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Abstract

Gene Set Enrichment Analysis (GSEA) is a basic tool for genomic data treatment. From a statistical point
of view, the centering of its test statistic does not allow the derivation of asymptotic results. A test statistic
with a different centering is proposed. Under the null hypothesis, the convergence in distribution of the new
test statistic is proved, using the theory of empirical processes. The limiting distribution can be computed by
Monte-Carlo simulation. The test defined in this way has been called Weighted Kolmogorov Smirnov (WKS)
test. The fact that the evaluation of the asymptotic distribution serves for many different gene sets results in
shorter computing times. Using expression data from the GEO repository, tested against the MSig Database C2, a
comparison between the classical GSEA test and the new procedure has been conducted. Our conclusion is that,
beyond its mathematical and algorithmic advantages, the WKS test could be more informative in many cases,

than the classical GSEA test.
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1 Introduction
Since its definition by Subramanian et al. (2005), Gene Set Enrichment Analysis (GSEA) has been very successful, and

it may now be considered as the most basic tool of genomic data treatment: see Bild and Febbo (2005), Huang et al.



(2009), Nam and Kim (2008) for reviews. GSEA aims at comparing a vector of numeric data indexed by the set of all
genes, to the genes contained in a given smaller gene set. The numeric data are typically obtained from a microarray
experiment. They may consist in expression levels, p-values, correlations, fold-changes, t-statistics, signal-to-noise
ratios, etc. The number associated to any given gene will be referred to as its weight. Many examples of such data can
be downloaded from the Gene Expression Omnibus (GEO) repository (Edgar et al. (2002)). The gene set may contain
genes known to be associated to a given biological process, a cellular component, a type of cancer, etc. Thematic lists
of such gene sets are given in the Molecular Signature (MSig) database (Subramanian et al. (2005)). The question to
be answered is: are the weights inside the gene set significantly high or low, compared to weights in a random gene
set of the same size?

Denote by N the total number of genes (N ~ 20000 for the human genome). It will be convenient to identify the
genes to N regularly spaced points on the interval [0, 1], and their weights to the values of a positive valued function g,
defined on [0, 1]: gene number i corresponds to point i/N, and its weight w; to g(i/N). In Subramanian et al. (2005),
the numbering of the genes is chosen so that weights are ranked in decreasing order. Thus, the weights usually appear
to vary smoothly between contiguous genes, and the function g can be assumed to be continuous.

The gene set is included in the set of all genes. Let n be its size. In practice, n ranges from a few tens to a few
hundreds: » is much smaller than N. With the identification above, it is considered as a subset of size n of the interval
[0,1], say {Uy,...,U,}. If there is no particular relation between the weights and the gene set (null hypothesis), then
the gene set must be considered as a uniform random sample without replacement of the set of all genes. The fact
that the gene set size n is much smaller than N, justifies identifying the distribution of a uniform n-sample without
replacement of {1/N,...,N/N} to that of a n-sample of points, uniformly distributed on [0, 1]. Therefore, the null

hypothesis is:

HO: The gene set is a n-tuple (Uy,...,U,) of independent, identically distributed (i.i.d.) random variables, uniformly

distributed on the interval [0, 1].

The basic object is the following step function, cumulating the proportion of weights inside the gene set, along the

interval [0, 1]. It is defined for all ¢ between 0 and 1 by:

Y1 gU) ly<

Sa(t) = (1)
" Yio18(Uk)
where I denotes the indicator of an event. The test statistic proposed by Subramanian et al. (2005) is:
T, = sup |Su(t) —1]|. 2)

t€[0,1]



The motivation is best understood in the particular case where the weights w; are constant. Then the function g is also
constant, and:
Su(t) = i lHUN )
=11

This is the empirical Cumulative Distribution Function (CDF) of the sample (Uj,...,U,). The test statistic 7, is the
maximal distance between that empirical CDF and the theoretical CDF of the uniform distribution on the interval [0, 1].
In other terms, /nT, is the Kolmogorov Smirnov (KS) test statistic for the goodness-of-fit of the uniform distribution
on [0,1] to the sample (Uj,...,U,) (Arnold and Emerson (2011)). The constant weight case was initially proposed
by Mootha et al. (2003), who explicitly referred to the KS statistic (see also (Subramanian et al., 2005, Supporting
text, p. 5,6,11), Ycart et al. (2014), and Tarca et al. (2013)). In the general case where the weights are not constant,
the distribution of the test statistic 7, under the null hypothesis is unknown. In the current implementations, it is
approximated by Monte-Carlo simulation on 1000 random samples (Subramanian et al. (2007)).

Our first remark is that in the non constant case, the limit of S,(¢) as n tends to infinity is not ¢, as (2) seems to
suggest, but instead:

lim Sn(t) = M

noe Jo g(w)du

Thus the GSEA test statistic 7,, is not appropriately centered, unless the weights are constant. Instead, the following

test statistic should be used:

Su(t) — o g(u)du

1
Jo g(u)du
The objective of this paper is to derive the asymptotic distribution of 7, under the null hypothesis, then deduce from

Tn* = \/ﬁ sup
t€[0,1]

3)

the mathematical result a practical testing procedure, and compare the outputs of that procedure to those of the classical
GSEA test.

Our theoretical result is the following.

Theorem 1.1. Let g be a continuous, positive function from [0,1] into R. Denote by G its primitive: G(t) = [; g(u)du,
and assume that G(1) = 1. Let (Uyp)nen be a sequence of i.i.d. random variables, uniformly distributed on [0, 1]. For

alln > 1, and for all t in [0, 1], consider the random variable S, (t) defined by (1). Let
Zy(t) = V/n(Su(t) = G(1)) - ©)

As n tends to infinity, the stochastic process {Z,(t), t € [0,1]} converges weakly in £=(]0,1]) to the process {Z(t), t €

[0,1]}, where:
1

2= [ s aW,~G() [ guami ©

and {W; , t € [0,1]} is the standard Brownian motion.



The hypothesis fol g(u)du = 1 induces no loss of generality: since g is continuous and positive, its integral is
positive; g can be divided by its integral without changing the values of the cumulated proportion of weights S, (z).
The proof of Theorem 1.1 will be given in section 2. It is based on the theory of empirical processes, for which
Shorack and Wellner (1986) and Kosorok (2008) will be used as general references.

The first consequence of Theorem 1.1 for GSEA, is that as n increases, the distribution of the proposed test statistic
T, under the null hypothesis, tends to that of the following random variable 7":

T = sup |Z(1)|,
t€[0,1]

where the random process Z is defined by (5). Denote by F its CDF: for all x > 0,
F(x) =Prob(T < x). (6)

Observe that F(x) only depends on g, i.e. on the weights of the vector to be tested. Except in the classical KS case
of constant weights, ' does not have a closed-form expression, but a Monte-Carlo approximation is easily obtained.
The testing procedure generalizes that of the classical KS test: since the test statistic 7, has asymptotic CDF F under
the null hypothesis, the p-value of an observation 7,* = x is 1 — F(x). That testing procedure will be referred to as
Weighted Kolmorov Smirnov (WKS) test. A crucial feature is that, since F' only depends on the weights, the same
evaluation of F' can be repeatedly used for many gene sets, which saves computing time. Of course, the repeated
application of a test to a full database of several thousand gene sets poses the problem of False Discovery Rate (FDR)
correction. In applications, we have used the method of Benjamini and Yekutieli (2001): see Dutoit and van der Laan
(2007) for multiple testing procedures in genomics.

Like the KS test, the WKS test is based on an asymptotic result. In practice, it is used for finite values of n.
Therefore, it is necessary to determine for which size n of gene sets, the test can be applied with good precision.
A Monte-Carlo comparison of the cumulative distribution function of 7, to its limit F for different values of n was
conducted. Our conclusion is that the test can be safely applied for gene set sizes n larger than 40. Beyond Monte-
Carlo validation, it was necessary to compare the outputs of the WKS test to those of the classical GSEA test, on real
data. Inside the GEO dataset GSE36133 of Barretina et al. (2012), we have selected vectors (samples) from different
types of tumors. These vectors were tested against all gene sets of MSig database C2, calculating for each sample
the p-values of both tests. The gene sets known to be related to the same type of cancer as the initial vector were of
particular interest. An example corresponding to a sample of liver tumor will be reported; we consider it as typical
of the observations that were made with other samples. The obtained results are encouraging: the WKS test tends to

output less significant gene sets than the classical GSEA test out of the whole database, but more out of those gene



sets related to the correct type of cancer. Our conclusion is that, beyond its mathematical and algorithmic advantages,
the WKS test could be more informative in many cases, than the classical GSEA test.

The document is organized in the following way. In section 2, Theorem 1.1 is proved, and the asymptotic dis-
tribution of 7,* is deduced. Section 3 is devoted to the statistical application, beginning with the description of the
Monte-Carlo algorithm of calculation of p-values. Results of simulated tests are reported next. Finally, an example of

comparison of the WKS test with the GSEA test on real data is discussed.

2 Theoretical background
The notations and results of Kosorok (2008) will be used. In particular, throughout the section, ~» denotes the weak
convergence of processes in £([0, 1]). We first give the proof of Theorem 1.1, which asserts the convergence Z, ~ Z,

where Z, is the empirical process defined by (4), and Z is the Gaussian bridge defined by (5).

Proof. The idea is the following. Consider:

n
U,
_ Zkzlg( %) Z,
n

(1) (t). (7

Using the general results on empirical processes and Donsker classes, exposed in section 9.4 of Kosorok (2008), it

will be proved that Z,ll ~ Z. By the law of large numbers,

n 1
limM:/ gwdu=1, as.
0

n—soo n
The convergence Z,, ~~ Z follows as an application of Slutsky’s theorem: Theorem 7.15 of (Kosorok, 2008, p. 112).

The random variable Z! (¢) can be written as follows:

20 = = (k

- % <kzn:]8(Uk) (]I{ngf}G(t))> ,

denoting by G the primitive of g, as before. Empirical processes are customarily written as function-indexed processes.

D=

gU Ty, <iy — G(I)I(X”‘,lg(Uk)>

1

Define the class of functions .% by:

F ={g(-) o) =G) ;1 €[0,1]} .

Denote by P, the empirical measure of (Uy,...,U,), by P the uniform distribution on [0, 1], by P, f and Pf the integrals
of f with respect to P, and P (Kosorok, 2008, p. 11). For f € ., define Z! (f) by:

Zy(f) = Vn(Puf — Pf) . (8)



Obviously, for all € [0, 1],
23 (1) = Z, (3() (Tpy () = G(1))) - ©)

Let us prove that .% is a Donsker class. Firstly, observe that the following class .%#] is Donsker.
F = {]I[()J](') — G(t); te [0, 1] } .

Indeed, for f € .7}, the process /n (P, f — Pf) converges weakly to the standard Brownian bridge. Since all functions
in % take values between —1 and 1, the supremum of |Pf| over % is not larger than 1. The function g, being
continuous on a compact interval, is bounded and measurable. From Corollary 9.32, p. 173 of Kosorok (2008), it
follows that .% is also Donsker. The convergence of Z! now follows from the result of (Kosorok, 2008, p. 11). The

limit Z' is a zero mean, .% -indexed, Gaussian process. Its covariance function is defined, for all f;, f> in . by:

EIZ' (A1) Z'(£)] =P(fifa) —PAPS . (10)

Through (9), the convergence of Z! induces the convergence of Z!, to a zero mean, [0, 1]-indexed process Z!. Let us

compute the covariance function of Z'. For s, in [0, 1], let:

fi() =8()Tog(-) —G(s)) and fa(-) = g(-)(Tpq(-) — G(1)) .
Applying (10) to these functions f; and f; yields,

~min(z,s) &
EZ(0Z'() = [ fwdu-60) [ ¢udu .
/ o (11)

&) du+G(s)G(r) /0 () du.

ot

-6 |
Jo

There remains to be proved that Z' and Z have the same distribution, where Z is defined by the representation (5) in

terms of the standard Brownian motion W':

Z() = /0 ' e(u)dW, — G(1) | /0 o)W,

It is a well known fact that the primitive of a deterministic function with respect to the Brownian motion is Gaussian:
therefore Z is a Gaussian process. The covariance function is easily calculated, using formula (32), p. 128 of Shorack
and Wellner (1986): itis indeed defined by (11). The processes Z I"and Z are both Gaussian, their means and covariance

are equal, therefore they have the same distribution. O

As explained in the introduction, the random variable of interest for GSEA is the supremum of the process |Z| over

the interval [0, 1].



Corollary 2.1. Under the notations and hypotheses of Theorem 1.1, let

T, = sup |Z,(1)] -
r€(0,1]
Then T, converges in distribution to

sup |Z(1)| = sup
t€[0,1] t€[0,1]

)

/Otg(u)qu — /Otg(u)du/o1 g(u)dw,

where W denotes the standard Brownian motion.

Proof. The mapping f ~ sup,c( 1 [f(t)], from [*([0,1]) into R™, is continuous. From Theorem 1.1, Z, ~ Z. The

conclusion follows as an application of Theorem 7.7, p. 109 of Kosorok (2008). O

3 Statistical Application
3.1 Implementation

The R code (R Core Team (2013)) implementing the WKS test has been made available online, together with a user
manual and samples of data. Several issues regarding the implementation are discussed here. The essential step is the

evaluation of the cumulative distribution function distribution F defined by (6), or else:

F(x) = Prob ( sup /Olg(u)qu —G(t) /01 g(u)dw, <x> . (12)

t€[0,1]

A Monte-Carlo calculation has to be used. First of all, sample paths for the stochastic process

{/Otg(u)qu;te[O,l]}

must be simulated. This is done using a standard Euler-Maruyama scheme: see Sauer (2013) for a review of numerical
methods for stochastic integrals and differential equations. A regular subdivision of the interval [0, 1] into m intervals
is chosen:

ti=—,i=0,...,m.
m

Recall that in practice, the function g is known at points i/N representing the genes. Hence it is natural to choose

m = N. The stochastic integral is approximated by a sum:

t m—1
/0 () AW, ~ Y (1) (Wi n0 — Wins) - (13)
i=0

The increments W;,,, — W, are easily simulated as i.i.d centered Gaussian variables, with variance 1/m. An estimate
of the CDF F is obtained by simulating nsim discretized trajectories of Z, taking the maximum of the absolute value

of each, then returning the empirical CDF of the obtained sample. The algorithm can be written as follows.



Algorithm 1 Approximation of F

1: Simulate increments of the Brownian motion on #y, ... ,#,,
fori=0,...,m— 1, compute g(t;) (W,,, —W,,),
get cumulated sums of the previous sequence,
deduce the discretized trajectory for {Z(¢), r € [0,1]} attg, ...,
compute the maximum absolute value of the previous sequence,
repeat nsim times steps 1 to 5,
return the empirical distribution function of the obtained sample.

Actually, since F(x) is evaluated as the proportion of a sample below x, the result must take the uncertainty into
account. We propose to return the lower bound of the 95% left-sided confidence interval, instead of the point estimate.
This gives an upper bound for the p-value, which is a conservative evaluation. As stated before, the CDF F only
depends on the weight function g. The relation between g and F is illustrated on Figure 1. Five different CDF’s
have been computed, for gx(x) = (k+ 1)(1 —x'/%), k = 0,1,2,3,4. Denote them by Fy, ..., F;. The case k = 0 is that
of constant weights, and can be used as a validation for the algorithm above: Fy is the Kolmogorov Smirnov CDF,
which has an explicit expression. It can be checked that the estimate output by Algorithm 1 is close to the known
exact function. The curves of Figure 1 were obtained via 20000 Monte-Carlo simulations, over 15000 discretization
points. It turns out that for all x, Fy(x) > --- > F4(x): the steeper g, the smaller F, and the larger the p-values. The
differences between the curves are sizable: calculating sup |F; — Fy| for k= 1,...,4 gives 0.199, 0.271, 0.324, 0.356.
Theoretical functions g may seem of little practical interest. This is not so, for two reasons. The first reason is the
use of robust statistics (see Héritier et al. (2009) as a general reference, and Tsodikov et al. (2002) for application to
expression data). If the initial values are replaced by their ranks, then the weights are N,N—1,...,2,1. Therefore,
the weight function is g;(x) = 2(1 —x). This justifies calculating F; with good precision, which makes the WKS
test fast and precise, for all uses over rank statistics. We have done so, using 10° Monte-Carlo simulations, and
103 discretization points. The second reason is the observation of F when the weights come from real data. Eight
different GEO datasets were considered: GSE36382 (Mayerle et al. (2013)), GSE48348 (Esko and Metspalu (2013)),
GSE36809 (Xiao et al. (2011)), GSE31312 (Frei et al. (2013)), GSE48762 (Obermoser et al. (2013)), GSE37069
(Seok et al. (2013)), GSE39582 (Marisa et al. (2013)), and GSE9984 (Mikheev et al. (2008)). Several samples of
expression levels in each study were selected. In each sample, the expression levels were ranked in decreasing order,
and Algorithm 1 was applied in order to obtain an estimation of F'. For all real datasets, the estimated F was such that
Fy(x) < F(x) < Fy(x). It seems to be the case in practice that Fs and Fjy provide lower and upper bounds for F.

The next algorithmic point concerns the calculation of the test statistic, that is the value of 7, defined by (3) for a



WKS cumulative distribution functions

F(X)

Figure 1: Cumulated distribution functions Fj corresponding to gi(x) = (k+ 1)(1 —x/K, for k = 0,1,2,3,4. The
highest curve corresponds to k = 0 (constant weights, classical Kolmogorov Smirnov CDF). The CDF’s decrease as k
increases: the steeper g, the smaller F', and the larger the p-values.

given set of weights and a gene set of size n:
Ty =+/n sup |S,(t)=G(1)]
t€[0,1]

where
T g(U)l
Sn(t): Zkflng( k) Uk<[
Yie18(Uk)

The values g(Uy) are the weights of genes inside the gene set. Observe that, if the same vector has to be tested against
many gene sets, the calculation of G(#) (cumulated sums of all weights) must be done only once. The value of 7, is
returned by a procedure similar to that of the classical KS test. Consider two non-decreasing functions f and & where
f is a step function with jumps on the set {xj,...,x,} and % is continuous. The supremum of the difference between f

and A is computed as follows (Arnold and Emerson, 2011, p. 35).

Sliplf(X) —h(x)| = max{max{|h(x;) = f(x)[,[ h(xi) = f(xie) [} -



3.2 Validation of asymptotics on simulated data

Since the WKS test relies on a convergence theorem, it is necessary to determine the values of n (the gene set size)
for which the procedure yields precise enough results. Such a validation is standard. For a given n, a sample of gene
sets of size n is simulated, under the null hypothesis. For each of them, the test statistic is computed, thus a sample
of values of the test statistic under the null hypothesis is obtained. The goodness-of-fit of the theoretical CDF F to
the empirical CDF of the sample is tested by the (classical) KS test. Figure 2 shows results that were obtained for
two functions g: one is g (x) = 2(1 — x) (left panel), the other one comes from real data: a sample in GSE36133
of Barretina et al. (2012) (right panel). The evaluation of F; was done over 10® Monte-Carlo simulations, and 10’
discretization points, as explained in the previous section. For the real data, the number of discretization points was
m = N = 18638, and the number of Monte-Carlo simulation was nsim = 20000. The values of n range from 5 to
1100 by step 5. For each n, 1500 uniform random gene sets of size n were simulated. The negative logarithm in base
10 of the KS p-value is plotted. On each plot the horizontal line corresponding to a 5% p-value has been added. The
p-values are small until n = 40, they stay above 5% after. This is coherent with what is observed for most asymptotic
tests, and in particular the classical KS test. Beyond statistical validation, the comparison of the exact CDF, estimated
over random gene sets, with the theoretical asymptotic F' reveals an interesting feature of the WKS test: the exact CDF
tends to be smaller than F. This implies that the asymptotic p-value tends to be larger than the true one, or else that
the procedure is conservative: small gene sets are less likely to be declared significant by WKS.

On Figure 2, there is no clear difference between the theoretical g (left), and real data (right). However, it must
be recalled that the null hypothesis HO, under which simulations have been done in both cases, is that the gene set is
a sample of uniform random variables on the interval [0, 1]. However, in practice, the gene set should be considered
instead as a random subset without replacement of the set of all genes. If the gene set size n is small compared to the
total number of genes N, the difference is negligible. We have conducted another set of experiments, where gene sets
were simulated by extracting random samples without replacement from {1/N,...,N/N}. The results (not reported
here), show a good agreement with those of Figure 2, until n = 1000. Beyond that value, the asymptotics becomes
less precise. It must be observed that gene sets of size larger than 1000 are relatively rare (28 out of the 4722 gene

sets of C2).

3.3 Comparison with classical GSEA
In this section, only real data are considered. Several vectors coming from the GEO repository were tested against all
4722 gene sets in the MSig C2 database, using the classical GSEA, and the WKS tests. The vectors that were used

came from GEO dataset GSE36133 of Barretina et al. (2012), annotated using the org.Hs.eg.db package of Carlson

10



9(x)=2(1-x) expression data from GSE36133
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Figure 2: Goodness-of-fit of simulated WKS test statistic 7, over simulated gene sets. The function g is g(x) =2(1 —x)
on the left panel. It comes from real data on the right panel. The gene set size (abscissa) ranges from 5 to 1100 by
step 5. For each n the ordinate is the negative logarithm in base 10 of the KS goodness-of-fit p-value, over a sample of
1500 gene sets. The dashed lines have ordinate —log;(0.05).

(2012). This gave N = 18638 different gene names. Observe that applying the tests, the gene sets are necessarily
reduced to those N genes. Out of the 21047 different gene symbols present in C2, only 16683 were common with the
N genes of the chosen vectors.

For a given vector, two sets of 4722 p-values were obtained, one with the GSEA test, the other with the WKS test.
Results that can be considered as typical are represented on Figure 3. In that case, the vector contained expression
data from liver tumor tissue. Out of the 4722 gene sets of C2, 129 have “liver” in their title. They were considered
are related to liver cancer, and the corresponding points are represented as red triangles on the figure. The negative
logarithms in base 10 of the p-values of both tests have been plotted, thus the figure displays 4 722 points corresponding
to p-value pairs. For comparison sake, only raw p-values are considered, without FDR adjustment. A p-value of 5%
is marked by a dashed black line: points on the right of the vertical line are significant for the classical GSEA test,
points above the horizontal line are significant for the WKS test. For the WKS test, the CDF F was calculated over
m = N = 18638 discretization points, and the number of Monte-Carlo simulations was nsim = 103. For the classical
GSEA test, the number of Monte-Carlo simulation had to be limited to 10%.

The vertical dotted lines appearing on the right of the graphic are artefacts, due to the Monte-Carlo method for

the GSEA test: the rightmost line corresponds to cases where the point-estimated p-value is equal to 0. Apart from

11



WKS vs. GSEA
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Figure 3: Test of a liver tumor expression vector against the 4722 gene sets of the MSig C2 database. Each point
corresponds to a gene set, the coordinates being the negative logarithm in base 10 of the p-values, for the classical
GSEA and the WKS tests. Gene sets related to liver cancer in the database are represented as red triangles. The
horizontal and vertical dashed lines correspond to 5% p-values.

these artefacts, it must be observed that the results of both tests are globally coherent: 2501 database gene sets were
significant (p-value smaller than 5%) for the WKS test, 2764 for GSEA, 2268 for both. There are no points in the
bottom right corner of the graphics: when a p-value is very small for GSEA, it is never large for WKS. The converse is
not true: many points in the upper left corner correspond to gene sets with a large p-value for GSEA, small for WKS.

More interesting is the analysis of liver-related gene sets. Out of 129, 76 were declared significant by the WKS
test; 70 by the GSEA test, 66 by both. Therefore, 10 gene sets were declared significant by WKS only, and 4 by
GSEA only. Figure 4 plots the cumulated proportions of weights S, (¢) for those 14 gene sets. On the same plot, the
functions 7 (bisector), to which the classical GSEA test compares S,(¢), and G(t), used as a centering by WKS, also
appear. On the graphic, the reason why a gene set may be declared significant by one test and not the other, is clear.
The 4 gene sets declared significant by GSEA and not WKS, are represented by blue step functions; they are above
the G curve. They are indeed far from the bisector, but not far enough from G. Inside the corresponding gene sets, the
weights of the genes tend to be representative of the global distribution of weights, and declaring them as significant
by comparing to the bisector can be regarded as a bias. Moreover, it should be observed that 3 out of the 4 have size

below 19. As already explained, when dealing with very small sizes, the WKS test tends to underrate significance.
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Conversely, the 10 gene sets declared significant by WKS and not GSEA are represented by red step functions.
They are relatively close to the bisector as expected, but clearly below the G curve, to which WKS compares. This
means that in the corresponding gene sets, the genes tend to have significantly smaller weights, i.e. they are signifi-
cantly underexpressed. An interesting example is the gene set named Acevedo_methylated_in_liver_cancer_dn.
As indicated by the two letters dn, it contains genes which are known to be down-regulated in case of liver cancer
(Acevedo et al. (2008)). On Figure 3, it appears on the upper left corner: it has p-value close to 0 for WKS, close to 1
for GSEA. Thus WKS has detected it as significantly related to the tested vector, whereas GSEA has not. The case is

not unique: 3 gene sets had p-value larger than 0.5 for GSEA, smaller than 10~ for WKS.

Sn(t) for gene sets detected by WKS xor GSEA

Sn(t)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Plots of the cumulated weight function S, (¢) for vectors declared significant by WKS and not GSEA (red
step functions) and conversely (blue step functions). The functions ¢ (to which the classical GSEA test compares
Sa(1)), and G(¢) (used as a centering by WKS), are dashed.

As already stated, these results were consistently observed for different expression vectors, from different types of
cancers. In all cases, WKS declared less significant pathways than GSEA in a proportion of about 10% from the whole

database, whereas it tended to detect more significant gene sets among those related to the correct type of cancer.
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4 Conclusion

A new method for testing the relative enrichment of a gene set, compared to a vector of numeric data over the whole
genome, has been proposed. Like the classical GSEA test of Subramanian et al. (2005), it is based on cumulated pro-
portions of weights, but a different centering is used. A convergence result that generalizes the classical Kolmogorov
Smirnov theorem, has been obtained. The corresponding testing procedure extends the standard Kolmogorov Smirnov
test and has been called Weighted Kolmogorov Smirnov (WKS). A major advantage of the WKS test is that the cal-
culation of p-values only depends on the vector to be tested, and not on the gene set. Therefore, the same distribution
function can be used for calculating p-values over many gene sets. A Monte-Carlo evaluation has shown that the
procedure is precise for values of the gene set size larger than 40. For a set of less than 40 genes, the WKS test is con-
servative, in the sense that the p-value is increased, and therefore the gene set is less likely to be declared significant.
For statistical coherence, the gene set size should not be larger than 1000. The WKS test has been compared with the
classical GSEA test over expression vectors of tumors coming from the GEO dataset GSE36133 of Barretina et al.
(2012), tested against the MSig database C2 (Subramanian et al. (2005)). The comparison has shown that the results
of both tests are globally coherent. The WKS test tends to output less significant gene sets out of the whole database,
but more out of gene sets specifically related to the same type of tumor. In particular, the WKS test detects sets of
underexpressed genes which are not significant for GSEA. This encouraging result needs to be consolidated, by using
the WKS test over different types of vectors, and more databases of gene sets.

Like the GSEA test, the WKS test can be used on any type of numeric data. In particular, a transformation can
be applied to the raw expression levels before testing. In particular, the initial data can be replaced by their ranks,
in which case the test has low computing cost, for a good precision. If, over the same database, the p-values of the
initial vector, and the vector of ranks are compared, a good agreement is observed; yet less gene sets are declared
significant against the rank vector. Here we have considered only the two sided version of the test: gene sets are
declared significant when their cumulated proportion of weights S,(¢) is too far from the theoretical value G(r). Just
like the KS test, the WKS can be made one-sided, by testing the signed difference between S, (r) and G(¢): a gene set
for which inf(S,,(t) — G(¢)) is significantly negative, contains genes whose weights tend to be small (down-regulated).
Conversely, gene sets for which sup(S, (1) — G(t)) is significantly positive, contain more up-regulated genes.

Both the GSEA and the WKS tests have been implemented in a R script. It is available online, together with data
samples, and a user manual, from the following address.

http://1jk.imag.fr/membres/Bernard.Ycart/publis/wks.tgz

We hope this will encourage further testing of the tool, and validation in new biological studies.
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