Konstantina Charmpi 
email: konstantina.charmpi@imag.fr
  
Bernard Ycart 
email: bernard.ycart@imag.fr
  
Weighted Kolmogorov Smirnov testing: an alternative for Gene Set Enrichment Analysis

Keywords: GSEA, statistical test, empirical processes, weak convergence, Monte-Carlo simulation AMS Subject Classification: Primary 62F03; Secondary 60F17

Gene Set Enrichment Analysis (GSEA) is a basic tool for genomic data treatment. From a statistical point of view, the centering of its test statistic does not allow the derivation of asymptotic results. A test statistic with a different centering is proposed. Under the null hypothesis, the convergence in distribution of the new test statistic is proved, using the theory of empirical processes. The limiting distribution can be computed by Monte-Carlo simulation. The test defined in this way has been called Weighted Kolmogorov Smirnov (WKS) test. The fact that the evaluation of the asymptotic distribution serves for many different gene sets results in shorter computing times. Using expression data from the GEO repository, tested against the MSig Database C2, a comparison between the classical GSEA test and the new procedure has been conducted. Our conclusion is that, beyond its mathematical and algorithmic advantages, the WKS test could be more informative in many cases, than the classical GSEA test.

Introduction

Since its definition by [START_REF] Subramanian | Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[END_REF], Gene Set Enrichment Analysis (GSEA) has been very successful, and it may now be considered as the most basic tool of genomic data treatment: see [START_REF] Bild | Application of a priori established gene sets to discover biologically important differential expression in microarray data[END_REF], Huang et al. 1 (2009), [START_REF] Nam | Gene-set approach for expression pattern analysis[END_REF] for reviews. GSEA aims at comparing a vector of numeric data indexed by the set of all genes, to the genes contained in a given smaller gene set. The numeric data are typically obtained from a microarray experiment. They may consist in expression levels, p-values, correlations, fold-changes, t-statistics, signal-to-noise ratios, etc. The number associated to any given gene will be referred to as its weight. Many examples of such data can be downloaded from the Gene Expression Omnibus (GEO) repository [START_REF] Edgar | Gene Expression Omnibus: NCBI gene expression and hybridization array data repository[END_REF]). The gene set may contain genes known to be associated to a given biological process, a cellular component, a type of cancer, etc. Thematic lists of such gene sets are given in the Molecular Signature (MSig) database [START_REF] Subramanian | Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[END_REF]). The question to be answered is: are the weights inside the gene set significantly high or low, compared to weights in a random gene set of the same size?

Denote by N the total number of genes (N ≃ 20 000 for the human genome). It will be convenient to identify the genes to N regularly spaced points on the interval [0, 1], and their weights to the values of a positive valued function g, defined on [0, 1]: gene number i corresponds to point i/N, and its weight w i to g(i/N). In [START_REF] Subramanian | Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[END_REF], the numbering of the genes is chosen so that weights are ranked in decreasing order. Thus, the weights usually appear to vary smoothly between contiguous genes, and the function g can be assumed to be continuous.

The gene set is included in the set of all genes. Let n be its size. In practice, n ranges from a few tens to a few hundreds: n is much smaller than N. With the identification above, it is considered as a subset of size n of the interval [0, 1], say {U 1 , . . . ,U n }. If there is no particular relation between the weights and the gene set (null hypothesis), then the gene set must be considered as a uniform random sample without replacement of the set of all genes. The fact that the gene set size n is much smaller than N, justifies identifying the distribution of a uniform n-sample without replacement of {1/N, . . . , N/N} to that of a n-sample of points, uniformly distributed on [0, 1]. Therefore, the null hypothesis is: H0: The gene set is a n-tuple (U 1 , . . . ,U n ) of independent, identically distributed (i.i.d.) random variables, uniformly distributed on the interval [0, 1].

The basic object is the following step function, cumulating the proportion of weights inside the gene set, along the interval [0, 1]. It is defined for all t between 0 and 1 by:

S n (t) = ∑ n k=1 g(U k ) I U k t ∑ n k=1 g(U k ) , (1) 
where I denotes the indicator of an event. The test statistic proposed by [START_REF] Subramanian | Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[END_REF] is:

T n = sup t∈[0,1] | S n (t) -t | . ( 2 
)
The motivation is best understood in the particular case where the weights w i are constant. Then the function g is also constant, and:

S n (t) = n ∑ k=1 1 n I U k t .
This is the empirical Cumulative Distribution Function (CDF) of the sample (U 1 , . . . ,U n ). The test statistic T n is the maximal distance between that empirical CDF and the theoretical CDF of the uniform distribution on the interval [0, 1].

In other terms, √ nT n is the Kolmogorov Smirnov (KS) test statistic for the goodness-of-fit of the uniform distribution on [0, 1] to the sample (U 1 , . . . ,U n ) [START_REF] Arnold | Nonparametric Goodness-of-Fit Tests for Discrete Null Distributions[END_REF]). The constant weight case was initially proposed by [START_REF] Mootha | PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes[END_REF], who explicitly referred to the KS statistic (see also (Subramanian et al., 2005, Supporting text, p. 5,6,11), [START_REF] Ycart | Curbing false discovery rates in interpretation of genome-wide expression profiles[END_REF][START_REF] Tarca | A Comparison of Gene Set Analysis Methods in Terms of Sensitivity, Prioritization and Specificity[END_REF]). In the general case where the weights are not constant, the distribution of the test statistic T n under the null hypothesis is unknown. In the current implementations, it is approximated by Monte-Carlo simulation on 1000 random samples [START_REF] Subramanian | Gsea-P: a desktop application for Gene Set Enrichment Analysis[END_REF]).

Our first remark is that in the non constant case, the limit of S n (t) as n tends to infinity is not t, as (2) seems to suggest, but instead:

lim n→∞ S n (t) = t 0 g(u) du 1 0 g(u) du .
Thus the GSEA test statistic T n is not appropriately centered, unless the weights are constant. Instead, the following test statistic should be used:

T * n = √ n sup t∈[0,1] S n (t) - t 0 g(u) du 1 0 g(u) du . ( 3 
)
The objective of this paper is to derive the asymptotic distribution of T * n under the null hypothesis, then deduce from the mathematical result a practical testing procedure, and compare the outputs of that procedure to those of the classical GSEA test.

Our theoretical result is the following. 

(t) = √ n (S n (t) -G(t)) . ( 4 
)
As n tends to infinity, the stochastic process {Z n (t) , t ∈ [0, 1]} converges weakly in ℓ ∞ ([0, 1]) to the process {Z(t) , t ∈ [0, 1]}, where:

Z(t) = t 0 g(u) dW u -G(t) 1 0 g(u) dW u , (5) 
and {W t , t ∈ [0, 1]} is the standard Brownian motion.

The hypothesis 1 0 g(u) du = 1 induces no loss of generality: since g is continuous and positive, its integral is positive; g can be divided by its integral without changing the values of the cumulated proportion of weights S n (t).

The proof of Theorem 1.1 will be given in section 2. It is based on the theory of empirical processes, for which [START_REF] Shorack | Empirical Processes with Applications to Statistics[END_REF] and [START_REF] Kosorok | Introduction to Empirical Processes and Semiparametric Inference[END_REF] will be used as general references.

The first consequence of Theorem 1.1 for GSEA, is that as n increases, the distribution of the proposed test statistic T * n under the null hypothesis, tends to that of the following random variable T :

T = sup t∈[0,1] |Z(t)| ,
where the random process Z is defined by (5). Denote by F its CDF: for all x > 0,

F(x) = Prob(T x) . (6) 
Observe that F(x) only depends on g, i.e. on the weights of the vector to be tested. Except in the classical KS case of constant weights, F does not have a closed-form expression, but a Monte-Carlo approximation is easily obtained.

The testing procedure generalizes that of the classical KS test: since the test statistic T * n has asymptotic CDF F under the null hypothesis, the p-value of an observation T * n = x is 1 -F(x). That testing procedure will be referred to as

Weighted Kolmorov Smirnov (WKS) test. A crucial feature is that, since F only depends on the weights, the same evaluation of F can be repeatedly used for many gene sets, which saves computing time. Of course, the repeated application of a test to a full database of several thousand gene sets poses the problem of False Discovery Rate (FDR) correction. In applications, we have used the method of [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]: see [START_REF] Dutoit | Multiple testing procedures with applications to genomics[END_REF] for multiple testing procedures in genomics.

Like the KS test, the WKS test is based on an asymptotic result. In practice, it is used for finite values of n.

Therefore, it is necessary to determine for which size n of gene sets, the test can be applied with good precision.

A Monte-Carlo comparison of the cumulative distribution function of T * n to its limit F for different values of n was conducted. Our conclusion is that the test can be safely applied for gene set sizes n larger than 40. Beyond Monte-Carlo validation, it was necessary to compare the outputs of the WKS test to those of the classical GSEA test, on real data. Inside the GEO dataset GSE36133 of [START_REF] Barretina | The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity[END_REF], we have selected vectors (samples) from different types of tumors. These vectors were tested against all gene sets of MSig database C2, calculating for each sample the p-values of both tests. The gene sets known to be related to the same type of cancer as the initial vector were of particular interest. An example corresponding to a sample of liver tumor will be reported; we consider it as typical of the observations that were made with other samples. The obtained results are encouraging: the WKS test tends to output less significant gene sets than the classical GSEA test out of the whole database, but more out of those gene sets related to the correct type of cancer. Our conclusion is that, beyond its mathematical and algorithmic advantages, the WKS test could be more informative in many cases, than the classical GSEA test.

The document is organized in the following way. In section 2, Theorem 1.1 is proved, and the asymptotic distribution of T * n is deduced. Section 3 is devoted to the statistical application, beginning with the description of the Monte-Carlo algorithm of calculation of p-values. Results of simulated tests are reported next. Finally, an example of comparison of the WKS test with the GSEA test on real data is discussed.

Theoretical background

The notations and results of [START_REF] Kosorok | Introduction to Empirical Processes and Semiparametric Inference[END_REF] will be used. In particular, throughout the section, denotes the weak convergence of processes in ℓ ∞ ([0, 1]). We first give the proof of Theorem 1.1, which asserts the convergence Z n Z, where Z n is the empirical process defined by ( 4), and Z is the Gaussian bridge defined by ( 5).

Proof. The idea is the following. Consider:

Z 1 n (t) = ∑ n k=1 g(U k ) n Z n (t) . (7) 
Using the general results on empirical processes and Donsker classes, exposed in section 9.4 of [START_REF] Kosorok | Introduction to Empirical Processes and Semiparametric Inference[END_REF], it will be proved that Z 1 n Z. By the law of large numbers,

lim n→∞ ∑ n k= g(U k ) n = 1 0 g(u) du = 1 , a.s.
The convergence Z n Z follows as an application of Slutsky's theorem: Theorem 7.15 of (Kosorok, 2008, p. 112).

The random variable Z 1 n (t) can be written as follows:

Z 1 n (t) = 1 √ n n ∑ k=1 g(U k )I {U k t} -G(t) n ∑ k=1 g(U k ) = 1 √ n n ∑ k=1 g(U k ) I {U k t} -G(t) ,
denoting by G the primitive of g, as before. Empirical processes are customarily written as function-indexed processes.

Define the class of functions F by:

F = g(•) I [0,t] (•) -G(t) ; t ∈ [0, 1] .
Denote by P n the empirical measure of (U 1 , . . . ,U n ), by P the uniform distribution on [0, 1], by P n f and P f the integrals of f with respect to P n and P (Kosorok, 2008, p. 11). For f ∈ F , define Z1 n ( f ) by:

Z1 n ( f ) = √ n (P n f -P f ) . (8) 
Obviously, for all t ∈ [0, 1],

Z 1 n (t) = Z1 n g(•) I [0,t] (•) -G(t) . (9) 
Let us prove that F is a Donsker class. Firstly, observe that the following class F 1 is Donsker.

F 1 = I [0,t] (•) -G(t) ; t ∈ [0, 1] .
Indeed, for f ∈ F 1 , the process √ n (P n f -P f ) converges weakly to the standard Brownian bridge. Since all functions in F 1 take values between -1 and 1, the supremum of |P f | over F 1 is not larger than 1. The function g, being continuous on a compact interval, is bounded and measurable. From Corollary 9.32, p. 173 of [START_REF] Kosorok | Introduction to Empirical Processes and Semiparametric Inference[END_REF], it follows that F is also Donsker. The convergence of Z1 n now follows from the result of (Kosorok, 2008, p. 11). The limit Z1 is a zero mean, F -indexed, Gaussian process. Its covariance function is defined, for all f 1 , f 2 in F by:

E[ Z1 ( f 1 ) Z1 ( f 2 )] = P( f 1 f 2 ) -P f 1 P f 2 . ( 10 
)
Through ( 9), the convergence of Z1 n induces the convergence of Z 1 n , to a zero mean, [0, 1]-indexed process Z 1 . Let us compute the covariance function of Z 1 . For s,t in [0, 1], let:

f 1 (•) = g(•)(I [0,s] (•) -G(s)) and f 2 (•) = g(•)(I [0,t] (•) -G(t)) .
Applying (10) to these functions f 1 and f 2 yields,

E[Z 1 (t) Z 1 (s)] = min(t,s) 0 g 2 (u) du -G(t) s 0 g 2 (u) du -G(s) t 0 g 2 (u) du + G(s)G(t) 1 0 g 2 (u) du . (11) 
There remains to be proved that Z 1 and Z have the same distribution, where Z is defined by the representation (5) in terms of the standard Brownian motion W :

Z(t) = t 0 g(u) dW u -G(t) 1 0 g(u) dW u .
It is a well known fact that the primitive of a deterministic function with respect to the Brownian motion is Gaussian: therefore Z is a Gaussian process. The covariance function is easily calculated, using formula (32), p. 128 of [START_REF] Shorack | Empirical Processes with Applications to Statistics[END_REF]: it is indeed defined by (11). The processes Z 1 and Z are both Gaussian, their means and covariance are equal, therefore they have the same distribution.

As explained in the introduction, the random variable of interest for GSEA is the supremum of the process |Z| over the interval [0, 1].

Corollary 2.1. Under the notations and hypotheses of Theorem 1.1, let

T * n = sup t∈[0,1] | Z n (t) | .
Then T * n converges in distribution to

sup t∈[0,1] |Z(t)| = sup t∈[0,1] t 0 g(u)dW u - t 0 g(u)du 1 0 g(u)dW u ,
where W denotes the standard Brownian motion.

Proof. The mapping

f → sup t∈[0,1] | f (t)|, from l ∞ ([0, 1]) into R + , is continuous. From Theorem 1.1, Z n Z.
The conclusion follows as an application of Theorem 7.7, p. 109 of [START_REF] Kosorok | Introduction to Empirical Processes and Semiparametric Inference[END_REF].

3 Statistical Application

Implementation

The R code (R Core Team ( 2013)) implementing the WKS test has been made available online, together with a user manual and samples of data. Several issues regarding the implementation are discussed here. The essential step is the evaluation of the cumulative distribution function distribution F defined by ( 6), or else:

F(x) = Prob sup t∈[0,1] t 0 g(u) dW u -G(t) 1 0 g(u) dW u x . (12) 
A Monte-Carlo calculation has to be used. First of all, sample paths for the stochastic process

t 0 g(u) dW u ; t ∈ [0, 1]
must be simulated. This is done using a standard Euler-Maruyama scheme: see Sauer (2013) for a review of numerical methods for stochastic integrals and differential equations. A regular subdivision of the interval [0, 1] into m intervals is chosen:

t i = i m , i = 0, . . . , m .
Recall that in practice, the function g is known at points i/N representing the genes. Hence it is natural to choose m = N. The stochastic integral is approximated by a sum:

t 0 g(u) dW u ≈ m-1 ∑ i=0 g(t i ) (W t i+1 ∧t -W t i ∧t ) . ( 13 
)
The increments W t i+1 -W t i are easily simulated as i.i.d centered Gaussian variables, with variance 1/m. An estimate of the CDF F is obtained by simulating nsim discretized trajectories of Z, taking the maximum of the absolute value of each, then returning the empirical CDF of the obtained sample. The algorithm can be written as follows.

Algorithm 1 Approximation of F 1: Simulate increments of the Brownian motion on t 0 , . . . ,t m , 2: for i = 0, . . . , m -1, compute g(t i ) (W t i+1 -W t i ), 3: get cumulated sums of the previous sequence, 4: deduce the discretized trajectory for {Z(t) , t ∈ [0, 1]} at t 0 , . . . ,t m , 5: compute the maximum absolute value of the previous sequence, 6: repeat nsim times steps 1 to 5, 7: return the empirical distribution function of the obtained sample.

Actually, since F(x) is evaluated as the proportion of a sample below x, the result must take the uncertainty into account. We propose to return the lower bound of the 95% left-sided confidence interval, instead of the point estimate.

This gives an upper bound for the p-value, which is a conservative evaluation. As stated before, the CDF F only depends on the weight function g. The relation between g and F is illustrated on Figure 1. Five different CDF's have been computed, for Theoretical functions g may seem of little practical interest. This is not so, for two reasons. The first reason is the use of robust statistics (see [START_REF] Héritier | Robust methods in biostatistics[END_REF] as a general reference, and [START_REF] Tsodikov | Adjustments and measures of differential expression for microarray data[END_REF] for application to expression data). If the initial values are replaced by their ranks, then the weights are N, N -1, . . . , 2, 1. Therefore, the weight function is g 1 (x) = 2(1x). This justifies calculating F 1 with good precision, which makes the WKS test fast and precise, for all uses over rank statistics. We have done so, using 10 6 Monte-Carlo simulations, and 2013)), and GSE9984 [START_REF] Mikheev | Profiling gene expression in human placentae of different gestational ages: an OPRU network and UW SCOR study[END_REF]). Several samples of expression levels in each study were selected. In each sample, the expression levels were ranked in decreasing order, and Algorithm 1 was applied in order to obtain an estimation of F. For all real datasets, the estimated F was such that F 4 (x) < F(x) < F 0 (x). It seems to be the case in practice that F 4 and F 0 provide lower and upper bounds for F.

g k (x) = (k + 1)(1 -x 1/k ), k = 0,
The next algorithmic point concerns the calculation of the test statistic, that is the value of T * n defined by (3) for a given set of weights and a gene set of size n:

T * n = √ n sup t∈[0,1] | S n (t) -G(t) | ,
where

S n (t) = ∑ n k=1 g(U k ) I U k t ∑ n k=1 g(U k )
.

The values g(U k ) are the weights of genes inside the gene set. Observe that, if the same vector has to be tested against many gene sets, the calculation of G(t) (cumulated sums of all weights) must be done only once. The value of T * n is returned by a procedure similar to that of the classical KS test. Consider two non-decreasing functions f and h where f is a step function with jumps on the set {x 1 , . . . , x n } and h is continuous. The supremum of the difference between f and h is computed as follows (Arnold and Emerson, 2011, p. 35).

sup x | f (x) -h(x) | = max i { max{ | h(x i ) -f (x i ) |, | h(x i ) -f (x i-1 ) | } } .

Validation of asymptotics on simulated data

Since the WKS test relies on a convergence theorem, it is necessary to determine the values of n (the gene set size)

for which the procedure yields precise enough results. Such a validation is standard. For a given n, a sample of gene sets of size n is simulated, under the null hypothesis. For each of them, the test statistic is computed, thus a sample of values of the test statistic under the null hypothesis is obtained. The goodness-of-fit of the theoretical CDF F to the empirical CDF of the sample is tested by the (classical) KS test. Figure 2 shows results that were obtained for two functions g: one is tends to be smaller than F. This implies that the asymptotic p-value tends to be larger than the true one, or else that the procedure is conservative: small gene sets are less likely to be declared significant by WKS.

g 1 (x) = 2(1 -x) (left
On Figure 2, there is no clear difference between the theoretical g (left), and real data (right). However, it must be recalled that the null hypothesis H0, under which simulations have been done in both cases, is that the gene set is a sample of uniform random variables on the interval [0, 1]. However, in practice, the gene set should be considered instead as a random subset without replacement of the set of all genes. If the gene set size n is small compared to the total number of genes N, the difference is negligible. We have conducted another set of experiments, where gene sets were simulated by extracting random samples without replacement from {1/N, . . . , N/N}. The results (not reported here), show a good agreement with those of Figure 2, until n = 1 000. Beyond that value, the asymptotics becomes less precise. It must be observed that gene sets of size larger than 1 000 are relatively rare (28 out of the 4 722 gene sets of C2).

Comparison with classical GSEA

In this section, only real data are considered. Several vectors coming from the GEO repository were tested against all 4 722 gene sets in the MSig C2 database, using the classical GSEA, and the WKS tests. The vectors that were used came from GEO dataset GSE36133 of [START_REF] Barretina | The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity[END_REF], annotated using the org.Hs.eg.db package of Carlson (2012). This gave N = 18 638 different gene names. Observe that applying the tests, the gene sets are necessarily reduced to those N genes. Out of the 21 047 different gene symbols present in C2, only 16 683 were common with the N genes of the chosen vectors.

For a given vector, two sets of 4 722 p-values were obtained, one with the GSEA test, the other with the WKS test.

Results that can be considered as typical are represented on Figure 3. In that case, the vector contained expression data from liver tumor tissue. Out of the 4 722 gene sets of C2, 129 have "liver" in their title. They these artefacts, it must be observed that the results of both tests are globally coherent: 2 501 database gene sets were significant (p-value smaller than 5%) for the WKS test, 2 764 for GSEA, 2 268 for both. There are no points in the bottom right corner of the graphics: when a p-value is very small for GSEA, it is never large for WKS. The converse is not true: many points in the upper left corner correspond to gene sets with a large p-value for GSEA, small for WKS.

More interesting is the analysis of liver-related gene sets. Out of 129, 76 were declared significant by the WKS test; 70 by the GSEA test, 66 by both. Therefore, 10 gene sets were declared significant by WKS only, and 4 by GSEA only. Figure 4 plots the cumulated proportions of weights S n (t) for those 14 gene sets. On the same plot, the functions t (bisector), to which the classical GSEA test compares S n (t), and G(t), used as a centering by WKS, also appear. On the graphic, the reason why a gene set may be declared significant by one test and not the other, is clear.

The 4 gene sets declared significant by GSEA and not WKS, are represented by blue step functions; they are above the G curve. They are indeed far from the bisector, but not far enough from G. Inside the corresponding gene sets, the weights of the genes tend to be representative of the global distribution of weights, and declaring them as significant by comparing to the bisector can be regarded as a bias. Moreover, it should be observed that 3 out of the 4 have size below 19. As already explained, when dealing with very small sizes, the WKS test tends to underrate significance.

Conversely, the 10 gene sets declared significant by WKS and not GSEA are represented by red step functions.

They are relatively close to the bisector as expected, but clearly below the G curve, to which WKS compares. This means that in the corresponding gene sets, the genes tend to have significantly smaller weights, i.e. they are significantly underexpressed. An interesting example is the gene set named Acevedo_methylated_in_liver_cancer_dn.

As indicated by the two letters dn, it contains genes which are known to be down-regulated in case of liver cancer [START_REF] Acevedo | Analysis of the mechanisms mediating tumor-specific changes in gene expression in human liver tumors[END_REF]). On Figure 3, it appears on the upper left corner: it has p-value close to 0 for WKS, close to 1 for GSEA. Thus WKS has detected it as significantly related to the tested vector, whereas GSEA has not. The case is not unique: 3 gene sets had p-value larger than 0.5 for GSEA, smaller than 10 -3 for WKS. As already stated, these results were consistently observed for different expression vectors, from different types of cancers. In all cases, WKS declared less significant pathways than GSEA in a proportion of about 10% from the whole database, whereas it tended to detect more significant gene sets among those related to the correct type of cancer.

Conclusion

A new method for testing the relative enrichment of a gene set, compared to a vector of numeric data over the whole genome, has been proposed. Like the classical GSEA test of [START_REF] Subramanian | Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[END_REF], it is based on cumulated proportions of weights, but a different centering is used. A convergence result that generalizes the classical Kolmogorov Smirnov theorem, has been obtained. The corresponding testing procedure extends the standard Kolmogorov Smirnov test and has been called Weighted Kolmogorov Smirnov (WKS). A major advantage of the WKS test is that the calculation of p-values only depends on the vector to be tested, and not on the gene set. Therefore, the same distribution function can be used for calculating p-values over many gene sets. A Monte-Carlo evaluation has shown that the procedure is precise for values of the gene set size larger than 40. For a set of less than 40 genes, the WKS test is conservative, in the sense that the p-value is increased, and therefore the gene set is less likely to be declared significant.

For statistical coherence, the gene set size should not be larger than 1 000. The WKS test has been compared with the classical GSEA test over expression vectors of tumors coming from the GEO dataset GSE36133 of [START_REF] Barretina | The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity[END_REF], tested against the MSig database C2 [START_REF] Subramanian | Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[END_REF]). The comparison has shown that the results of both tests are globally coherent. The WKS test tends to output less significant gene sets out of the whole database, but more out of gene sets specifically related to the same type of tumor. In particular, the WKS test detects sets of underexpressed genes which are not significant for GSEA. This encouraging result needs to be consolidated, by using the WKS test over different types of vectors, and more databases of gene sets.

Like the GSEA test, the WKS test can be used on any type of numeric data. In particular, a transformation can be applied to the raw expression levels before testing. In particular, the initial data can be replaced by their ranks, in which case the test has low computing cost, for a good precision. If, over the same database, the p-values of the initial vector, and the vector of ranks are compared, a good agreement is observed; yet less gene sets are declared significant against the rank vector. Here we have considered only the two sided version of the test: gene sets are declared significant when their cumulated proportion of weights S n (t) is too far from the theoretical value G(t). Just like the KS test, the WKS can be made one-sided, by testing the signed difference between S n (t) and G(t): a gene set for which inf(S n (t) -G(t)) is significantly negative, contains genes whose weights tend to be small (down-regulated).

Conversely, gene sets for which sup(S n (t) -G(t)) is significantly positive, contain more up-regulated genes.

Both the GSEA and the WKS tests have been implemented in a R script. It is available online, together with data samples, and a user manual, from the following address.

http://ljk.imag.fr/membres/Bernard.Ycart/publis/wks.tgz

We hope this will encourage further testing of the tool, and validation in new biological studies.
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  10 5 discretization points. The second reason is the observation of F when the weights come from real data. Eight different GEO datasets were considered: GSE36382[START_REF] Mayerle | Identification of genetic loci associated with Helicobacter pylori serologic status[END_REF]), GSE48348[START_REF] Esko | Gene Expression profiling in healthy population samples[END_REF]), GSE36809 (Xiao et al. (2011)), GSE31312[START_REF] Frei | Addition of rituximab to chemotherapy overcomes the negative prognostic impact of cyclin E expression in diffuse large B-cell lymphoma[END_REF]), GSE48762[START_REF] Obermoser | Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines[END_REF]), GSE37069[START_REF] Seok | Genomic responses in mouse models poorly mimic human inflammatory diseases[END_REF]), GSE39582(Marisa et al. (

Figure 1 :

 1 Figure 1: Cumulated distribution functions F k corresponding to g k (x) = (k + 1)(1x 1/k ), for k = 0, 1, 2, 3, 4.The highest curve corresponds to k = 0 (constant weights, classical Kolmogorov Smirnov CDF). The CDF's decrease as k increases: the steeper g, the smaller F, and the larger the p-values.

  panel), the other one comes from real data: a sample in GSE36133 of[START_REF] Barretina | The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity[END_REF] (right panel). The evaluation of F 1 was done over 10 6 Monte-Carlo simulations, and 10 5 discretization points, as explained in the previous section. For the real data, the number of discretization points was m = N = 18 638, and the number of Monte-Carlo simulation was nsim = 20 000. The values of n range from 5 to 1 100 by step 5. For each n, 1 500 uniform random gene sets of size n were simulated. The negative logarithm in base 10 of the KS p-value is plotted. On each plot the horizontal line corresponding to a 5% p-value has been added. The p-values are small until n = 40, they stay above 5% after. This is coherent with what is observed for most asymptotic tests, and in particular the classical KS test. Beyond statistical validation, the comparison of the exact CDF, estimated over random gene sets, with the theoretical asymptotic F reveals an interesting feature of the WKS test: the exact CDF

Figure 2 :

 2 Figure 2: Goodness-of-fit of simulated WKS test statistic T * n over simulated gene sets. The function g is g(x) = 2(1-x) on the left panel. It comes from real data on the right panel. The gene set size (abscissa) ranges from 5 to 1 100 by step 5. For each n the ordinate is the negative logarithm in base 10 of the KS goodness-of-fit p-value, over a sample of 1 500 gene sets. The dashed lines have ordinatelog 10 (0.05).

Figure 3 :

 3 Figure 3: Test of a liver tumor expression vector against the 4 722 gene sets of the MSig C2 database. Each point corresponds to a gene set, the coordinates being the negative logarithm in base 10 of the p-values, for the classical GSEA and the WKS tests. Gene sets related to liver cancer in the database are represented as red triangles. The horizontal and vertical dashed lines correspond to 5% p-values.

for gene sets detected by WKS xor GSEA

  Figure 4: Plots of the cumulated weight function S n (t) for vectors declared significant by WKS and not GSEA (red step functions) and conversely (blue step functions). The functions t (to which the classical GSEA test compares S
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n (t)), and G(t) (used as a centering by WKS), are dashed.
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