSVST [6] 29.5 0.31 0.84 30.5 0.12 0.83

ℓ1-relaxation 22.7 0.64 0.73 21.5 0.32 0.50

Table 1. Comparison of denoising methods on a sparse ver-

sion of Cameraman (k/n = 0.15) and the NGC 2997 Galaxy.

degrades for high λ, eventually becoming worse than that of

Subspace Pursuit (0.79), which shows that too much regular-

ization degrades the estimation. Finally, the plateau reached

for small λ indicates that λ does not need to be specifically

tuned but only small enough. For the next experiments, we

choose λ to obtain the best support recovery.

3.2.3. Performances

We compare our approach (GSP) with other states-of-art

methods: Subspace Pursuit (SP) [11], SAFIR [9] (with the

parameters from [7]), MSVST [6] and a convex ℓ1-relaxation

of (P3) i.e. a procedure minimizing the Poisson likelihood on

a ℓ1-ball (using a projection onto the ℓ1-ball [14, 15]).

We apply these methods on two images, a sparse version

of the Cameraman (see 3.2.2) and the NGC 2997 galaxy (peak

intensity at 5, see Fig. 2). We use the exact parameters (spar-

sity for GSP and SP and ℓ1-norm for the ℓ1-relaxation) for

the sparse cameraman and tune them for the Galaxy. For each

method we compute the PSNR, the mean absolute deviation

(MAE) and the SSIM [16] and display them in Table 1.

The MSVST gives the best results in terms of PSNR and

MAE and SAFIR does so for the SSIM. GSP is competitive

with both these state-of-the-arts methods in Poisson denois-

ing. Moreover GSP is in both cases better than SP and the

ℓ1-relaxation. While the performance over SP shows the ben-

efits of using non-quadratic cost in the case of high Poisson

noise level, the performance over the ℓ1-relaxation empha-

sizes that using the exact sparse ℓ0 a-priori enables to recover

a better dynamic that its convex relaxation counterpart. These

remarks are visually confirmed for the galaxy (Fig. 2).

(a) Original (b) Noisy

(c) GSP (d) SP (e) MSVST

(f) SAFIR (g) ℓ1-relaxation

Fig. 2. NGC 2997 Galaxy image (a), a noisy version (b) and

several denoising results (c-g).

4. CONCLUSION

In this paper we proposed a greedy algorithm, Generalized

Subspace Pursuit, seeking a k-sparse minimizer for a generic

cost function f . We exhibited a property on the gradient of

f , the Restricted Diagonal Property that controls its conver-

gence. Although hard to verify in practice, this property opens

the way for using greedy algorithms on non-convex functions.

A method of Poisson denoising is proposed using GSP on

the Moreau-Yosida regularization of the Poisson likelihood.

The experiments show that it is competitive to state-of-the-

arts methods and improves over classical sparse approaches.

Future work on the theoretical side include improving the

constants in the theorem, which seem quite conservative in

view of the conducted experiments; studying possible links to

notions used in the linear case, such as coherence; and adapt-

ing the analysis to the co-sparse [17] case. One may also want

to reduce the complexity of GSP by removing one of the min-

imization steps, preserving the last one (step 8), as is done in

OMPR [12].

A further analysis of the regularization of the Poisson like-

lihood needs to be conducted to ensure the convergence of the

proposed denoising method. Furthermore, it would be inter-

esting to consider learning a dictionary to improve the quality

of the results. However, such dictionaries are not likely to

be tight frames or even frames and would make the previous

analysis even more complex.
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