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Abstract 

A verification and validation procedure for yacht sail aerodynamics is presented. 
Guidelines and an example of application are provided. The grid uncertainty for the 
aerodynamic lift, drag and pressure distributions for the sails is computed. The 
pressures are validated against experimental measurements, showing that the 
validation procedure may allow the identification of modelling errors. Lift, drag and 
𝐿2 norm of the pressures were computed with uncertainties of the order of 1%. 
Convergence uncertainty and round-off uncertainty are several orders of magnitude 
smaller than the grid uncertainty. The uncertainty due to the dimension of the 
computational domain is computed for a flat plate at incidence and is found to be 
significant compared with the other uncertainties. Finally, it is shown how the 
probability that the ranking between different geometries is correct can be estimated 
knowing the uncertainty in the computation of the value used to rank.  

1 Introduction 

1.1 Background 

The aerodynamics of sailing vessels has been studied for centuries, since the days 
when sails were primarily used by merchant fleets. Only since the middle of the 
nineteenth century, with the birth of modern yachting, has sail aerodynamics been 
associated with recreational sailing boats. Today, this branch of fluid dynamics is of 
increasing interest both due to the impact of sailing competitions on the economy of 
some countries, and to the possible future applications of sails for renewable wind 
energy devices. In fact, the most important sailing competition, the America’s Cup, 
today generates revenues that are only 20% lower than those generated by the FIFA 
World Cup [1]. Since the 1990s, the most competitive America’s Cup sailing teams 
have each invested around £20 million every year in order to achieve the fastest 
possible yacht, and these figures are likely to increase further in future years. In 
addition, due to the constant increase in fuel and oil costs and the unsustainable 
production of carbon emissions by current merchant fleets, sail propulsion is again 
becoming an attractive alternative for the future.  

An increasing number of scientists and resources are being employed to study the 
performance of sails. The constant growth of computational capabilities makes 
computational fluid dynamics (CFD) the most used design tool in sail aerodynamics 
today. The increase in number of numerical simulations performed requires guidelines 
and good practice to be established to support inexperienced users and industrial 
applications in the sail aerodynamic field. In particular, verification and validation 



(V&V) analysis would allow scientists to assess and enhance simulations, and sail and 
yacht designers to make better use of the results.  

1.2 Verification and Validation 

The aim of the V&V procedure is to assess the error computed by numerical 
simulations. In fact, performing a numerical simulation implies a simplification of 
reality through the use of a model, and the discretisation of the continuum by a finite 
number of elements, time steps, iterations, digits, etc. These two simplifications lead 
to differences, namely modelling and numerical errors, between the real value and the 
computed value. V&V aims to assess the magnitude and the sign of the modelling and 
numerical errors. In the last ten years several methodologies have been presented, 
mainly applied to the aeronautical fields. Whereas in other fields, such as hull 
hydrodynamics [2], a formal V&V procedure is regularly adopted and workshops are 
held to test different approaches and methodologies [3-8] in sail aerodynamics a 
formal V&V procedure has never been presented before. The aim of the present paper 
is to show an example of V&V applied to sail aerodynamics that can be adopted as a 
guideline for this field of application. The most acknowledged V&V procedures are 
reviewed. In particular, methods based on the Grid Convergence Index [9-11], the 
Factor of Safety [12-14] and the Least Square Root [15-18] are considered. These 
methods were used to draw the guidelines proposed by the American Society of 
Mechanical Engineers (ASME) [19] and by the CFD Specialist Committee of the 
International Towing Tank Conference (ITTC) [20-22]. Unfortunately, these methods 
are complicated to implement and have different limitations. In particular, the Grid 
Convergence Method does not take into account the scatter in the numerical results, 
while the Factor of Safety and the Least Square Root methods require knowledge of 
the theoretical order of convergence, which is often unknown when commercial codes 
are used and different orders are exploited for different equations. Therefore, a 
simplified approach, mainly inspired from [17,18] and which can be easily 
implemented in industrial practice where tight timeframes do not allow a large 
number of simulations to be performed, is suggested herein.  

2 Presentation of the V&V procedure 

The V&V aims to estimate the error in the computation of any primitive, derivative, 
local and global variables. For any of these variables, indicated with 𝜙 herein, the 
error 𝛿! is defined as the difference between the computed value 𝜙!"# and the true 
value 𝜙!"#$: 

𝛿! = 𝜙!"# − 𝜙!"#$       (1) 

The use of the subscript 𝜙 in Equation 1 and in the following Equations remarks that 
the presented V&V procedure should be repeated for every variable 𝜙 of interest. The 
error 𝛿! is broken down into two components: the modelling error 𝛿!!"#, which is
due to the simplification of the model, and the numerical error 𝛿!!"#, which is due to
the difference between the continuous nature of the reality and the discrete nature of 
the numerical model.  

𝛿! = 𝛿!!"# + 𝛿!!"#      (2)



In some V&V procedures, such as those recommended by ASME [19], a third error 
component due to the uncertainty of the simulation’s inputs is considered. Conversely, 
in the proposed procedures, in agreement with the ITTC guidelines [20-22], this 
component is included in the numerical error.  

In sail aerodynamics, the modelling error can be due, for instance, to the neglected 
fluid-structure interaction when the fluid dynamic computation is not coupled with a 
structural code, to the neglected dynamic movements of the  yacht that leads to a 
variation of the experienced wind speed and direction, or to the modelling of the 
atmospheric boundary layer when the measurement of the vertical velocity profile is 
not available. When wind tunnel tests instead of real sailing conditions are modelled, 
modelling errors can be due, for instance, to the position of the external boundaries. In 
fact, the wind tunnel walls lead to a blockage effect, which affects both the velocity 
magnitude and the direction of the onset flow. Other sources of modelling errors are 
the geometry of the yacht model, the rigging and the thickness of the sails, the 
turbulence model, the near wall treatment, etc.  

The numerical error 𝛿!!"#  is a function of errors due to the grid  𝛿!! , time step

𝛿!! , round-off 𝛿!! , other input parameters 𝛿!!  and convergence 𝛿!! .

𝛿!!"# = 𝑓 𝛿!!, 𝛿!! , 𝛿!! , 𝛿!!, 𝛿!!     (3)

While the true value 𝜙!"#$ or its experimental estimate must be available to assess 
the modelling error, the numerical error is assessed without any information about 
𝜙!"#$. In fact, because the numerical error is due to the discrete nature of the 
numerical model, it is possible to assess this error by testing different discretisations 
of the model. This is a very important point that is worth highlighting. Therefore, 
even if the experimental data is not available, the uncertainty of the computed results 
can still be estimated. This uncertainty will include the contribution due to the 
numerical error and not the one due to the modelling error.  

The process that assesses the numerical error and the associated numerical uncertainty, 
𝑈!!"#, is called verification. In particular, it assesses uncertainty components due to

the grid size 𝑈!! , time step 𝑈!! , round-off 𝑈!!  other input parameters 𝑈!!
and convergence 𝑈!! . The overall numerical uncertainty is estimated as per
experimental fluid dynamics uncertainty analysis, shown in Equation 4. 

𝑈!!"# = 𝑈!!
! + 𝑈!!

! + 𝑈!!
! + 𝑈!!

! + 𝑈!!             (4)

The discretisation uncertainty is not independent from the convergence uncertainty 
[23] and for this reason it is linearly added in Equation (4). 

The following sections present how each of the uncertainties on the right hand side of 
Equation 4 can be assessed. The uncertainties are provided at 95% confidence levels, 



assuming a normal distribution of the errors. Therefore, assuming normally 
distributed errors, the uncertainty is defined as two standard deviations of the error 
distribution and the solution  has probabilities of 68.3%, 95.4% and 99.7% to lay 
within the intervals 
respectively. Figure 1 shows the probability distribution of . It should be noted that 
the error bars used herein do not represent the maximum variation of . Conversely, 
there is a probability of 2.3% that  is higher, and 2.3% that  is smaller, than the 
maximum and minimum extremes of the error bars respectively.  

Figure 1: Probability distribution of  and definition of the error bar. 

2.1 Discretisation Uncertainties 

When Reynolds-averaged Navier-Stokes equations (RANSE) are solved, the space 
and time resolutions set the limit between the physics resolved by the simulation and 
that modelled with semi-empirical formulations. Therefore, varying the resolution 
leads to different results. When very poor resolution is used, a variation in the 
resolution can lead to an unpredictable jump of the solution, and increasing the 
resolution does not lead to a converging solution. This range of resolutions is called 
the stochastic range. When the resolution is able to model most of the flow features 
that affect the solution, then increasing the resolution leads to an asymptotically 
converging solution. This range of resolution is called the asymptotic range. The 
convergence can be monotonic or oscillatory. The amplitude of the oscillations can be 
partially controlled with the under-relaxation factors, although a scatter can be 
superimposed on the asymptotic trend. This can be due to various sources, for 
instance, the switch between two different model formulations in the near-wall region 
triggered by the value of the wall distance in boundary layer units . Distinguishing 
between a non-converging trend and a converging trend affected by the scatter can be 
very difficult and examples will be provided in the following sections. Figure 2 shows 
the stochastic and the asymptotic ranges for a generic value . The time and space 
discretisation resolution is represented by the step size , which is the time step for 
the time resolution, and a characteristic distance between two grid points for the space 
resolution. The step size is divided by a base step size , which is used as a 
reference. Figure 2 shows that when the step size decreases, the solution varies 
randomly (stochastic range) until it converges asymptotically towards  (asymptotic 
range).  



Figure 2: Asymptotic range for a solution  versus the relative step size . 

A numerical code should converge towards a grid independent solution with the same 
order of convergence as the order of accuracy of the discretisation scheme adopted. 
For instance, a steady diffusion-convective problem solved on a regular grid should 
converge with first, second and third orders when the convective term is modelled 
with an upwind differencing scheme (UDS), a central differencing scheme (CDS) or a 
quadratic upstream interpolation for convective kinetics (QUICK) respectively [24]. 
In fact, these three schemes are first, second and third order accurate on regular grids. 
In other words, if the grid spacing between the nodes were decreased by , the 
numerical error due to the grid resolution would decrease by ,  and 
respectively. Similarly, a time-dependent diffusive only problem should present a first 
and second order convergence when solved with an Euler (implicit or explicit) and a 
Crank-Nicholson method, respectively. Unfortunately, in sail aerodynamics different 
schemes with different orders of accuracy are used at the same time and the grids are 
non uniform, therefore, the order of convergence is not predictable and should be 
assessed. The order of convergence allows the uncertainty of the computed value to 
be assessed. 

The converging trend  can be expanded in a power series in order to 
compute the order of convergence and the extrapolated value  for . When 
three equidistant step sizes are available, then the Richardson Extrapolation can be 
used [9,10,25].  

Hereby, a more general formulation, which allows estimating the uncertainty at a 95% 
confidence level and which can be used with any number of step sizes above two and 
with any relative distance, is presented. The convergence trend is approximated in 
Equation 5, and the coefficients  are computed with the least-squares 
method. In addition, the standard deviation  of the fit must be computed.  

 

If , the uncertainty in the computation of  due to a step size  is computed 
using Equation 6.  



𝑈!! = 1.25   𝛿!! + 𝜎       6
where 

𝛿!! = 𝜙! − 𝜙!        (7)

The subscript ℎ in Equation 6 is to remind that this is the uncertainty for the step size 
ℎ, which can be either the grid step size or the time step size; the value 1.25 is a safety 
factor, and the vertical bars in Equation 7 stand for the absolute value of the argument 
between the bars. The higher the order of convergence, 𝑝, the smaller 𝛿!!  and, thus,
the uncertainty 𝑈!!. Unrecognised scatter might lead to an incorrect estimate of the
order of convergence. In particular, when different algorithms with orders of accuracy 
between one and three are used, the orders of convergence below one and above three 
are unlikely and additional simulations with different step sizes are recommended, 
though it should be taken into account that the use of limiters might lead to orders 
below one. Additional simulations may allow a better estimation of the order of 
convergence. The standard deviation, 𝜎, of the least-squares method introduces an 
additional uncertainty in the measurement of the order of convergence. For this reason, 
the larger the standard deviation, 𝜎, the larger the uncertainty. It should be noted that 
when only three step sizes are used, then the three coefficients 𝑐,𝑝  and  𝜙! can be 
computed exactly and 𝜎 = 0.   The limitation of Equation 6 is that testing a lower 
number of step sizes might lead to a lower uncertainty, which is not justified. This is 
particularly relevant for low orders of convergence and high scatter. Therefore, a 
different equation is suggested for 𝑝 < 0.95. 
Equations 6-7 suggest a formulation non dissimilar from the one proposed by [17]. 
However, these authors assume a theoretical order of accuracy of 2. Therefore, if 
𝑝 ≥ 2.05, they recommend verifying if a larger uncertainty is computed using 𝑝 = 2 
for the fit and a safety factor of 3.   

If 𝑝 < 0.95 , the uncertainty in the computation of 𝜙  due to any step size ℎ  is 
computed using Equation 8, where a safety factor of 1.5 is used.  

𝑈!! = 1.5  𝛿!! + 𝜎       8
where 

𝛿!! =
𝜙!"# − 𝜙!"#

1− ℎ!"#
ℎ!"#

  (9)  

𝛿!!  is equal to the data range 𝜙!"# − 𝜙!"#  scaled by the ratio between the 
amplitude of the relative step size range ℎ!"# − ℎ!"#  and its distance from the 
ℎ = 0 axis ℎ!"# − 0 . This scaling function allows the limitation of Equation 6, as 
discussed above, to be partially overcome. In fact, if the range of relative steps is 
increased, for instance, the uncertainty decreases.  

This novel correction is inspired by the formulation proposed by [17], where the 
authors corrected the data range with a function of the relative step size range and, as 
in this formulation, when ℎ!"# = 2 and ℎ!"# = 1, then 𝑈!! = 3 𝜙!"# − 𝜙!"# .



This concludes the uncertainty analysis due to the space and time discretisation. The 
reader can also find a similar guideline in the Appendix of [26], where the authors 
present a detailed analysis of the convergent trends of the friction and pressure 
resistance components of a tanker for several grid resolutions. 

It is common practice to assess the uncertainty for one condition (for instance one sail 
trim) and then model different conditions (for instance different sail trims) assuming 
that the uncertainty is independent from the modelled condition. For all the other 
conditions, only one value of 𝜙 is computed, and the uncertainty 𝑈! computed on a 
different condition is assumed to be valid. This is an acceptable but dangerous 
assumption. For this reason, Equation 8 is a conservative approach to compute the 
uncertainty. For the condition that was used for the uncertainty assessment, where 
more grid and time step sizes are computed, it is possible to compute a more accurate 
value of 𝜙  than 𝜙! . In particular, if 𝑝 ≥ 0.95 , then 𝜙!  could be a better 
approximation than 𝜙!. However, the computed uncertainty is valid for 𝜙! and not 
for 𝜙!, and using 𝜙! is not recommendable because unrecognised scatter might lead 
to a large error in the estimation of 𝜙!. 

If −0.05 ≤ 𝑝 ≤ 0.05 and a 𝑁 step sizes are used, in order to provide a more accurate 
estimation of 𝜙, the mean value 𝜙!"#$ computed with different step sizes can be used. 
The uncertainty in the computation of 𝜙!"#$ can be computed with Equation 10, 
where 𝜎! is the standard deviation of the distribution of 𝜙:   

𝑈!!"#$ = 2  
𝜎!
𝑁

10

2.2 Convergence Uncertainty 

The uncertainty correlated with the convergence criterion is also known as iterative 
uncertainty. This is due to the difference between the solution converged to a given 
convergence criterion and the solution converged to machine accuracy, meaning to 
the maximum number of digits used to store the solution. In most cases, convergence 
to machine accuracy cannot be achieved and the convergence to a much less 
demanding criterion might lead to a negligible uncertainty. Therefore, in order to 
minimise the computational time, the convergence criterion should be chosen in order 
to be negligible compared with uncertainties due to other sources, such as the 
discretisation. 

The convergence error can be estimated from the normalised residuals of the 
continuity and momentum equations, or from the changes in a local or global quantity. 
[23] showed that these two options are equivalent when the 𝐿∞ norm 𝜙!"#   − 𝜙!"#  
on the complete flow field is used. They also showed that using only the results of the 
last two iterations can lead to under-estimation of the convergence uncertainty by up 
to one order of magnitude.  

A simple way to assess the convergence uncertainty of 𝜙 is to use its convergence 
history. For instance, if 𝜙 is the lift generated by the sails, this value can be monitored 
for every iteration and the uncertainty can be computed from the analysis of the trend 
of the lift versus the iteration advancement. The data can be fitted with Equation 11 



by the least-squares method, where 𝑥! is an opportune variable proportional to the 
iteration number n (for instance, 𝑥! = 𝑛), and 𝜙∞ is the extrapolated value for an 
infinite number of iterations. The fit will lead to a negative value of 𝑝.  

𝜙 𝑥! = 𝑐  𝑥!! + 𝜙∞      (11) 

The extrapolated value 𝜙∞ is the best estimation of 𝜙, and the uncertainty can be 
computed with Equation 12, where 𝜎 is the standard deviation of the fit and 𝜙! is the 
value computed at the last iteration.  

𝑈!! = 1.25   𝛿!! + 𝜎       12
where 

𝛿!! = 𝜙! − 𝜙∞        (13)

The initial iterations, when large-amplitude oscillations of 𝜙 can be computed, should 
be excluded from the fit, otherwise this method can lead to too conservative an 
estimate of the iterative error.  

2.3 Round-Off Uncertainty 

The round-off error, also known as the rounding error, is the difference between the 
number stored in the memory of the machine and its exact mathematical value. For 
instance, for a simulation performed in double precision on a 32-bit machine, the used 
number of digits is 15. Although this error is normally very small, it can be 
significantly magnified through successive operations, and particularly when 
computing the difference between quantities close to each other. In order to assess the 
uncertainty due to the round-off, different accuracies at which the numbers are stored 
should be compared. For instance, simulations can be computed on 16-, 32- and 64-
bit machines. In practice, most CFD software allows the simulations to be run in 
single or double precision. Therefore, it is good practice to verify that the difference 
between the solution achieved with single precision, 𝜙!", and the solution achieved 
with double precision, 𝜙!", is negligible compared with the other errors mentioned 
above. The uncertainty due to the round-off can be computed using Equation 14.  

𝑈!! = 3  𝛿!         (14)
where 

𝛿! = 𝜙!"   − 𝜙!"     (15)  

Additional considerations on errors can be found in [23]. 



2.4 Other Input Parameters Uncertainty 

Uncertainties due to many other parameters should be assessed but, in practice, only a 
few parameters are normally added to the list of sources of uncertainties. In fact, most 
other sources of errors, such as the two examples provided in this section, can be 
considered sources of modelling errors.  

The methodology to assess the uncertainty due to any parameter should be considered 
on a case by case basis. When a superior or inferior limit of one parameter is 
associated with the exact solution, then the convergence of the solution, when the 
parameter tends towards that end, should be considered. For instance, in sail 
aerodynamics, when the far field wind velocity is known, the distance between the 
inlet boundary and the yacht is one parameter of this species. By increasing this 
distance, 𝑑, the solution 𝜙 =  𝜙 𝑑  should converge towards a value independent of 𝑑. 
In this case a formulation analogous to that used for the step size (Section 2.1) can be 
used to assess the uncertainty, 𝑈!!, due to the parameter 𝑑, where the uncertainty is

proportional to the difference between the extrapolated solution, 𝜙 𝑑 →∞ , and the 
solution 𝜙 𝑑  achieved with a given value of 𝑑. 

When any limit of the parameter cannot be associated with the exact solution, then a 
more cautious approach should be used. For instance, if different turbulence models 
lead to different solutions, then the uncertainty can be estimated with a formulation 
analogous to that used for the round off (Section 2.3), where 𝜙!" and 𝜙!" in Equation 
15 can be substitute with the maximum and the minimum values of the solutions 
achieved with different turbulence models, respectively. 

2.5 Experimental Uncertainty 

The previous sections (Sections 2.1-2.4) allow computation of the various 
components of the numerical uncertainties, which are then combined using Equation 
4. The uncertainty in the computation of 𝜙 is due to both the numerical uncertainty
and the modelling uncertainty. To assess this second component, the computed 
solution must be compared with the true solution. In sail aerodynamics, as in most 
applications, the true solution is unknown but experimental data might be available. 
In this case, the experimental uncertainty must be assessed.  

A rigorous design and use of the measurement system allows the experimental error 
to be reduced and the associated uncertainty to be determined [27-28]. The 
experimental error for a generic quantity 𝜙 is defined as the difference between the 
measured value and the true value: 

𝛿!!"# = 𝜙!"# − 𝜙!"#$            16

The first source of errors is due to the sensors used for the experimental 
measurements. For a given sensor, the so-called systematic error consists of the 
difference between the true value to be measured and the value given by the sensor 
which is constant or has slow variation compared with the measurement duration. The 
systematic error may be due to a sensor calibration error (offset or sensitivity), to 
wear of the sensor, to an incomplete knowledge of the experimental system or to a 



bias in using the sensor: for example, non-adapted sensor response time or 
perturbation of the measured value by the presence of the sensor. A systematic error 
results in a constant shift between the true value 𝜙!"#$ and the measured value 𝜙!"#. 
This may be estimated as the difference between the most probable values issued 
from several measurements of the same true value achieved with different methods 
and sensors. A sensor is said to be accurate if the systematic error is small. 

Another source of experimental errors are the accidental errors, which are generally 
considered random and not correlated with each other. Random errors have numerous 
different origins listed below, intrinsic to the sensor or due to external causes. A 
random error is, for instance, the linearity error 𝛿! due to the linear assumption of the 
sensor response. The linearity error must be determined during the sensor calibration. 
The resolution error 𝛿! results from the mobility error 𝛿! due to the smallest variation 
of the true value detectable by the sensor and the possible reading error 𝛿!". The 
hysteresis error 𝛿! is defined as half the maximum difference in the measurement 
obtained for increasing and decreasing values. The quantification error 𝛿! due to an 
analogue-digital converter is defined as half the value of the least significant bit 
(LSB). A parasitic error is due to the internal noise or drift into the sensor, to parasitic 
interferences or to fluctuations in the power supply. The fluctuations of quantities 
affecting the true value or the sensor’s characteristics (e.g. the temperature) which are 
not considered in the calibration lead to a systematic error if the measurement is 
carried out with a duration much shorter than the fluctuation time-scale or a random 
error if it is carried out with a much longer duration. 

Random errors lead to a dispersion of the measured values for repeated measurements. 
A statistical analysis enables the most probable value to be determined by the mean 
value and the uncertainty to be assessed by the standard deviation. The random errors 
are generally not correlated and the probability distribution of the measured value is 
usually considered to follow a normal law. The reliability of a measuring system is 
the quality of being able to give results concentrated around the mean value. The 
reliability error 𝛿!" is then considered as the standard deviation. In order to be precise, 
a sensor must be both accurate (low systematic error) and reliable (low random error). 

The global precision error of a sensor, 𝛿!, is a function of the systematic error 𝛿! and 
the different random errors: linearity 𝛿!, resolution 𝛿!, quantification 𝛿!, hysteresis 𝛿!, 
and reliability 𝛿!". Thus, the global experimental uncertainty can be computed using 
Equation 17: 

𝑈!! = 𝑈!!
! + 𝑈!!

! + 𝑈!!
! + 𝑈!!

! + 𝑈!!"
! + 𝑈!!        (17)

where 

𝑈!! = 𝑈!!
! + 𝑈!!"

!         (18) 

When the comparison between numerical and experimental values is made on a 
quantity which is directly measured, the experimental uncertainty is simply given by 
the measurement precision, possibly with a safety factor 𝑘 (Equation 19). 

𝑈!!"# =   𝑘𝛿!        (19)



In some other cases, the experimental value is determined by a combination of several 
measurements. When the experimental result is computed with an algebraic formula, 
the experimental uncertainty is obtained by a combination of each measurement 
uncertainty: absolute uncertainties are added for additive quantities and relative 
uncertainties are added for multiplicative quantities. When the value to be compared 
is determined by the mean value obtained after 𝑁 measurements, the uncertainty in 
the mean may be computed with Equation 19, where 𝑘  is a coverage factor 
determined with the Student’s t-distribution, or Student’s distribution [29]: 
𝑘 =   𝑡! !,!!! , with 𝛼 the desired level of confidence. 

2.6 Validation 

When the numerical uncertainty is estimated with Equation 4 (verification procedure), 
and the experimental uncertainty is determined with Equations 17-19, under certain 
conditions it is possible to estimate the modelling uncertainty. In particular, the 
modelling error can be computed with Equation 20, which combines Equations 1-2 
and 16.  

𝛿!!"# = 𝜙!"# − 𝜙!"# − 𝛿!!"# − 𝛿!!"#     (20)

However, in general 𝛿!!"#  and 𝛿!!"#  are not correlated and, therefore, it is
convenient to re-write Equation 20 in terms of uncertainties. In particular, the 
numerical and the experimental uncertainties can be combined in a validation 
uncertainty, 𝑈!!"# , as shown in Equation 21:

𝑈!!"# = 𝑈!!"#
! + 𝑈!!"#

!        (21)

Then, the following cases should be considered: 

If 𝜙!"# − 𝜙!"# ≤ 𝑈!!"#

then the simulation is validated at a level of 𝑼𝝓𝒗𝒂𝒍 and 𝛿!!"# cannot be assessed.

If 𝜙!"# − 𝜙!"# > 𝑈!!"#

then the simulation is non-validated and 𝛿!!"# has the sign of 𝜙!"# − 𝜙!"#.

If 𝜙!"# − 𝜙!"# ≫ 𝑈!!"#

then the simulation is non-validated and 𝛿!!"# ≈ 𝜙!"# − 𝜙!"#.

It should be noted that when the simulation is validated, the V&V procedure does not 
provide any information about the modelling uncertainty which, therefore, could be 
much larger than expected. In addition, a simulation where 𝜙!"# − 𝜙!"#  is very 
large can be validated if the validation uncertainty is even larger. In conclusion, the 



validation of the simulation is a necessary condition, but not a sufficient condition, to 
assess its quality. The best use of the V&V procedure is not only to perform a check 
of the simulation quality, but, importantly, it can suggest how to improve the 
simulation. Furthermore, when simulations are performed to identify a ranking 
between different sail designs, then the V&V procedure will provide indications on 
the level of confidence on the achieved ranking. This important aspect will be 
discussed in detail in Section 4.5. 

3 Example of V&V Analysis 

3.1 Experimental Benchmark and Numerical Setup 

The wind tunnel tests performed by [30] were modelled. The authors measured the 
pressure distributions on rigid model-scale sails in upwind conditions with the aim of 
providing an experimental benchmark for numerical simulations. The geometries and 
the measured pressure distributions are available from ignazioviola.com. Wind 
transparent wires supported the upstream sail, namely the foresail, and the 
downstream sail, namely the mainsail; the rigging and the hull were not present. The 
foot of the foresail was at 600 mm from the wind tunnel floor in order to experience a 
uniform flow outside the floor boundary layer. Figure 3 shows the test section where 
the open jet wind tunnel section is on the left end, the horizontal boundaries are the 
test section roof and floor, a distance ℎ = 3500 mm apart, while open walls were 
used on the side.  A flat plate touching the foot of the foresail was mounted under 
both sails. The Reynolds number was 𝑅𝑒 = 2.3 ∙ 10!. Pressures were measured on 
four sail sections on each sail (from Section 1 to Section 4 in Figure 3). 

Figure 3: Experimental setup (edited from [30]). 

The wind tunnel tests were modelled by solving the steady 3D RANS equations with 
the 𝑘 − 𝜔 SST turbulence model implemented in Ansys Fluent 12.0.1. A SIMPLEC 
scheme, coupling velocity and pressure, and second order accuracy discretisation 
algorithms were used. A reference grid of 1.48 million hexahedral cells was used. On 
the suction (leeward) side of the sails, where regions with separated flow occur, 
𝑦! < 3 was used. On the pressure (windward) side, where the boundary layer is 
always attached, 5 < 𝑦! < 25 was used. One finer grid, and three coarser grids were 
used to investigate the grid sensitivity, as explained in Section 3.2.  Figure 4 shows a 
horizontal and a vertical plane of the reference grid around both rendered sails. The 
computational domain represents the open jet wind tunnel test section and the 
surrounding volume. The domain is 1.3ℎ high, 7.5ℎ long and 12ℎ wide, with ℎ = 2.3 
m, the height of the sails model. Non slip boundary condition was used on the sails, 



while slip condition was used to model the roof and the flat plate touching the foot of 
the foresail, velocity inlet on the upstream boundary (  upstream of the model) 
and outlet on the other boundaries. 
The analysis of the grid, convergence and round-off uncertainties for this simulation 
are presented in Sections 3.2, 3.3 and 3.4, respectively. Section 3.5 presents the 
validation of the computed pressure distributions.  

Figure 4: Horizontal and vertical grid planes of the reference grid.  

3.2 Discretisation Uncertainty 

A grid convergence study was carried out with a ratio between the distances of the 
grid nodes of . Five grids with 3.19M, 1.48M (base), 0.84M, 0.46M and 0.28M 
cells were performed. The relative step ratio of the i-th grid is , with 

, resulting in  respectively. 

Figure 5 shows  computed for different grids. The five grids do not 
show a convergent trend. The small differences between the lift coefficients and the 
absence of a trend for the relative step size suggest that the scatter is significantly 
larger than the differences due to the grid convergence. Therefore, the best estimation 
of  is the mean value across the different simulations which, by coincidence, gives a 
result almost equal to . In fact, compared to the mean value,  computed with 
the finest grid has a smaller grid convergence error but a larger scatter error, which, in 
this case, is the dominant error.  The uncertainty for each sample can be computed 
with Equation 8. For every grid, . The uncertainty for the 
mean is computed with Equation 10: .  
Equation 8 allows a reasonable estimate of the uncertainty when a clear grid 
convergence is not visible. In such a case, some authors (for instance, [9-14]) do not 
provide a formulation to estimate the uncertainty, while other authors (for instance, 
[15-18]) provide more sophisticated formulations than Equation 8. For instance, in 
[17] the uncertainty is computed as the minimum between the uncertainty based on 
the  norm of the computed value, and the uncertainty based on the fit with a second 
order polynomial. For the present case, the uncertainty based on the  norm is 
smaller and . Therefore, the use of Equation 8 leads to a 
more conservative estimate for . 



Figure 5: 𝐶! versus the relative grid size. Error bars show the grid uncertainty for each 
grid, while the dotted lines show the 𝐶! mean value and its uncertainty range. 

Figure 6 shows 𝜙 = 𝐶! 𝐶!!"#$ computed for different grids. A converging trend is 
observed and the fit with Equation 5 allows computation of the extrapolated value 
𝜙! = 0.99, the order of convergence 𝑝 = 2.24 and the standard deviation of the fit 
error 𝜎 = 1.8 ∙ 10!! . The uncertainty, 𝑈!!!"#$ = 1.5%  𝐶!!"#$ , is computed using
Equation 6.  
In the proposed V&V procedure, Equation 6 is used for any 𝑝 > 0.95. Conversely, 
other authors who assumed a theoretical order of convergence of 2, such as [17], 
recommend using two different equations for 0.95 ≤ 𝑝 ≤ 2.05 and 𝑝 > 2.05. In the 
present case, the procedure suggested by [17] seems to over-estimate 
𝑈!!!"#$ 4.1%  𝐶!!"#$ , which results almost three times larger than the uncertainty
computed with Equation 6. 



Figure 6: 𝐶! versus the relative grid size. 

Figure 7 shows the pressure coefficient 𝐶𝑝 = 𝑝 − 𝑝∞ /𝑞∞ (where 𝑝 is the local 
static surface pressure, 𝑝∞  is the far-field static pressure and 𝑞∞  is the far-field 
dynamic pressure) on the highest measuring section of the foresail (Section 3 in 
Figure 3). This is a horizontal section at 75% of the foresail height from the bottom. 
𝐶! is plotted versus the non-dimensional chord length 𝑥/𝑐 for the five different grids. 
𝐶!  computed on the surface grid nodes is fitted with a spline curve and then 
interpolated where the surface pressures were measured. Data fitting and interpolation 
introduce additional uncertainties. The standard deviation of the fitting should be 
significantly smaller than the other uncertainties in order to be neglected, such as in 
this case.  

Figure 7 shows that the differences between 𝐶! computed with different grids are 
larger in the leeward region near the leading edge and, particularly, near the suction 
peak.  



Figure 7: 𝐶! on Section 3 of the foresail for different grid resolutions. 

The 𝐿! norm of the pressure coefficient along both the windward and leeward sides 
can be used to provide a global measurement of the pressure uncertainty:  

𝐶! !!
= 𝐶!!

!

!
22

where i is the index of the grid node along the plate surface. 

Figure 8 shows the 𝐿!  norm of 𝐶!  computed with different domain sizes. A 
monotonic convergence is observed and 𝑝 = 3.41, therefore, Equation 6 is used to 
compute the relative uncertainty 𝑈!!!"#$ = 0.7%   𝐶!!"#$ !!

. As mentioned above

in Section 2.1, when a high order of convergence is found 𝑝 > 3 , this should be 
verified with more than three grids. In fact, the high order of convergence leads to 
small convergence errors and thus to small uncertainties.  Therefore, the uncertainty 
due to the scatter must be accurately estimated. Other V&V procedures such as [17], 
which assume a theoretical order of convergence of 2 and therefore different 
formulations for 𝑝 > 2.05, lead to larger estimates of the uncertainty. For example, 
similarly to the estimate of 𝑈!!!"#$ , the estimate for 𝑈!!!"#$  4.1%   𝐶!!"#$ !!
with the formulation proposed by [17] results almost six times larger than the 
uncertainty computed with Equation 6. 



 Figure 8: 𝐿! norm of the 𝐶! on Section 3 of the foresail versus the relative grid size. 

Being interested only in the time-averaged solutions, the steady RANS equations 
were solved. If time-dependent equations were solved, then a similar analysis should 
be performed to assess the uncertainty due to the time discretisation (for instance, 
[31]). 

3.3 Convergence Uncertainty 

From the experience of the authors, who have mainly focused on the computation of 
aerodynamic forces and pressure distributions, the uncertainty due to the convergence 
is not always negligible and should be carefully assessed. In these simulations, 500 
iterations were performed initially and further iterations were then performed until the 
variation of 𝑈!! over the last 1000 iterations became smaller than 0.1%:

𝑈!! !
∞

(!"""  !")
< 10!!  𝜙              (23) 

After every 100 iterations, 𝜙∞  (𝑛) (Equation 11) and 𝑈!∞(𝑛) (Equation 12) were 
computed and the convergence criterion (Equation 23) was checked for the lift and 
drag coefficients and the maximum and minimum pressures on the sail surfaces. For 
instance, Figure 9 shows the convergence of the lift coefficient 𝐶! . After 2800 
iterations, the convergence criterion was satisfied and the simulation was interrupted. 
The convergence uncertainties of the extrapolated lift coefficients (indicated by x) 



that do not satisfy the convergence criterion are shown in red, while the fit curve and 
the convergence uncertainty (𝑈!! = 0.08%  𝐶!!"#)  of the final extrapolated lift 
coefficient (squared mark) is shown in blue.  

Figure 9: Convergence of 𝐶! and assessment of the convergence criterion. 

3.4 Round-Off Uncertainty 

The round-off uncertainty was assessed by performing 1000 further iterations both in 
single precision and in double precision. The data was averaged over 1000 iterations 
and the mean values were compared. The round-off uncertainty for the lift coefficient 
was 𝑈!! = 0.05%  𝐶!!"#, which was computed using Equation 14.  

3.5 Validation 

Local 𝐶! were validated on Section 3 of the foresail. Figure 10 shows the numerical 
and experimental local 𝐶! and their uncertainties. The experimental uncertainty due to 
the measurement systems is ±0.5 Pa for the surface pressure measurements and ±1 
Pa for the dynamic pressure, resulting in uncertainties for the 𝐶!  from 𝑈!"# =
3.2%  𝐶!  when 𝐶! = 2  to 𝑈!"! = 4.3%  𝐶!  when 𝐶! = 0.5 . Several measurements 
were repeated in order to estimate the uncertainty due to the re-positioning of the sails. 
This uncertainty is substantial in the region near the leading edge on both sides of the 
sail. The experimental uncertainty presented herein takes into account the uncertainty 
due to the measurement systems and the maximum difference between repeated 
measurements multiplied by a safety factor of 1.5.  

In this simulation, the uncertainties due to the grid resolution and the convergence 
were more than two orders of magnitude larger than the uncertainty due to the round 



off which, therefore, was neglected. For each known experimental 𝐶!, the validation 
uncertainty was computed using Equation 21 and the validation was performed for the 
base grid. Tables 1 and 2 show the results of the validation for each pressure tap. The 
validation allows the identification of an unexpected but interesting modelling error. 
In fact, while the differences between the computed and measured 𝐶!  are small 
compared with their uncertainties on the leeward side, meaning that the “noise” in the 
numerical computation and in the experimental measurement does not allow 
estimation of the modelling error, on the windward side the noise level is smaller and 
the differences are larger. In particular, the computed pressure is closer to the 
stagnation pressure than the measured pressure. This is possibly due to a modelling 
error, i.e. a difference between the CFD model and the experimental model. In fact, 
while the numerical model of the sail has zero thickness, the thickness of the 
experimental model is about 1% of the sail chord and the sails were chamfered at 
about 20° on the windward side to produce a sharp leading edge. Figure 11 shows a 
schematic diagram of the leading edges of the CFD and the experimental models. In 
the experimental setup, between the stagnation point and the first pressure tap there is 
the sharp angle of the chamfer, which causes the flow to accelerate and the pressure to 
drop.  

It is interesting to note that if a coarse grid were used, the largest difference between 
the numerical and the experimental 𝐶! would be on the leading edge on the leeward 
side (compare Figures 7 and 10). However, the V&V procedure shows that while the 
numerical/ experimental difference decreases on the leeward side, on the windward 
side the difference remains constant. Therefore, it shows that the side where the CFD 
model does not represent the experimental model is the windward side and not the 
leeward side. 

On each of the eight measuring sections, the 𝐿!  norms of the numerical and 
experimental 𝐶!were computed. The discretisation, convergence and experimental 
uncertainties were achieved by computing the 𝐿! norm of the uncertainties along the 
sail section. The validation uncertainty was computed using Equation 21 and 
validation was assessed. Table 3 shows that the 𝐿! norm of 𝐶! was validated at levels 
of up to 30% for all of the measured sections. 



Figure 10: Measured and computed distributions of  on Section 3 of the foresail. 
Error bars show the experimental and the grid uncertainties.  

Figure 11: Schematic drawing of the sail’s leading edge for the numerical and 
experimental models. 



4 Ranking 

It is common practice to assume that the differences between the CFD results and the 
experimental data are almost constant across similar geometries and, therefore, that 
the relative rankings between these geometries are correctly computed by CFD 
despite the absolute error. This argument is often used to justify the use of low grid 
resolutions. In the experience of the authors this is a very dangerous assumption, 
which may be incorrect. In this Section, it is shown that the uncertainty analysis can 
be used to compute the probability that the ranking is correct.  

A 2D simulation of the horizontal section at the height of Section 3 of the foresail was 
performed, where the same conditions and numerical setup used in the 3D simulations 
presented above (Section 3.1) were used. The camber of the foresail section was  
of its chord. Four different geometries were achieved when stretching the sail section 
in the direction perpendicular to the chord, leading to different cambers, while the 
chord was kept constant. Thus, five different foresail sections were tested with 
cambers that were  and  of the chord, respectively. For 
each geometry, three different grid resolutions were used with relative step sizes 

 and .  

The five geometries were ranked based on the drive force coefficient , which is the 
aerodynamic force projection towards the sailed course divided by the dynamic 
pressure and the length of the two sail sections. Figure 5 shows the five different 
foresail sections and the mainsail section, which was unchanged for the five tested 
configurations.  

Figure 12: Five different geometries tested. 

Figure 13 shows  versus the camber/ chord ratio for the three grids. Error bars are 
presented for the base grid (solid line). The uncertainties for the three smallest 
cambers  are of one order of magnitude smaller than the 
uncertainties for the two largest cambers , which are not 
presented in Figure 3 because they are off the scale.  



Figure 13:  𝐶! of 2D sail sections versus the camber/ chord ratio of the aft sail for three 
grid resolutions. 

For the three smallest cambers, the higher the grid resolution, the lower the shear 
stress and, therefore, the higher 𝐶!. When the camber increases, 𝐶! increases due to 
the larger lift allowed by the more cambered profile. However, increasing the camber 
further leads 𝐶!  to decrease due to the larger region affected by trailing edge 
separation. The higher the grid resolution, the more upstream is the trailing edge 
separation point. Therefore, while high grid resolution predicts higher 𝐶! for small 
cambers, for the largest two cambers it predicts a larger 𝐶! reduction. The uncertainty 
increase is due to a jump upstream of the trailing edge separation point when the grid 
resolution increases.  

For each couple of successive cambers (13%− 16.5%;  16.5%− 20%, etc.) the 
probability that one of the two geometries allows a higher 𝐶! than the other one can 
be computed. For instance, 𝐶! is 3% higher for the 16.5% camber than for the 13% 
camber. The uncertainty of this difference is given by Equation 24:  

𝑈 !".!%!!"% = 𝑈!"%! + 𝑈!".!%! = 4.2%          (24) 

The uncertainty of the difference is larger than the difference itself and, therefore, the 
probability that the ranking between the two is correct is lower than 95%. In particular, 
the integral from 0 to ∞ of a normal distribution with mean value 3% and standard 
deviation  2.1%, which is equal to half of the uncertainty, is 0.91. Therefore, there is a 
91% probability that the ranking is correct. The same analysis can be performed for 



the successive three couples of differences 16.5%− 20%, 20%− 23.5%,
23.5%− 26% , leading to 82%, 53% and 56% probabilities, respectively, that the 
computed rankings are correct1. Therefore, the uncertainty analysis allows distinction 
between the highly probable rankings of the first two couples of cambers, and the 
very uncertain rankings of the last two couples of cambers. It is interesting to note 
that if only one grid was computed then the larger differences between the last two 
couples of cambers compared with the first two couples would have led to the 
opposite conclusion.  

5 Conclusions 

Verification and validation of numerical simulations is still rarely performed in sail 
aerodynamics, while its use allows quality of the simulations to be enhanced and 
allows a more conscious use of its results. Unfortunately it can be complicated and 
time consuming. In recent years three different procedures have been proposed. 
However, while one of them does not consider the existence of scatter in the results, 
which can be significant in sail aerodynamics, the other two require the knowledge of 
the theoretical order of convergence, which is often unknown when commercial codes 
are used. 

In the present paper a simplified verification and validation procedure is proposed 
with the aim of providing a simple reference for sail aerodynamicists. Examples of 
results are also provided in order to show the possible outcomes and uses of the 
procedure.  

In particular, the grid uncertainty for the aerodynamic lift, drag and pressure 
distributions for two sails in upwind conditions are presented. The computed local 
surface pressures are validated against experimental measurements, showing that the 
verification and validation procedure may allow identification of modelling errors, 
such as the neglected sail thickness. It is also shown that global aerodynamic 
parameters such as the lift, drag and 𝐿2 norm of the pressure coefficient can be 
computed with uncertainties of the order of 1%, with a number of cells of the order of 
one million.  

An example of convergence uncertainty and round-off uncertainty is provided, 
showing that these uncertainties can be several orders of magnitude smaller than the 
grid uncertainty.  

Finally, the necessity of considering the uncertainty when different geometries or 
conditions are ranked is presented. In particular, it was shown how the probability that 
the ranking is correct can be estimated knowing the uncertainty in the computation of 
the value used to rank.  

1	  A	  probability	  of	  50%	  in	  the	  ranking	  means	  that	  there	  is	  the	  same	  probability	  that	  the	  ranking	  is	  correct	  
and	  incorrect.	  	  
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Table 1: Validation of local 𝐶! on the windward side of Section 3 of the foresail 

 
Windward Side 

𝑥/𝑐 0.03 0.06 0.11 0.19 0.31 0.51 0.69 0.90 
𝐶!!"# 0.32 0.34 0.53 0.60 0.60 0.55 0.44 0.15 
𝐶!!"# 0.62 0.63 0.66 0.69 0.69 0.62 0.49 0.17 
𝐶!!"# − 𝐶!!"#  0.30 0.29 0.12 0.093 0.090 0.069 0.049 0.028
𝑈!!! 0.016 0.001 0.014 0.004 0.022 0.068 0.024 0.006 
𝑈!!! 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
𝑈!!!"# 0.018 0.003 0.016 0.006 0.024 0.070 0.027 0.008 
𝑈!!!"# 0.229 0.213 0.167 0.067 0.079 0.040 0.017 0.016 
𝑈!!!"# 0.229 0.213 0.168 0.067 0.083 0.081 0.032 0.018 
Validated? no no yes no no yes no no 

Table 2: Validation of local 𝐶! on the leeward side of Section 3 of the foresail 

 
Leeward Side 

𝑥/𝑐 0.03 0.06 0.11 0.19 0.31 0.51 0.69 0.90 
𝐶!!"# -0.72 -0.96 -1.34 -1.73 -2.00 -1.71 -1.18 -0.60 
𝐶!!"# -0.88 -0.99 -1.36 -1.82 -2.01 -1.61 -1.11 -0.66 
𝐶!!"# − 𝐶!!"#  0.16 0.03 0.02 0.09 0.01 0.09 0.07 0.05
𝑈!!! 0.082 0.404 0.153 0.026 0.155 0.052 0.015 0.008 
𝑈!!! 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
𝑈!!!"# 0.087 0.409 0.158 0.032 0.161 0.057 0.021 0.013 
𝑈!!!"# 0.230 0.187 0.174 0.171 0.134 0.087 0.024 0.046 
𝑈!!!"# 0.246 0.449 0.235 0.174 0.209 0.104 0.032 0.048 
Validated? yes yes yes yes yes yes no no 



Table 3. Validation of 𝐶! !!
 for the measuring sections of the two sails.

Foresail Mainsail 
Section 1 2 3 4 1 2 3 4 

𝐶!!"# 4.88 4.07 4.08 4.35 2.67 3.09 3.08 2.95 

𝐶!!"# 5.45 4.45 4.25 4.31 2.53 2.86 2.91 2.93 

𝐶!!"# − 𝐶!!"# 0.57 0.38 0.17 0.04 0.14 0.23 0.17 0.02 

𝑈!!! 0.064 0.018 0.007 0.021 0.028 0.065 0.15 0.068 

𝑈!!! 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 

𝑈!!!"# 0.085 0.039 0.028 0.042 0.049 0.086 0.171 0.089 

𝑈!!!"# 0.681 0.703 0.687 0.66 0.811 0.811 0.764 0.687 

𝑈!!!"# 0.687 0.704 0.688 0.661 0.812 0.815 0.783 0.693 
Validated? yes yes yes yes yes yes yes yes 


