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ON THE EXISTENCE OF APPROXIMATE EQUILIBRIA AND SHARING RULE

SOLUTIONS IN DISCONTINUOUS GAMES

Philippe Bich and Rida Laraki∗

This paper studies the existence of some known equilibrium solution concepts in a large class

of economic models with discontinuous payoff functions. The issue is well understood for Nash

equilibria, thanks to Reny’s better-reply security condition [34], and its recent improvements

[3, 25, 35, 36]. We propose new approaches, related to Reny’s work, and obtain tight conditions

for the existence of an approximate equilibrium and of a sharing rule solution in pure and

mixed strategies (Simon and Zame [38]). As byproducts, we prove that many auction games

with correlated types admit an approximate equilibrium, and that in any general equilibrium

model with discontinuous preferences, there is a sharing rule solution.

Keywords: Discontinuous games, better-reply security, sharing rules, approximate equilib-

rium, Reny equilibrium, strategic approximation, auctions, timing games, exchange economy.

1. INTRODUCTION

Many economic interactions are modeled as games with discontinuous payoff functions. For

example, in timing games, price and spatial competitions, auctions, bargaining, preemption

games or wars of attrition, discontinuities occur when firms choose the same price, location,

bid or acting time.

Once the model is fixed, a solution concept should be used to analyse the problem. The

stronger the epistemic, experimental, computational and behavioral foundations of a solution,

the higher its predictive power. But, to be useful, a solution must exist. The objective of this

paper is to extend and link conditions under which some well known solutions exist, namely

Nash, approximate and sharing rule equilibria.

Nash equilibrium is the most popular solution in economics and beyond. It is a strategy

profile where each agent is reacting optimally to other players’ plans. Mathematically, it is
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a fixed point of the best-response correspondence. When the game is continuous, the fixed

point technique works well (thanks to Brouwer’s and Kakutani’s theorems) and leads to the

famous Nash-Glicksberg theorem [13, 26, 27]. In discontinuous games, the fixed point approach

cannot be directly applied because a player may have no optimal reply or because his best

choice jumps as a function of the choices of the other players.

A natural issue then is to identify regularity conditions on payoffs, which combined with

a limited form of quasiconcavity of the utility functions, guarantee the existence of a Nash

equilibrium. The first existence conditions are given by the seminal papers of Dasgupta and

Maskin [22, 9]. The significant breakthrough extending the previous results1 is achieved by

Reny [34] via the better-reply security approach.

Quoting Reny, “A game is better-reply secure if for every nonequilibrium strategy x∗ and

every payoff vector limit u∗ resulting from strategies approaching x∗, some player i has a

strategy yielding a payoff strictly above u∗i even if the others deviate slightly from x∗”.

Reny’s paper generated a large and still extremely active research agenda. For instance,

Barelli and Meneghel [3] and McLennan et al. [25] proposed relaxations that cover non-

transitive and non-quasiconcave preferences. Reny [35, 36] proposed new refinements for games

in mixed strategies using a strategic approximation methodology. In practice, many discon-

tinuous models cited above are better-reply secure or admit a strategic approximation, and

consequently admit a Nash equilibrium. Recently, Barelli et al. [2] applied Reny’s better-reply

security and strategic approximation techniques to prove existence of the value in a large class

of zero-sum games including the Colonel Blotto game.

But what if a Nash equilibrium does not exist? How can the analyst predict the outcome?

Two related relaxations of Nash equilibrium have been analysed and discussed in the literature:

endogenous sharing rules and approximate equilibria.

In many discontinuous games, the exogenously given tie-breaking rule leads to games without

pure Nash equilibria (e.g. asymmetric Bertrand duopoly, Hotelling location game) or without

mixed Nash equilibria (e.g. 3-player preemption games [20], auctions with correlated types or

values [11, 16]). However, the existence of a Nash equilibrium is restored if the tie-breaking

rule is chosen endogenously [1, 23, 38]. For example, in an asymmetric Bertrand duopoly, a

pure Nash equilibrium exists if ties are broken in favor of the lower-cost firm. In first-price

auctions with complete information, a pure Nash equilibrium exists if ties are broken in favor

of the firm with the highest value. Under mild topological conditions, Simon and Zame [38]

proved that to any game, one could associate an auxiliary game that admits a Nash equilibrium

in mixed strategies and where payoffs only differ at discontinuity points (see Section 2 for a

formal definition). Jackson et al. [17] remark that their “results concern only the existence of

solutions [sharing rule] in mixed strategies” and that they “have little to say about the existence

1Carmona [4] gives an extension of Dasgupta’s and Maskin’s results, which is unrelated to Reny’s approach.
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of solutions in pure strategies”.

We prove existence of a sharing rule solution in pure strategies in every quasiconcave and

compact game. Technically, the proof requires the introduction of a new concept –which we

call Reny equilibrium–. This answers positively to the open question of Jackson et al. [17].

An alternative solution for games without a Nash equilibrium is the notion of approximate

equilibrium. It is a limit strategy profile x∗ and a limit payoff vector u∗ of ε-Nash equilibria

xε with associated payoff vector u(xε), as ε goes to 0. Quoting Levine [21], “Any theory is

an idealization. Players’ exact preferences, beliefs, and so forth are never going to be known

exactly to the modeler. As a result, the only meaningful theory of Nash equilibrium is Radner’s

[1980] notion of epsilon equilibrium. This requires only that no player lose more than epsilon

compared to the true optimum – which in practice can never be known by the players.”

Let us give some arguments to highlight the strong foundations of approximate equilibrium:

- Levine [21] argues convincingly that ε-Nash equilibria fit experimental data better than

exact Nash equilibria.

- There are many games without a Nash equilibrium but with a reasonable approximate

equilibrium prediction. For example, in first-price auctions with complete information,

an approximate equilibrium is: the player with the highest value proposes a bid slightly

above the second highest value. In Bertrand duopoly with asymmetric costs, the most

efficient firm proposes a price slightly below the marginal cost of the opponent.

- Exact Nash equilibria may be impossible to learn and hard to compute. Indeed, computa-

tionally, Nash equilibria exhibit higher complexity than ε-Nash equilibria (Papadimitriou

in Nisan et al [28]). In a behavioral perspective, Kalai and Lehrer [19] proved that, under

the grain of truth hypothesis, ε-Nash equilibria could be learned by rational agents.

- In stochastic games, there exist simple ε-Nash equilibria (i.e. in stationary strategies)

while all Nash equilibria are history dependent (e.g. Thuijsman and Vrieze [39]).

- In extensive form games with infinite action sets or infinite horizon, sub-game perfect

Nash equilibria fail to exist while sub-game perfect ε-Nash do exist (Harris-Reny-Robson

[14], Flesh et al [12], Purves-Sudderth [31]).

- In zero-sum games, the existence of an approximate equilibrium is equivalent to the

existence of the value, which is a well accepted solution concept.

Given the above arguments, one needs to establish tight conditions under which approximate

equilibria exist. There are few results in the literature, one of which is due2 to Reny [33] and

Prokopovych [30]. While theoretically interesting, it requires assumptions on payoffs that are

not satisfied in many applications as will be seen in this paper.

We define a game G to be approximately better-reply secure if for every non-approximate

2Historically, Reny proved this result in a working and unpublished paper [33]. Independently, Prokopovych

[30] proved the same result with a different technique.



4

equilibrium strategy profile x∗ and every payoff vector limit u∗ resulting from strategies ap-

proaching x∗, some player i has a strategy yielding a payoff strictly above u∗i , even if the others

deviate slightly from x∗. This is a natural extension of Reny’s better-reply security condition

and of Reny [33] and Prokopovych [30].

We prove that any approximately better-reply secure quasiconcave compact game admits an

approximate equilibrium. An example is given by the class of diagonal games that encompasses

many models of competition (in price, time, location or quantity). Each player, i = 1, ..., N ,

chooses a real number xi in [0, 1]. The payoff ui(xi, x−i) of player i is fi(xi, φ(x−i)) if xi <

φ(x−i), gi(xi, φ(x−i)) if xi > φ(x−i), and hi(xi, x−i) if xi = φ(x−i), where fi, gi and φ are

continuous. For example, in first-price auctions, fi = 0, gi = vi − xi, and φ = maxj 6=i xj . In

second-price auctions, gi = vi −maxj 6=i xj (where vi is the value of the object for player i).

The paper is organized as follow. In Section 2, we recall the main results for the existence

of a solution in discontinuous games: Reny’s [34] better-reply security for existence of Nash

equilibria, the sharing rule solution of Simon and Zame [38], and Reny [33] and Prokopovych’s

[30] conditions for the existence of an approximate equilibrium.

Section 3 is dedicated to quasiconcave compact games in pure strategies. We introduce the

new concept of Reny equilibrium and prove its existence. The concept is used –as a substitute

for a fixed point theorem– to prove the existence of a pure sharing rule solution and to provide

conditions for the existence of an approximate equilibrium. Reny equilibrium is then applied

to construct a solution in a number of economic models. For example, we prove that in any

exchange economy with quasiconcave discontinuous preferences, one can modify utilities at

discontinuity points such that the new economy admits a general equilibrium (in the usual

Arrow-Debreu sense).

Section 4 is dedicated to compact metric games in mixed strategies. We prove that the in-

tersection of the sets of Reny equilibria and sharing rule equilibria is nonempty and contains

the set of approximate equilibria. This provides a possible answer to a question of Jackson and

Swinkel [18] who ask whether “these approaches [Reny and Simon-Zame] turn out to be re-

lated”.3 In addition, we prove that in any approximately better-reply secure game, approximate

equilibria may be obtained as limits of Nash equilibria of an endogenously chosen sequence of

discretizations of the game. This is a natural extension of a similar result established by Reny

[35, 36] for Nash equilibria. As an application, we prove the existence of a mixed approximate

equilibrium in a large class of auctions with correlated types and values.

2. THREE STANDARD APPROACHES TO DISCONTINUOUS GAMES

A game in strategic form G = ((Xi)i∈N , (ui)i∈N ) is given by a finite set N of players, and for

each player i ∈ N , a set Xi of pure strategies, and a payoff function ui : X =
∏
i∈N Xi → R.

3De Castro [10] and Carmona and Podzceck [7] propose different answers to the question of Jackson et al.
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This paper assumes G to be compact, that is, for every i, Xi is a compact subset of a topological

vector space, and ui is bounded.4 We let Vi(x−i) := supdi∈Xi
ui(di, x−i) denote the highest

payoff that player i can get against x−i = (xj)j 6=i ∈ X−i := Πj 6=iXj .

Definition 2.1 A pair (x, v) ∈ X×R is a Nash equilibrium of G (and x is a Nash equilibrium

profile) if v = u(x) and for every player i ∈ I, Vi(x−i) ≤ vi.

The game G is quasiconcave if for every player i ∈ I, Xi is convex and for every x−i ∈ X−i,
the mapping ui(·, x−i) is quasiconcave. The game is continuous if for every i ∈ I, ui is a

continuous function5.

Theorem 2.2 (Glicksberg’s Theorem [13] in pure strategies) Any continuous, quasiconcave

and compact game admits a Nash equilibrium.

The rest of the section presents three extensions of this result when payoffs are discontinuous.

Our paper combines them into one general idea.

2.1. Better-Reply Secure Game

In many discontinuous games, a Nash equilibrium exists (symmetric Bertrand competition,

auctions with private values, wars of attrition, among many). Reny’s theorem [34] provides an

explanation for this. Formally, we let Γ = {(x, u(x)) : x ∈ X} denote the graph of G and Γ be

the closure of Γ. Since G is compact, Γ is compact as well. Define the “secure payoff level” of

player i at (di, x−i) ∈ X as follows:

ui(di, x−i) = lim inf
x′−i
→x−i

ui(di, x
′
−i).

This is the payoff that di can almost guarantee to player i if his opponents play any profile

close enough to x−i.

Definition 2.3 A game G is better-reply secure if whenever (x, v) ∈ Γ and x is not a Nash

equilibrium profile, some player i ∈ N can secure a payoff strictly above vi, i.e. there exists

di ∈ Xi such that ui(di, x−i) > vi.

Theorem 2.4 (Reny’s Theorem [34] in pure strategies) Any better-reply secure, quasiconcave

and compact game admits a Nash equilibrium.

4Some results require the strategy sets to be metric or locally convex and Hausdorff.
5X is endowed with the product topology.
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Since any continuous game is obviously better-reply secure, this extends Glicksberg’s theo-

rem. In his paper, Reny gives two practical sufficient conditions under which a game is better-

reply secure (see Proposition 2.6 below). In the following, we let Vi(x−i) := supdi∈Xi
ui(di, x−i)

denote the largest payoff that player i can secure against x−i.

Definition 2.5

(i) G is payoff secure if for every x ∈ X, for every ε > 0, every player i ∈ N can secure6 a payoff

above ui(x)− ε, which can be equivalently7 written: supdi∈Xi
ui(di, x−i) = Vi(x−i) = Vi(x−i).

(ii) G is reciprocally upper semicontinuous if, whenever (x, v) ∈ Γ and u(x) ≤ v, then u(x) = v.

Proposition 2.6 A payoff secure and reciprocally upper semicontinuous game is better-reply

secure.

2.2. Approximate Equilibrium

In first-price auctions with complete information, bidding slightly above the second highest

evaluation for the bidder with the highest evaluation yields an approximate equilibrium. One

of the main goals of this paper is to develop theoretical tools to prove the existence of an

approximate equilibrium in a large class of auctions.

Definition 2.7 A pair (x, v) ∈ Γ is an approximate equilibrium (and x is an approximate

equilibrium profile) if there exists a sequence (xn)n∈N of X and a sequence (εn)n∈N of positive

real numbers, converging to 0, such that:

(i) for every n ∈ N∗, xn is an εn-equilibrium: ∀i ∈ N , ∀di ∈ Xi, ui(di, x
n
−i) ≤ ui(xn) + εn,

(ii) the sequence (xn, u(xn)) converges to (x, v).

Any Nash equilibrium is obviously an approximate equilibrium. It can be seen8 as a limit

of exact Nash equilibria (xn, u(xn)) of a sequence of games Gn = ((Xi)i∈N , (u
n
i )i∈N ) which

converges to G = ((Xi)i∈N , (ui)i∈N ) for the uniform norm. Another interpretation of approx-

imate equilibria will be given later and is related to the concept of endogenous sharing rule of

Simon and Zame [38] (see the next subsection). Let us state one of the very few existing result

in the literature.9

6Player i can secure a payoff above α ∈ R if there exists di ∈ Xi and a neighborhood V−i of x−i such that

for every x′−i ∈ V−i, ui(di, x
′
−i) ≥ α.

7The equivalence is straightforward.
8For every integer n, define uni (y) = ui(y) whenever y 6= xn and uni (xn) = ui(x

n) + εn.
9Ziad [40] proposes another existence theorem of approximate equilibria, unrelated to our work. See also

Carmona [5], [6] and Reny [33].
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Definition 2.8 A game G has the marginal continuity property (resp. the marginal con-

tinuity property at x ∈ X) if Vi(x−i) = supdi∈Xi
ui(di, x−i) is a continuous function for all

x−i ∈ X−i and every i ∈ I (resp. a continuous function at x−i for every player i ∈ I).

Theorem 2.9 (Reny [33] and Prokopovych [30]) Any payoff secure, quasiconcave compact

game that has the marginal continuity property admits an approximate equilibrium.

This theorem applies for first-price auctions and asymmetric Bertrand’s duopoly. However,

the following location game [38] is not payoff secure, but admits an approximate equilibrium.

Example 2.10 California Location Game

The length interval [0, 4] represents an interstate highway. The strategy set of player 1 (a

psychologist from California) is X = [0, 3] (representing the Californian highway stretch). The

strategy set of player 2 (a psychologist from Oregon) is Y = [3, 4] (the Oregon part of the

highway). The payoff function of player 1 is u1(x, y) = x+y
2 if x < y and u1(3, 3) = 2. The

payoff function of player 2 is u2(x, y) = 4 − u1(x, y). The strategy profile xn = (3 − 1
n , 3),

corresponding to the vector payoff vn = (3 − 1
2n , 1 + 1

2n ), is a 1
2n -equilibrium. Consequently,

(x = (3, 3), v = (3, 1)) is an approximate equilibrium. However, the game is not payoff secure

for player 2 at x = (3, 3).

2.3. Sharing Rule Solutions

The California location game example above was given by Simon and Zame [38] to illustrate

their “endogenous tie-breaking rule” solution. They show that even if a game does not have a

Nash equilibrium, it is always possible to slightly change the payoffs (at discontinuity points)

so that the new game has a Nash equilibrium.

Example 2.11 California Location Game, Continued.

In the California location game, define a new payoff function q as follows: q(x) = u(x)

for every x 6= (3, 3) and q(3, 3) = (3, 1). The pure strategy profile (3, 3) with payoff (3, 1)

is a Nash equilibrium of the game defined by q. The new sharing rule at x = (3, 3) has a

simple interpretation: it corresponds to giving each psychologist his/her natural market share.

Moreover, this is exactly the prediction of the approximate equilibrium in Example 2.10. We

will prove that this property is very general: any approximate equilibrium is a sharing rule

equilibrium (see Theorem 3.10).

To prove the existence of a solution, Simon and Zame do not require the game to be

quasiconcave. However, they allow the use of mixed strategies. Formally, G is metric if strategy

sets are Hausdorff and metrizable and payoff functions are measurable. Denote by Mi = ∆(Xi)
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the set of Borel probability measures on Xi (usually called the set of mixed strategies of player

i). This is a compact Hausdorff metrizable set under the weak* topology. Let M = ΠiMi.

Definition 2.12 A mixed Nash equilibrium of G is a pure Nash equilibrium of its mixed

extension G′ = ((Mi)i∈N , (ui)i∈N ), where payoff functions are extended multi-linearly to M .

Definition 2.13 A pair (m, q) is a mixed sharing rule solution of G if m ∈ M is a mixed

Nash equilibrium of the auxiliary game G̃ = ((Xi)i∈N , (qi)i∈N ), where the auxiliary payoff

functions q = (qi)i∈N must satisfy the condition:

(SR): ∀x ∈ X, q(x) ∈ coΓx,

where, Γx = {v ∈ RN : (x, v) ∈ Γ} is the x-section of Γ, and co stands for the convex hull.

Condition (SR) has two implications: if u is continuous at x, q(x) = u(x); if
∑
i∈N

ui(x) is

continuous, then
∑
i∈N

qi(x) =
∑
i∈N

ui(x) (justifying the terminology “sharing rule”).

Theorem 2.14 (Simon and Zame [38]) Any compact metric game admits a mixed sharing

rule solution.

Jackson et al. [17] extend Simon and Zame’s theorem to games with incomplete information.

In their paper, they interpret a tie-breaking rule as a proxy for the outcome of an unmodeled

second stage game. As example, they recall the analysis of first-price auctions with incomplete

information for a single indivisible object. Maskin and Riley [23] add to the sealed-bid stage a

second stage where bidders with the highest bid in the first stage play a Vickrey auction. In

the private value setting, their dominant strategy is to bid their true values. Consequently, the

second stage induces a tie-breaking rule where the bidder with the highest value wins the object.

More generally, a tie-breaking rule may be implemented by asking players to send a cheap

message (their private values in auctions), in addition to their strategies (bids). The messages

will be used only to break ties (as in the second stage of Maskin and Riley’s mechanism).

When the game is continuous, the new and the original games coincide, and so we recover

the Nash-Glicksberg’s theorem in mixed strategies.

Theorem 2.15 (Nash-Glicksberg’s Theorem in mixed strategies) Any continuous, metric

compact game admits a mixed Nash equilibrium.

Jackson et al. [17] remark that their “results concern only the existence of solutions [sharing

rule equilibrium] in mixed strategies” and that they “have little to say about the existence of

solutions in pure strategies”. In the next section, we prove the existence of a pure sharing rule

solution, defined now.
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Definition 2.16 A pair (x, q) is a pure sharing rule solution if x ∈ X is a pure Nash

equilibrium of the auxiliary game G̃ = ((Xi)i∈N , (qi)i∈N ), where the auxiliary payoff functions

q = (qi)i∈N must satisfy the following stronger condition:

(SR strong): ∀y ∈ X, q(y) ∈ Γy,

Our condition (SR strong) requires that for every strategy profile y, there exists a sequence

(yn) converging to y such that q(y) = limn→∞ u(yn). On one hand, our condition is stronger

than the original condition (SR) because one always has Γy ⊂ coΓy. On the other hand, to

prove the existence of a pure sharing rule solution, we need payoff functions to be quasiconcave.

To allow comparison between sharing rule solution and approximate equilibrium, we intro-

duce the following terminology.

Definition 2.17 A pair (m, v) ∈ M ×RN is called a mixed (resp. pure) sharing rule equi-

librium if (m, q) is a mixed (resp. pure) sharing rule solution and q(m) = v.

The proof of the existence of a pure sharing rule equilibrium is a direct consequence of the

existence of a Reny equilibrium, defined in the next subsection.

3. EXISTENCE OF A SOLUTION FOR GAMES IN PURE STRATEGIES

As discussed above, sharing rule and approximate equilibrium concepts are important alter-

native solutions for games without a Nash equilibrium. Both are defined on Γ (the closure of

the graph of the game). Consequently, to prove their existence, it seems necessary to use some

general existence result on Γ that plays the role of a fixed point theorem: Reny equilibrium is

the key concept.

3.1. Existence of a Reny Equilibrium

In the following definition, recall that Vi(x−i) := supdi∈Xi
ui(di, x−i).

Definition 3.1 A pair (x, v) ∈ Γ is a Reny equilibrium if for every i ∈ N , Vi(x−i) ≤ vi.

Example 3.2 Two-player first-price auctions

Both players i = 1, 2 choose a bid xi ∈ [0, 1], and receive a payoff:

ui(xi, xj) =


wi − xi if xi > xj ,

wi−xi

2 if xi = xj ,

0 if xi < xj .
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If w1 ∈]0, 1[ (the value of player 1) is higher than w2 ∈]0, 1[ (the value of player 2), then the

above game is quasiconcave, and every (x1, x2, v1, v2) = (y, y, w1 − y, 0) is a Reny equilibrium

whenever y ∈ [w2, w1]. To see this, note first that the game is payoff secure, thus a Reny-

equilibrium (x, v) = (x1, x2, v1, v2) ∈ Γ satisfies

sup
di∈[0,1]

ui(di, x−i) ≤ vi, i = 1, 2(1)

Since this game has no Nash equilibrium, x1 is equal to x2 (otherwise ui would be continuous

at x = (x1, x2), and Equation 1 would imply that x is a Nash equilibrium). Moreover, each

player can get a payoff of at least 0 by playing 0. Consequently, v1 and v2 are non-negative. From

(x, v) ∈ Γ , (v1, v2) = limn→+∞(u1(xn), u2(xn)) for some sequence of profiles xn = (xn1 , x
n
2 )

converging to (x1, x1). There are three cases (up to a subsequence), depending on whether the

sequence converges to x from above, along the diagonal, or from below. In the two first cases,

v = (0, w2 − x1) or v = (w1−x1

2 , w2−x1

2 ), thus x2 = x1 ≤ w2. Then, playing slightly above x1

gives a payoff strictly above v1 for player 1, which contradicts Equation 1. In the last case,

v = (w1 − x1, 0), thus x1 ≤ w1. Then, Equation 1 implies that x1 ≥ w2 (otherwise player 2

could do better than 0 by playing slightly above x1.)

In this example, the set of Reny equilibria coincides with the set of approximate equilibria

(playing y ∈ [w2, w1] for player 2 and slightly above for player 1 is an ε-equilibrium). Note that

there are several Reny and approximate equilibria, but multiplicity of equilibria can happen

also for Nash equilibrium concept: in this example with a second-price auction mechanism,

playing y for player 2 and w1 for player 1 is a Nash equilibrium for all y ∈ [0, w1).

Theorem 3.3 For any quasiconcave and compact game G, the set of Reny equilibria is

nonempty and compact, and it contains the set of Nash equilibria. Moreover, G is better-reply

secure if and only if Nash and Reny equilibrium profiles coincide.

Observe that a Nash equilibrium (x, u(x)) is a Reny equilibrium because Vi(x−i) ≤ Vi(x−i),
and by Nash conditions, Vi(x−i) ≤ ui(x). Moreover, if the game is continuous, then Reny and

Nash equilibria coincide because Vi(x−i) = Vi(x−i) and u(x) = v.

The existence of a Reny equilibrium is a straightforward consequence of Reny’s [34] theorem

(this explains why we call it Reny equilibrium). Indeed, assume, by contradiction, that there is

no Reny equilibrium. This implies that the game is better-reply secure. Consequently, by Reny’s

theorem [34], there exists a Nash equilibrium, which is a Reny equilibrium: a contradiction.

Compactness of the set of Reny equilibria is due to the lower semi-continuity of Vi, and the

last assertion of Theorem 3.3 is a consequence of the definition of better-reply security.

As an illustration, we can revisit the result of Reny in Proposition 2.6 and prove that

whenever a game is payoff secure and reciprocally upper semi continuous, it is better-reply

secure. Actually, assume (x, v) to be a Reny equilibrium. Thus, for every i ∈ N , Vi(x−i) ≤ vi.
Since the game is payoff secure, Vi(x−i) = Vi(x−i) ≤ vi. Since ui(x) ≤ Vi(x−i), one has ui(x) ≤
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vi for every i ∈ N . By reciprocal upper semicontinuity, v = u(x), and so Vi(x−i) ≤ ui(x) for

every i ∈ N . Consequently, (x, v) is a Nash equilibrium.

Two major applications of Reny equilibrium are presented in the next subsections. In Sub-

section 3.2., Reny equilibrium allows to prove the existence of a pure sharing rule equilibrium

in any quasiconcave compact game. In Subsection 3.3., Reny equilibrium is used to prove the

existence of approximate equilibria in a number of economic applications.

3.2. Existence of a Sharing Rule Equilibrium

The existence of a Reny equilibrium allows to solve the open problem in Jackson et al. [17].

Theorem 3.4 Every Reny equilibrium is a pure sharing rule equilibrium. In particular, any

quasiconcave and compact game G admits a pure sharing rule equilibrium.

Remark 3.5 Observe that a pure sharing rule solution (m, q′) of G′ (the mixed extension of

G) is not a mixed sharing rule solution of G because the new payoff profile q′ is defined on

M and not on X, and q′ is not necessarily the multilinear extension of a pure strategy payoff

profile. Thus, our result does not imply Simon-Zame’s theorem.

To prove Theorem 3.4, consider a Reny equilibrium (x, v) ∈ Γ. Then, we can build a

sharing rule solution as follows. For every i ∈ N and di ∈ Xi, denote by S(di, x−i) the space

of sequences (xn−i)n∈N of X−i converging to x−i such that limn→+∞ ui(di, x
n
−i) = ui(di, x−i).

Then, define q : X → RN by

q(y) =


v if y = x,

any limit point of (u(di, x
n
−i))n∈N if y = (di, x−i) for some i ∈ N, di 6= xi, (x

n
−i)n∈N ∈ S(di, x−i),

q(y) = u(y) otherwise.

Now, let us prove that (x, q) is a pure sharing rule solution. Since (x, v) ∈ Γ, and by definition

of q, condition (SR strong) of Definition 2.16 is satisfied at x. Obviously, it is satisfied at every

y different from x for at least two components, and also at every (di, x−i) with di 6= xi, from

the definition of q(di, x−i) in this case. The proof is complete.

Remark 3.6 Thus, Reny equilibrium refines pure sharing rule equilibrium, and the refine-

ment is strict as the following better-reply secure game shows. A player maximizes over [0, 1]

the following discontinuous payoff function: u(x) = 0 if x < 1, and u(1) = 1. If q(y) = 0

for every y, then (x, q) is a pure sharing rule solution for any x ∈ [0, 1]. Yet, the only Reny

equilibrium is (x, v) = (1, 1), and it coincides with the unique Nash equilibrium.
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Remark 3.7 Actually, the pure sharing rule solution (x, q) built in the proof of Theorem 3.4

satisfies the additional property:10 qi(di, x−i) ≥ ui(di, x−i) for every i ∈ N and every di ∈ Xi.

This property says that q remains above the secure payoff level in the original game. This

additional property is very useful, for example, to prove the existence of a pure sharing rule

solution in an exchange economy model with discontinuous preferences (see Application 3.18).

Example 3.8 Bertrand Duopoly

In a Bertrand duopoly, two firms i = 1, 2 choose prices pi ∈ [0, a] (a > 0). Assume a

linear demand a − min(p1, p2) and marginal costs c1 < c2 < a+c1
2 . If the firms charge an

equal price, then the market demand is equally shared by both the firms. If we assume that

the firm charging the lowest price supplies the entire market, then the game has no pure

Nash equilibrium. Nevertheless, the game is quasiconcave and compact. This game has a

pure sharing rule solution, with a strategy profile (c2, c2) and with payoff function q(c2, c2) =

((a− c2)(c2 − c1), 0), while q(x) = u(x) elsewhere.

Application 3.9 Shared Resource Games

The payoff of each player i ∈ N can be written as ui(xi, x−i) = Fi(xi, Si(xi, x−i)), where

Fi : Xi × R → R and Si : X → R (the shared resource of player i). The total amount of

the resource
∑N
i=1 Si is a (possibly discontinuous) function of the strategy profile x ∈ X. This

game G was introduced to model fiscal competition for mobile capital (Rothstein’s [37]).

A sharing rule of G is defined to be a family (S̃i)i∈I of functions from X to R such that

for every strategy profile x ∈ X, there is a sequence (xn) converging to x such that for every

player i, S̃i(x) = limn→∞ Si(xn). Theorem 3.4 implies the following extension of Rothstein’s

results. Assuming G to be quasiconcave and compact, Fi continuous and Si bounded for

every player i, we get the existence of a new sharing rule (S̃i)i∈I whose associated game

ũi(xi, x−i) = Fi(xi, S̃i(xi, x−i)) admits a pure Nash equilibrium. Moreover, under the following

assumptions, any Nash equilibrium of G̃ is a Nash equilibrium11 of G:

A1) For all xi ∈ Xi, Fi(xi, si) is nondecreasing in si.

A2) For all x−i ∈ X−i, sup
di∈Xi:(di,x−i)∈Ci

ui(di, x−i) = sup
di∈Xi

ui(di, x−i), where Ci is the set of

continuity points of Si.

A3) If x /∈ ∩i∈NCi, sup
di∈Xi

ui(di, x−i) > Fi

(
xi,

lim supx′→x
∑N
i=1 Si(x

′)

N

)
for every i ∈ N .

10Indeed, if di = xi, then qi(di, x−i) = qi(x) = vi ≥ ui(x) because (x, v) is a Reny equilibrium. If di 6= xi

then qi(di, x−i) = ui(di, x−i).
11Indeed, for every Nash equilibrium x of G̃, one has supdi∈Xi

ui(di, x−i) ≤ supdi∈Xi
Fi(di, S̃i(di, x−i)) ≤

Fi(xi, S̃i(x)) for every player i. The first inequality is a consequence of A2 and the definition of S̃i. If x ∈ Ci
for every i, then S̃i(x) = Si(x), and x is a Nash equilibrium of the initial game G. Otherwise, from A1 and A3,

we get
lim supx′→x

∑N

i=1
Si(x

′)

N
< S̃i(x) for every i ∈ N . Summing these inequalities contradicts the definition

of S̃i.
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Consequently, Theorem 3.4 permits to strengthen Rothstein’s results. Moreover, it answers

to the following remark of Rothstein12 “the work of Simon and Zame [38] is directly applicable,

but only to establish the existence of a Nash equilibrium in mixed strategies with an endogenous

sharing rule.” By Theorem 3.4, the game has a pure endogenous sharing rule equilibrium.

3.3. Existence of an Approximate Equilibrium

The following theorem proves that Reny equilibrium can detect approximate equilibrium.

Theorem 3.10 Every approximate equilibrium is a Reny equilibrium, and so is a pure sharing

rule equilibrium.

The proof is as follows. Let (xn)n∈N be a sequence of εn-equilibria such that (xn, u(xn))

converges to (x, v). By definition, ui(di, x
n
−i) ≤ ui(xn)+εn for every n ∈ N, every player i ∈ N

and every deviation di ∈ Xi. Passing to the infimum limit when n tends to infinity, we obtain

ui(di, x−i) ≤ vi. Thus, (x, v) is a Reny equilibrium, and also a pure sharing rule equilibrium

by Theorem 3.4. This leads to the following definition.

Definition 3.11 A game G is approximately better-reply secure if whenever (x, v) ∈ Γ and x

is not an approximate equilibrium profile, some player i can secure a payoff strictly above vi.

The existence of a Reny equilibrium implies the following result.

Theorem 3.12 Any approximately better-reply secure quasiconcave and compact game ad-

mits an approximate equilibrium.

California location game is approximately better-reply secure. This theorem provides a local

version of Reny-Prokopovych’s theorem (described in Subsection 2.2).

Proposition 3.13 If (x, v) is a Reny equilibrium and if, at x, the game is payoff secure and

marginally continuous, then (x, v) is an approximate equilibrium.

Actually, if (x, v) is a Reny equilibrium, then supdi∈Xi
ui(di, x−i) = supdi∈Xi

ui(di, x−i) ≤
vi (the equality being a consequence of payoff security at x). Since v = limxn→x u(xn) for some

sequence xn, the local continuity of supdi∈Xi
ui(di, x−i) with respect to x guarantees that (x, v)

is an approximate equilibrium. This proposition implies Reny-Prokopovych’s theorem, and is

useful in practice as the following application shows.

12See [37], footnote 3.
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Application 3.14 Diagonal Games.

For every i ∈ N , we let fi, gi be continuous mappings from [0, 1] × [0, 1] to R, and hi :

[0, 1]N → R be a bounded mapping. The payoff of player i is:

ui(xi, x−i) =


fi(xi, φ(x−i)) if φ(x−i) > xi,

gi(xi, φ(x−i)) if φ(x−i) < xi,

hi(xi, x−i) if φ(x−i) = xi,

where φ : [0, 1]N−1 → [0, 1] is a continuous (aggregation) function that satisfies:

Monotonicity13: if (y1, ..., yN−1) ≤ (z1, ..., zN−1) then φ(y1, ..., yN−1) ≤ φ(z1, ..., zN−1) and

if (y1, ..., yN−1) << (z1, ..., zN−1) then φ(y1, ..., yN−1) << φ(z1, ..., zN−1).

Anonymity: for any permutation σ of {1, ..., N − 1}, φ(y1, ..., yN−1) = φ(yσ(1), ..., yσ(N−1)).

Unanimity: φ(y, ..., y) = y for every y ∈ [0, 1].

Representativity: φ(y1, ..., yi, ..., yN−1) > 0 and yi > 0 imply φ(y1, ..., zi, ..., yN−1) > 0 for

every zi > 0. Similarly, φ(y1, ..., yi, ..., yN−1) < 1 and yi < 1 imply φ(y1, ..zi, ..., yN−1) < 1 for

every zi < 1.

The four properties are satisfied14 by functions such as maxj yj , minj yj ,
1

N−1
∑
j yj , or the

k-th highest value of {y1, ..., yN−1} for k = 1, ..., N − 1. Diagonal games include many models

of competition with complete information. For example, in some auctions, φ(y1, ..., yN−1) =

maxj yj , in wars of attrition, preemption or Bertrand competition φ(y1, ..., yN−1) = minj yj .

Proposition 3.15 Any quasiconcave diagonal game satisfying condition (C) below is ap-

proximately better-reply secure, thus it possesses an approximate equilibrium.

(C) there is α > 0 such that for every x ∈ [0, 1]N and i ∈ N , if xi = φ(x−i) then there is

αi(x) ∈]α, 1− α[ such that hi(x) = αi(x)fi(xi, φ(x−i)) + (1− αi(x))gi(xi, φ(x−i)).

Condition (C) just means that hi is a strict convex combination of gi and fi with weights

that are bounded below. The assumption is satisfied in many models. In auctions, the winner is

usually decided uniformly among highest bidders, thus the payoff of a player in case of ties is a

strict convex combination between his payoff if he wins, gi, and if he looses, fi. The coefficient

of the convex combination depends on how many players are tied, inducing a discontinuity on

hi. The probability of being selected or not selected is bounded below by 1
N = α.

Sketch of the proof. (See the appendix for a detailed proof.) Under Assumption (C), the

13In the following, for every x = (x1, ..., xn) ∈ Rn and y = (y1, ..., yn) ∈ Rn, x << y means xi < yi for

every i.
14Our paper gives several existence results, in pure and mixed strategies, where an aggregation function is

used, but the proofs of some of these results do not use all the properties. For example, in Proposition 4.12

(private value setting), only monotonicity of φ is used.
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game is payoff secure. Consequently, if (x, v) ∈ Γ is a Reny equilibrium then

sup
di∈[0,1]

ui(di, x−i) ≤ vi, i ∈ N.

To prove that x is an approximate equilibrium profile, one has to check four different cases:

first, if xi 6= φ(x−i) for every i, then the payoff functions are continuous at x, v = u(x), and

the Reny equilibrium equation above implies that (x, v) is a Nash equilibrium. Second, if there

exists i such that xi = φ(x−i) ∈]0, 1[, then anonymity, representativity, and monotonicity

give φ(x−j) ∈]0, 1[ for every j. Then, the marginal continuity property is satisfied at x, and

from Proposition 3.13, (x, v) is an approximate equilibrium. Third, assume there is i such that

xi = φ(x−i) = 0. By anonymity and monotonicity, φ(x−j) = 0 for every j ∈ N . Let xn be

such that u(xn) → v. Define a sequence of profiles (yn) as follows: we let j be any player;

if vj ≤ fj(0), define ynj := 0 for every n, otherwise, define ynj := xnj for every n. One can

check that yn is an εn-equilibrium for some εn → 0. In the last case, there is i such that

xi = φ(x−i) = 1: this is similar to the third case.

3.4. Refining Reny Equilibria

In this subsection, we use a recent work of Barelli and Meneghel [3] to improve the previous

subsections. This requires the strategy spaces to be Hausdorff, locally convex subsets of a

topological vector space. It is assumed in this subsection.15 Equivalently, this can be formalized

by the use of the mapping ui defined as follows:16

for every x ∈ X, ui(x) := supU∈V(x−i) supdi∈WU (x) infx′−i
∈U ui(di(x

′
−i), x

′
−i),(2)

where V(x−i) denotes the set of neighborhoods of x−i and WU (x) is the set of continuous

mappings di from U to Xi such that di(x−i) = xi. Barelli and Meneghel existence result [3]

implies easily the following extension of Theorem 3.3, the proof being identical.

Theorem 3.16 Every quasiconcave and compact game admits (x, v) ∈ Γ s.t. for all i ∈ N :

sup
di∈Xi

ui(di, x−i) ≤ vi.

15In fact, Barelli and Meneghel go further replacing di(.) by some well behaved multivalued “Kakutani-type”

mapping. The extension we propose can easily be adapted to their more general framework. For simplicity,

we keep on continuous functions. Observe that Barelli and Meneghel construction requires assumptions on X

so that Brouwer fixed point theorem holds on X. From Cauty [8]. Reny’s better-reply security condition asks

for the existence of a deviation di ∈ Xi with the property that ui(di, x
′
−i) > vi + ε for some ε > 0 and for

every x′ in some neighborhood of x. Barelli and Meneghel propose a natural extension: they allow di to depend

continuously on x′−i, meaning that we should now have ui(di(x
′
−i), x

′
−i) > vi + ε, where di(.) is a continuous

function from a neighborhood of x−i to Xi, we know it is sufficient for X to be a convex and compact subset of

a Hausdorff topological vector space. Thus we could get rid of the local convexity assumption in this subsection.
16This function was first introduced by Carmona [6], in the more general case where di(.) is multivalued.
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Call such a pair (x, v) a strong Reny equilibrium. It refines Reny equilibrium because ui ≤ ui
(simply take the constant mapping di = xi in the supremum of Equation (2) above)17. The

existence of a strong Reny equilibrium permits to refine pure sharing rule solutions in Theorem

3.4 as follows:

Theorem 3.17 Every quasiconcave compact game admits a pure sharing rule solution (x, q),

with the additional property: for every player i and for every di ∈ Xi, qi(di, x−i) ≥ ui(di, x−i).

The construction follows the proof of Theorem 3.4, by using ui instead of ui. The addi-

tional property is obtained as explained in Remark 3.7. The following example illustrates the

importance of this condition in practice.

Application 3.18 Exchange Economy with Discontinuous Preferences

Consider the following n-consumer, m-commodity exchange economy. Consumer i’s con-

sumption set Xi, i ∈ N , is a nonempty, convex and compact subset of Rm
+ , his utility function

ui : Xi → R is non negative, bounded and quasiconcave, and his initial endowment ei is

assumed to be in the interior of Xi. Call {Xi, ui, ei}i∈N a quasiconcave compact economy if it

satisfies these assumptions. A Walrasian equilibrium is (x, p) ∈ Πi∈NXi × ∆(Rm
+ ) such that∑

i∈N xi =
∑
i∈N ei and xi maximizes the utility ui of agent i on its budget set p ·(xi−ei) ≤ 0,

where ∆(Rm
+ ) is the unit simplex of Rm

+ . We define (x, p) ∈ Πi∈NXi×∆(Rm
+ ) to be a sharing

rule Walrasian equilibrium if there exists a new utility profile {ũi}i∈N such that (x, p) is a

Walrasian equilibrium of {Xi, ũi, ei}i∈N , where ũi : Xi → R satisfies: for every i and yi ∈ Xi,

there is yni → yi such that ũi(yi) = limn→+∞ ui(y
n
i ).

Proposition 3.19 Every quasiconcave and compact economy {Xi, ui, ei}i∈N admits a shar-

ing rule Walrasian equilibrium.

The proof can be found in the appendix, and uses in a crucial way the above refinement of

sharing rule solution.

Remark 3.20 In general equilibrium theory, preferences are usually assumed to be continu-

ous. Discontinuities may arise, for example, in presence of externalities (preferences of a player

depend on consumptions of other players). Note that the proof of Proposition 3.19 could be

adapted to economies with externalities. This sharing rule existence result opens the door to

other interesting questions such as existence of approximate or even exact Walrasian equilibria.

17It can be proved that if WU (x) in the definition of ui is replaced by the set of all mappings without any

continuity restriction, then existence in the above theorem is lost. Thus, Barelli and Meneghel refinement is

tight.



17

Another consequence of Theorem 3.16 is the following extension of Proposition 3.15.

Proposition 3.21 In every quasiconcave diagonal game where h is continuous and φ(x−i) =

maxj 6=i xj , approximate and strong Reny equilibrium profiles coincide, consequently the game

admits an approximate equilibrium.

4. EXISTENCE OF SOLUTIONS FOR GAMES IN MIXED STRATEGIES

This section improves the previous one by providing a constructive approach for approxi-

mate and Reny equilibria in mixed strategies. In a first part we establish a formal link between

the set of Reny equilibria of G′ and the set of mixed sharing rule equilibria by proving that the

intersection of these sets is nonempty. In a second part, we prove that if G′ is approximately

better-reply secure then some approximate equilibria can be obtained as limits of Nash equi-

libria of finite discretizations of the initial game. The approximation methodology is illustrated

in auctions with correlated types or values.

In this section, we let G be a metric compact game, G′ its mixed extension and Γ′ the

closure of the graph of G′. As previously defined, Mi = ∆(Xi) is the set of mixed strategies of

player i. This is a compact Hausdorff metrizable set under the weak* topology. Let M = ΠiMi.

In the following, a Reny equilibrium of G′ is called a mixed Reny equilibrium. It always exists

from Theorem 3.3 because G′ is compact and quasiconcave.

4.1. Linking Approximate, Reny and Simon-Zame Equilibria

The following proves that the intersection of mixed Reny and mixed sharing rule equilibria

plays a central role.

Theorem 4.1 Mixed approximate equilibria are always in the intersection of mixed Reny

and mixed sharing rule equilibria18.

The first inclusion is a consequence of Theorem 3.10 applied to G′. The second inclusion is

a straightforward adaptation of the proof of Simon and Zame [38] (simply take ε−equilibria

of finite approximations of G instead of exact equilibria).

Importantly, this intersection is always nonempty, and is a consequence of a simple limit

argument we now explain. We let D0 be the set of all finite subsets Πi∈NDi of M . Consider the

inclusion relationship on D0: it is reflexive, transitive and binary. Then, each pair Πi∈NDi and

Πi∈ND
′
i in D0 has an upper bound Πi∈N (Di ∪D′i) in D0. The pair (D0,⊂) is called a directed

18From Section 3, this is also true in pure strategies. Nevertheless, it cannot be directly proved applying

Section 3 to G′, simply because a pure sharing rule equilibrium of G′ may not be a mixed sharing rule

equilibrium of G.
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set. To every D = Πi∈NDi ∈ D0, we can associate (mD, u(mD)), where mD is a mixed Nash

equilibrium of the finite game restricted to D. This defines a mapping19 from D0 to Γ′, called

a net (of Γ′). A limit point (m, v) ∈ Γ′ of this net, denoted (mD, u(mD))D∈D0
, is defined by

the following property: for every neighborhood Vm,v of (m, v) and every D = Πi∈NDi ∈ D0,

there exists D′ ∈ D0 with D ⊂ D′ such that (mD′ , u(mD′)) ∈ Vm,v.

Definition 4.2 A pair (m, v) ∈ Γ′ is a limit-equilibrium of G′ if it is a limit point20 of a net

(mD, u(mD))D∈D0 of mixed Nash equilibria of the finite game restricted to D.

Theorem 4.3 Every compact metric game has a limit-equilibrium. Any limit-equilibrium

(m, v) is a mixed Reny and a mixed sharing rule equilibrium. Consequently, the intersection

between mixed Reny and mixed sharing rule equilibria is nonempty, and if G′ is better-reply

secure then any limit-equilibrium is a mixed Nash equilibrium.

Existence of a limit-equilibrium is a consequence of the compactness of Γ′. The rest of the

proof is presented in the appendix and is an adaptation of the arguments of Simon and Zame.

Remark 4.4 In particular, we get a short and constructive proof of Reny’s existence result

for games in mixed strategies [34] by a limit argument (as in the proof of the theorem of Simon

and Zame).

4.2. Weak Strategic Approximation

The idea of using a sequence of finite games to detect Nash equilibria goes back to Dagsputa

and Maskin [22]. This has been formalized by Reny [36] in the class of better-reply secure

games via the notion of strategic approximation. We can extend this method to approximately

better-reply secure games.

Definition 4.5 A game G admits a weak strategic approximation if there is a sequence of

finite sets Dn ⊂ M such that all accumulation points of mixed Nash equilibria21 of the game

restricted to Dn are approximate equilibria of G′.

Theorem 4.6 If the game G′ is approximately better-reply secure, then it has a weak strate-

gic approximation.

19By definition, mD = (mD
i )i∈N is an element of Πi∈I∆(∆(Xi)). More precisely, it is a profile of probability

measures on finite subsets of ∆(Xi), where i ∈ N . Given i ∈ N , let {σ1, ..., σK} be the support of mD
i and

p1, ..., pK the associated weights. By abuse of notation, we can define mD
i =

∑K

k=1
pk.σk, which is now an

element of ∆(Xi). Up to this identification, (mD, u(mD)) can be seen as an element of Γ′.
20The pair (mD, u(mD)) can be identified with an element of Γ′, see footnote 19.
21By taking a sequence of Selten perfect equilibria rather than Nash equilibria, one may obtain approximate

equilibria who’s support are included in the closure of the set of undominated strategies.
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The proof (in the appendix) is an adaptation of Reny’s arguments [36], thanks to the notion

of limit-equilibrium.

4.3. Applications

Non Quasiconcave Two Player Diagonal Games

Proposition 4.7 Any two-player diagonal game in which h is continuous admits a weak

strategic approximation (and so an approximate equilibrium in mixed strategies).

The construction of a weak strategic approximation is proved in Appendix 6.6. Interestingly,

the approximation is endogenous (i.e. game dependent). Some particular cases covered by

Proposition 4.7 follow.

Example 4.8 Bertrand Duopoly with Discontinuous Costs

Hoerning [15] introduced the following modification of Bertrand’s game: each firm i = 1, 2

chooses a price pi ∈ [0, 1]; the demand is D(p1, p2) = max{0, 1 − min(p1, p2)}; the total

(symmetric) cost for each firm is C(q) = C̃ ∈ (0, 14 ) if the production q is positive, and

C(0) = 0 otherwise. Assuming equal sharing at ties, Hoerning [15] proved that the game has

no mixed Nash equilibrium. By Proposition 4.7, it has an approximate equilibrium.

Example 4.9 Bertrand-Edgeworth Duopoly with Capacity constraints

There are two firms. Firm i has an endowment of Ci units of the commodity (the capacity

of a zero-cost technology). Firms choose prices (p1 and p2). The firm choosing the lowest price

(say p) serves the entire market D(p) up to its capacity. The residual demand D(p)−Ci is met

by the other firm (up to its capacity as well). If the duopolists set the same price they share

the market according to some rule h. If h shares the market in proportion to the capacities,

Dasgupta and Maskin [9] proved the existence of a mixed equilibrium. Proposition 4.7 proves

the existence of an approximate equilibrium for any continuous h.

Example 4.10 Timing Games

Two players i = 1, 2 must choose a time ti ∈ [0, 1] and the game is over at the first stop

t = min{t1, t2}. If player 1 stops first, the payoff vector is a(t), if it is player 2, the payoff is b(t),

and if both stop simultaneously, the payoff is c(t). This is a diagonal game (under the change

of variable xi = 1 − ti). Well-known examples are wars of attrition and preemption games.

When a, b and c are continuous, Proposition 4.7 states that there is a mixed approximate

equilibrium, a result already known from Laraki et al. [20].

Example 4.11 Silent Duels
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These are two-player zero-sum timing games. In the simplest version [32], both players are

endowed with one bullet, and have to choose when to fire. As time goes, the two players

get closer. More precisely, pi(t) denotes the probability that player i wins if he shoots the

opponent at time t. This probability pi(t) is assumed to be continuous and strictly increasing

as t goes from 0 to 1, with pi(0) = 0 and pi(1) = 1. We suppose that when a player fires,

the other does not know it (the game continues for that player). Thus, a strategy of a player

is when to fire, conditionally that he is still alive. Thus fi(ti, tj) = pi(ti) − (1 − pi(ti))pj(tj),
gi(ti, tj) = −pj(tj) + (1− pj(tj)pi(ti)), and hi(ti, tj) = pi(ti)(1− pj(tj))− pj(tj)(1− pi(ti)).

It is well know that this game does not have a value in pure strategies, but does have one

in mixed strategies when pi(t) = pj(t) = t. From Proposition 4.7, there is an approximate

equilibrium, and so a value for every continuous functions pi and pj (even if they are not

monotonic as usually assumed). In fact, the proposition implies the existence of an approximate

equilibrium in every two-player silent timing game with complete information (see [29]).

Auctions with Correlated Types

In many economic models, such as auctions, players do not have full knowledge about other

player’s evaluations. This leads naturally to the following class of Bayesian diagonal games. At

stage 0, a type t = (t1, ..., tN ) ∈ T = T1× ...×TN is drawn according to some joint probability

distribution p, and each player i is informed of his own type ti (correlations between types are

allowed). At stage 1, each player i is asked to choose an element xi ∈ [0, 1] (interpreted as a

bid). The payoff of player i is:

ui(t, xi, x−i) =


fi(t, xi, φi(x−i)) if φi(x−i) > xi,

gi(t, xiφi(x−i)) if φi(x−i) < xi,

hi(t, xi, x−i) if φi(x−i) = xi,

where, x̄−i = maxj 6=i xj , where fi(t, ·, ·) and gi(t, ·, ·) are two continuous mappings on [0, 1]×
[0, 1], and φi : Πj 6=i, Xj → [0, 1] is an aggregation function. The mapping h is the tie-breaking

rule and may be discontinuous. The game is called a game of private values if for every i, ui

depends only on its own type ti and does not depend on t−i.

Proposition 4.12 Any Bayesian diagonal game admits a weak strategic approximation (and

so a mixed approximate equilibrium)22 if for every i and t one has:

(a) fi(t, 0, 0) ≤ hi(t, 0, .., 0) ≤ gi(t, 0, 0);

(b1) fi(t, 1) ≥ hi(t, 1) ≥ gi(t, 1) or23 (b2) there is η > 0 such that there is always a best

22Importantly, for every ε > 0, the ε-equilibria we build in the proof are tie-breaking rule independent.
23Conditions b1 and b2 are boundary conditions at 1. Condition b1 is satisfied by first-price, second-price,

multi-unit and double auctions, but not for all-pay auctions. Condition b2 is true for all-pay, first-price, second-

price and multi-unit auctions, but not for double auctions (see Examples 4.13, 4.14 and 4.15).
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response of each type in [0, 1− η[;

(c1) there are only two players or (c2) values are private

The proposition is formally proved in Appendix 6.7. Let us give some auction models for

which conditions (a) and (b) are satisfied.

Example 4.13 One unit first-pay, Second-pay and All-Pay Auctions

Take any N -player auction where the winner is the player with maximal bid. More precisely,

suppose that player i’s value for the object is vi(t) ∈]0, 1[. If i wins the auction (xi > x̄−i, where

x̄−i = maxj 6=i xj) and pays a price pi(xi, x̄−i) ≥ 0, his final utility is gi(t, x) = vi(t)−pi(xi, x̄−i)
where pi is continuous, non decreasing in both variables and pi(y, y) = y for every y. If player

i looses the auction (xi < x̄−i), he pays a transfer τi(xi) ≥ 0, and so his utility is fi(t, x) =

−τi(xi) where τi(xi) is continuous, non decreasing and τi(0) = 0. In case of a tie (xi = x̄−i),

the winner is selected uniformly among the set of players with maximum bid. For example,

in first-price and second-price auctions, τi = 0. In all-pay auctions, τi = −xi. In first-pay and

all-pay auctions, pi(xi, x̄−i) = max{xi, x̄−i}, in second-price auctions, pi(xi, x̄−i) = x̄−i. In

this general model, 0 = fi(t, 0) < gi(t, 0) = vi(t) and hi(t, 0) = vi(t)
N , so that (a) is satisfied.

Condition (b1) is satisfied in first-price and second-price auctions, but not in all-pay auctions.

However, Condition (b2) is satisfied in these three type of auctions because player i has always

a best response in [0,maxtvi(t) + ε[. Thus Proposition 4.12 applies when there are two players

or values are private.

Example 4.14 Multi-unit Auctions

Consider the previous model with the following modification: K homogeneous units of an

indivisible good are sold, but each bidder i = 1, ..., N (N ≥ K) can buy only one unit of the

good. Player i wins if his bids is among the K highest bids. In case of a tie, the remainig winners

are chosen at random among the tie-players. Proposition 4.12 applies, and here φ(x1, ..., xN−1)

is simply the K-th highest of x1, ..., xN−1.

Example 4.15 Double Auction

Suppose player 1 is a buyer with a value v(t1, t2) ∈]0, 1[ and player 2 is a seller with a cost

c(t1, t2) ∈]0, 1[. Player 1 chooses a maximum bid x1 ∈ [0, 1] and player 2 a minimum price x2. If

x1 < x2, there is no trade (so that f1(t, x1, x2) = g2(t, x1, x2) = 0). If x1 ≥ x2, there is a trade

at price p = x1+x2

2 , so that h1(t, x1, x2) = g1(t, x1, x2) = v(t1, t2) − x1+x2

2 and h2(t, x1, x2) =

f2(t, x1, x2) = x1+x2

2 − c(t1, t2). Consequently, f1(t, 0, 0) = 0 < h1(t, 0, 0) = g1(t, 0, 0) = v(t)

and f2(t, 0, 0) = −c(t) = h2(t, 0, 0) < g2(t, 0, 0) = 0: condition (a) is satisfied. Condition (b1)

is satisfied similarly, but Condition (b2) is not satisfied for the seller. Since the game has only

two players, Proposition 4.12 applies.
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Our existence result above is to be compared with the one in Jackson and Swinkels [18]. They

show the existence of a Nash equilibrium which is tie-breaking-rule independent in multi-unit

auctions with private values and uncorrelated types. Recalling that when types are correlated,

a Nash equilibrium may not exist (Fanga and Morris [11]), the existence of an approximate

equilibrium is the best one can prove. From the last examples, we conclude that any two

player general standard auctions (first-pay, second-pay, all-pay and double auctions) has an

approximate equilibrium, even if types are correlated and values are common. An open question

is whether Proposition 4.12 holds for N-player without condition (c2). Without conditions (a)

or (b) it does not hold as a following example shows.

4.4. Games without Approximate Equilibria

The following examples illustrate that the two last propositions are tight.

Example 4.16 Sion-Wolfe’s [24] zero-sum game shows that the existence of a mixed approx-

imate equilibrium in Proposition 4.7 might fail whenever a game on [0, 1] × [0, 1] admits two

lines of discontinuities (in Sion-Wolfe’s game: {x2 = 1
2 + x1, x1 ≤ 1

2} ∪ {x2 = x1}) instead of

only one line of discontinuity (in our case {x2 = x1}).

Example 4.17 In Proposition 4.12, without condition (a) or (b), an approximate equilibrium

may fail to exist, as the following example shows. Consider a zero-sum timing game which may

be viewed as a diagonal game with constant payoff functions f , g and h. Each player should

decide when to stop the game between 0 and 1. The game stops at the first moment when one

of the two players stops. If both players stop simultaneously before the exit time t = 1 or no

player stops before time t = 1, then there is a tie (payoff is given by h).

Player 2 has two types A and B with equal probabilities. Player 1 has only one type. If player

1 stops first, he gets f = 1. If player 1 stops second he gets g = −1. The payoffs depend on

the type of player 2 only when the players stop simultaneously. If his type is A, player 1 has

an advantage and gets the payoff h = 3, and if his type is B, player 1 has a disadvantage and

gets the payoff h = −2.

We can prove that max min ≤ − 1
2 and that min max ≥ −1

4 , so that the game has no value

and so no approximate equilibrium (See Appendix 6.8).

5. CONCLUSION

Our paper proposes a unifying framework to study the existence of approximate and sharing

rule equilibria in discontinuous games, which links Simon-Zame and Reny approaches in pure

and mixed strategies.
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In the first part, we focus on quasiconcave compact games in pure strategies. A new relax-

ation of Nash equilibrium notion (Reny equilibrium) is shown to always exist. It provides tight

conditions, in the spirit of Reny’s conditions, that guarantee the existence of an approximate

equilibrium. Reny equilibrium is also used to solve an open problem in Jackson et al. [17],

namely the existence of a sharing rule equilibrium in pure strategies (up to now, existence

was known only for games in mixed strategies). As applications, we prove the existence of a

sharing rule equilibrium in any exchange economy model with discontinuous preferences and

of a pure approximate equilibrium in a large class of multi-player diagonal games.

In the second part, we concentrate on metric compact games in mixed strategies. We prove

that the intersection between the sets of Simon-Zame’s solutions and Reny equilibria contains

the set of approximate equilibria. Moreover, this intersection is nonempty. This shows that the

three main solution concepts of the paper are strongly connected. As application, we prove

the existence of an approximate equilibrium in a large class of auctions.

6. APPENDIX

6.1. Proof of Proposition 3.15

.

Under Assumption (C), the game is payoff secure: indeed, if xi 6= φ(x−i), xi is secure for

player i. If xi = φ(x−i), then player i can secure his payoff (up to an arbitrary ε > 0), increasing

or decreasing xi slightly. Consequently, if (x, v) ∈ Γ is a Reny equilibrium then:

sup
di∈[0,1]

ui(di, x−i) = sup
di∈[0,1]

ui(di, x−i) ≤ vi, i ∈ N.(3)

Now, we prove that x is an approximate equilibrium profile by checking 4 different cases.

In the first case, assume for every player i, xi 6= φ(x−i). Thus, utilities are continuous at

x and v = u(x). From Equation (3), (x, v) = (x, u(x)) is a Nash equilibrium. In the sec-

ond case, there exists a player i such that xi = φ(x−i) ∈]0, 1[. Then φ(x−j) ∈]0, 1[ for every

j. Indeed, for every j 6= i, either xj ≥ xi > 0, and anonymity and representativity imply

that φ(x−j) > 0 and monotonicity that φ(x−j) ≤ φ(x−i) < 1, or xj ≤ xi < 1, and we

get similarly φ(x−j) ∈]0, 1[. Thus, the marginal continuity property is satisfied at x, since

supdi∈[0,1] ui(di, x−i) = max{supdi<φ(x−i) fi(di, x−i), supdi>φ(x−i) gi(di, x−i)} (from assump-

tion (C)), and from the continuity of φ, fi and gi. Thus, by Proposition 3.13, (x, v) is an

approximate equilibrium. In the third case, there exists a player i s.t. xi = φ(x−i) = 0. Then

φ(x−j) = 0 for every player j: indeed, by anonymity, φ(x−j) = 0 for every j such that xj = 0,

and by monotonicity of φ, φ(x−j) = 0 for every j such that xj > 0. We let (xn) be a sequence

of profiles such that (xn, u(xn))→ (x, v). For every player j such that xj = 0 and vj ≤ fj(0),

we let ynj := 0 for every integer n, and ynj := xnj (for every integer n) otherwise. This defines a

sequence of profiles yn converging to x. Let us prove that yn is an εn-equilibrium from some
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εn → 0. Observe that from continuity of φ, φ(yn−j)→ 0 for every player j. We now consider 3

sub-cases:

• If vj ≤ fj(0), from Equation (3) above, supdj gj(dj , 0) ≤ vj ≤ fj(0) and in particular we

get gj(0) ≤ fj(0). Let us prove that supdj gj(dj , 0) = gj(0) ≤ vj ≤ fj(0). If gj(0) < fj(0),

this is a consequence of quasi-concavity of ui (indeed, hj(0) > gj(0), thus gj(., 0) is non

increasing from quasi-concavity of uj(., 0)). If gj(0) = fj(0), this is obvious (the weak

inequalities are satisfied with equalities). Moreover, using (C) one has gj(0) ≤ hj(0) ≤
fj(0) and by continuity of gi and fi, one has gj(φ(yn−j), φ(yn−j))−εn ≤ hj(φ(yn−j), y

n
−j) ≤

fj(φ(yn−j), φ(yn−j)) + εn for some εn → 0 . The above inequalities imply that player j is

4εn-optimizing by playing ynj = 0 against yn−j , because if φ(yn−j) > 0 player j cannot get

more that fj(0) up to 4εn and he can get it by playing 0 and if φ(yn−j) = 0 player j’s

best payoff is hj(0), which he can achieve by playing 0.

• Second, if vj > fj(0) and xj = 0, from equation (3) gj(0) ≤ vj and from (C) we

deduce that fj(0) < gj(0) = vj . By the strict convex combination assumption in (C) and

continuity of f and g, we have xnj > φ(xn−j) along the sequence (otherwise, vj < gj(0)).

By monotonicity of φ, ynj = xnj > φ(xn−j) ≥ φ(yn−j). Thus, uj(yn) = gj(y
n
j , φ(yn−j)) →

vj = gj(0). From equation (3), the fact that fj(0) < gj(0) and condition (C), we get that

ynj is an εn-best-response against yn−j .

• Third, if vj > fj(0) and xj > 0, since φ(x−j) = 0, vj = gi(xj , 0) = uj(x). From Equation

(3), xj is a best response against x−j and since vj > fj(0), ynj is an εn-best-response

against yn−j . Consequently, x is a approximate equilibrium profile associated with the

sequence yn.

In the last case, we assume there exists i ∈ I such that xi = φ(x−i) = 1: this can be treated

as in the third case.24

6.2. Proof of Proposition 3.19

As usual [34], we can associate to these data the following (N + 1)-player strategic game:

for i = 1, ..., N , player i’s strategy space is Xi, and its payoff is vi(xi, p) = ui(xi) if p ·xi ≤ p ·ei
(i.e. if the budget constraint of i is satisfied), and vi(xi, p) = −1 otherwise. The strategy space

of Player (N + 1) (the auctioneer) is XN+1 = ∆(Rm
+ ), and his payoff function is vN+1 =

p.
∑
i∈N (xi − ei). This defines a compact and quasiconcave game which admits a sharing rule

solution (x, p, q), where qi : Πn+1
j=1Xj → R is the new payoff of player i. From Theorem 3.17, we

can assume: for every i ∈ N and every yi ∈ Xi, qi(yi, x−i, p) ≥ vi(yi, x−i, p), the last quantity

being non negative if and only if p · (yi − ei) ≤ 0 (simply consider a local selection di(·) of

the budget constraint around yi, continuous with respect to p, in the Definition of vi), thus in

24In this proof or in the proof of Proposition 3.21, we do not need Unanimity condition φ(y, ..., y) = y.



25

particular at yi = ei. Thus, for every consumer i, qi(xi, x−i, p) ≥ sup
di∈Xi

qi(di, x−i, p) ≥ 0. From

the definition of a sharing rule, this implies that for every i ≤ n, there exists a sequence (xn, pn)

converging to (x, p), with pn · (xni − ei) ≤ 0, and qi(x, p) = limn→+∞ ui(x
n
i ). Thus, all budget

constraints are satisfied at (x, p). Now, define ũi(yi) = qi(yi, x−i, p) whenever p · (yi − ei) ≤ 0,

and ũi(yi) = ui(yi) elsewhere. To prove that (x, p) is a Walrasian equilibrium of {Xi, ũi, ei}i∈I ,
we let yi ∈ Xi such that p · (yi − ei) ≤ 0. Then ũi(yi) = qi(yi, x−i, p) ≤ qi(xi, x−i, p) = ũi(xi).

Last, summing the budget constraints of all consumers, we get p ·
∑
i∈I(xi − ei) ≤ 0, which

implies
∑
i∈I(xi − ei) = 0 since p maximizes p ·

∑
i∈I(xi − ei) in ∆(Rm

+ ) (indeed, uN+1 is

continuous; thus it is equal to ũN+1).

6.3. Proof of Proposition 3.21

First, Theorem 3.16 permits to refine Proposition 3.13 as follows.

Proposition 6.1 If (x, v) is a strong Reny equilibrium, if the game G is weakly payoff

secure25 (meaning supdi∈Xi
ui(di, x−i) = supdi∈Xi

ui(xi, x−i)) and if G has the marginal con-

tinuity property at x, then (x, v) is an approximate equilibrium.

The steps of the proof are as in Proposition 3.15. Firstly, for every φ the game is weakly

payoff secure (but not payoff secure): if xi 6= φ(x−i), then ui is continuous at x and xi allows

to continuously secure ui(x)− ε. If xi = φ(x−i), the deviation mapping di(x) = φ(x−i) allows

to continuously secure ui(x)− ε. Consequently, if (x, v) is a strong Reny equilibrium, then:

sup
di∈[0,1]

ui(di, x−i) ≤ vi, i ∈ N(4)

The cases 1 and 2 (i.e. xi 6= φ(x−i) for every player i, or xi = φ(x−i) ∈]0, 1[ for some

i), are solved as in Proposition 3.15 (where Proposition 6.1 is used instead of Proposition

3.13). Consider the third case xi = φ(x−i) = 0 for some i ∈ I, which implies x = 0 and

vi ∈ {gi(0), hi(0), fi(0)} for every i (from the continuity of fi, hi and gi). Assuming x is

not a Nash equilibrium (otherwise the proof of the third case is done), some player j has a

profitable deviation, that is uj(0) = hj(0) < supdj gj(dj , 0). For such a player, fj(0) ≤ gj(0),

which follows from the quasi-concavity of uj(0, ε) for every ε > 0 and the previous inequality.

Equation 4 implies that vj = gj(0). Considering a sequence (xn, u(xn)) → (x, v), one must

have xnj > φ(xn−j) for n large enough. Then, for any player k 6= j, vk = fk(0). Thus, from

equation (4), we deduce that the strategy profile defined by xnj = 1
n , and xk = 0 for k 6= j, is

an εn-equilibrium, for some εn → 0. Now, in the last case, there exists i s.t. xi = φ(x−i) = 1.

25As for payoff security, weak payoff security concept has an alternative definition that is: for every ε > 0,

every x ∈ X and every player i ∈ I, player i can secure continuously ui(x)−ε, which means there is a continuous

mapping di from some neighborhood V of x−i to Xi, with ui(di(y−i), y−i) > ui(x) − ε for every y−i ∈ V .

Again, we restrict to the simpler case of a continuous mapping di and not a multivalued mapping.
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Consequently, for every k, φ(x−k) = 1 and if K = {k ∈ N : xk = 1}, then K has at least

two elements. For a player j /∈ K, utility is continuous at x and from equation 4 he has no

interest to deviate. If no player in K wants to deviate from x, x is a Nash equilibrium profile.

Otherwise, as in the third case, at most one player k ∈ K wants to deviate, and we can then

check that xnk = 1− 1
n and xnj = xj for j 6= k defines an εn-equilibrium for some εn → 0.

6.4. Proof of Theorem 4.3

A limit-equilibrium (m, v) exists by compactness of Γ′. First let us prove that it is a Reny

equilibrium of Γ′: for every deviation d ∈ M , and any neighborhood V (m, v) of (m, v), the

definition gives ∃mV ∈ M s.t. (1) ∀i ∈ N , ui(di,m
V
−i) ≤ ui(m

V ) and (2) (mV , u(mV )) ∈ V .

Shrinking V to (m, v) implies that ui(di,m−i) ≤ vi for every d ∈ M , i.e. (m, v) is a Reny

equilibrium of Γ′.

Now, let us prove that (m, v) induces a solution à la Simon-Zame. Since M is a compact

metric set, there exists a countable decreasing basis of neighborhoods V n of (m, v) in Γ′.

Consider a sequence Dn = Πi∈ID
n
i converging to X for the Hausdorff distance. By defini-

tion of a limit-equilibrium, for every integer n, there exists a finite set D
′n = Πi∈ID

′n
i of M

containing Dn, and a probability mn, which is a Nash equilibrium of the game restricted to

D
′n such that (mn, u(mn)) ∈ V n. Recall that Simon and Zame’s [38] existence proof consists

in approximating the game by a finite game in pure-strategies (here Dn), and in considering

a weak limit of a sequence (mn) of Nash equilibria of this approximation. We cannot apply

Simon and Zame’s proof directly to the Nash equilibria mn of the finite games D′n, because

D′n contains mixed strategies. But D
′n ⊃ Dn: thus, no player i has a deviation in Dn

i against

mn, and we shall prove that this property is sufficient to adapt Simon-Zame’s proof. Note

that the sequence (mn) converges (strongly and weakly) to m. We let E be the space of

RN -valued vector measures on X, endowed with the weak* topology. Consider the sequence

(u ·mn)n∈N of the compact space E (here, u ·mn denotes the RN -valued measure on X defined

by u·mn(F ) =
∫
F
u dmn for every Borelian set F of X). Without any loss of generality, up to a

subsequence, this sequence converges to some measure ν. From Lemma 2, p.867 (Simon-Zame

[38]), there exists a Borel measurable selection q of Q, the multivalued function from X to

RN , defined by Q(x) =co Γx, such that the ν = q ·m (remark that the proof of this lemma

does not use the support of mn, but only the fact that u is a selection of Q). Define, for every

player i, Hi = {x ∈ Xi :
∫
qid(δx×m−i) >

∫
qid(mi×m−i)}. We prove mi(Hi) = 0: otherwise,

consider K ⊂ Hi ⊂ U , where K is compact, U open, mi(U − K) < ε with ε > 0, and with

mi(K) > 0. We let f : Xi → [0, 1] be a continuous function which is identically equal to 1 on

K and 0 on the complement of U . Consider the strategy βni =
fmn

i∫
fdmn

i

: it is a better response

to mn
−i for n large enough and ε > 0 small enough, which contradicts the fact that mn is a

Nash equilibrium of the game restricted to D
′n. From Simon-Zame ([38], Step 5 and Step 6),
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there exists a modification q̃ of q, such that q = q̃ except on a set of m−measure 0, such that m

is a Nash equilibrium of the game G̃ = ((Xi)i∈N , (q̃i)i∈N ), and q̃(m) = q(m). More precisely,

take p̃i a Borel measurable selection of Q which minimizes the i-th component of Q, define

T = {x ∈ X : xi ∈ Hi for at least two indices i ∈ N}, define q̃(x) = p̃i(x) if x ∈ Hi ×X−i but

x /∈ T , and q̃(x) = q(x) otherwise. To prove that m is a Nash equilibrium of G̃, assume that

some player i has a better pure response than mi, denoted δx, to m−i. Then the case x /∈ Hi

yields an easy contradiction. For the second case, simply consider a sequence xn converging

to x such that xn ∈ Dn
i (here, we use that Dn = Πi∈ID

n
i converges to X for the Hausdorff

distance): an easy limit argument proves that δxn is a better response than mn
i to mn

−i for n

large enough, a contradiction with the choice of mn.

6.5. Proof of Theorem 4.6

If (m, v) ∈ Γ′ is not a limit-equilibrium (and so is not a Reny and so is not an approximate

equilibrium, because the game is approximately better-reply secure), then ∃V (m,v) a neighbor-

hood of (m, v) and a finite set D1 (associated with V (m,v)) such that for any D that contains

D1 and any equilibrium m′ of the game restricted to D′, (m′, u(m′)) is not in V (m,v). Since

the set of limit-equilibria is compact, there is a countable basis {V (mn,vn)}n that covers the

open set of non-limit-equilibria, to which we can associate a sequence of finite sets {Dn
1 }n (as

defined above). Define Dn =
⋃n
k=1D

k
1 and let {mn}n be any sequence of equilibria associated

to Dn. Then, by construction, (mn, u(mn)) is not in V (mk,vk) for all k ≤ n. Consequently, any

accumulation point of the sequence {(mn, u(mn, )}n is a limit-equilibrium, and, thus a Reny

equilibrium and so is an approximate equilibrium.

6.6. Proof of Proposition 4.7

The proof of Proposition 4.7 and Proposition 4.12 uses the same principle: for every ε > 0,

we construct a finite approximation of G′ such that for every mixed strategy of players j 6= i,

player i has an ε-best response (in G′) which belongs to the approximated game. This proves

that every mixed Nash equilibrium of the finite approximation is an ε−Nash equilibrium of the

initial game. The approximation shall depend on the structure of the game, and in particular

on the behaviour of the payoffs in a neighborhood of the boundary.

First note that in two player diagonal games, necessarily φ(y) = y (by the unanimity

condition). Call x ∈ [0, 1] a right local equilibrium if hi(x, x) > gi(x, x) for both i = 1, 2 and

a left local equilibrium if hi(x, x) > fi(x, x) for both i = 1, 2. Thus, if players are supposed to

play (x, x) and if x is a right local equilibrium, no player has an interest to deviate to some

strategy in some right neighborhood of x (but he may have a profitable deviation outside that
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neighborhood) and similarly for left equilibria.

We let x0 be the largest element in [0, 1] such that all x < x0 are right local equilibria and

y0 be the smallest element in [0, 1] such that all y > y0 are left local equilibria. Note that x0

may be 0 and y0 could be 1. By continuity of f , g and h, if x0 < 1 then hi(x0, x0) ≤ gi(x0, x0)

for some i ∈ {1, 2} and similarly, if y0 > 0 then hj(y0, y0) ≤ fj(y0, y0) for some j ∈ {1, 2}.
Depending on the relative position of x0 and y0, we consider the three following cases.

First case. x0 > y0. In this case, the finite approximated game is simply defined by some

finite discretization D of [0, 1] containing 0 and 1 and σ a mixed strategy of the game restricted

to D . Without any loss of generality, taking the mesh of this discretization smaller than some

η > 0, we can assume that the payoff functions f and g do not change by more than ε
2 if a

player moves by no more than η, and such that if x < x0 is in D, then hi(x, x) > gi(y, x) for

all x < y < x + η, and if x > y0 is in D, then hi(x, x) > fi(y, x) for all x > y > x + η. We

let y ∈ [0, 1] be some ε/2-best reply to σj of player i which is not in D (if such strategy does

not exist, we are done with the proof). Then either y < x0 or y > y0. In the first case, denote

by z the highest element in D smaller than y, so that hi(z, z) > gi(y, z) by assumption of the

discretization and since z is a right equilibrium. Since player j plays a probability distribution

supported on D, moving from y to z for player i induces for him a higher payoff from the

event associated to player j playing z and at most a change of ε
2 on the events where player

j is playing a strategy in D different from z. Thus, z is an ε-best reply for player i. A similar

argument applies to y > y0 (use the left equilibrium property).

Second case. x0 < y0, which implies that hk(x0, x0) ≤ gk(x0, x0) and hl(y0, y0) ≤ fl(y0, y0)

for some k ∈ {1, 2} and l ∈ {1, 2}. By continuity, we get η > 0 small enough such that

hk(x0, x0) < gk(x, x0) + ε
4 for every x ∈]x0, x0 + η[ and hl(y0, y0) < fl(y, y0) + ε

4 for every

y ∈]y0 − η, y0[. Thus, there are four cases to check, depending on the values of k and l. Let us

solve explicitly the case k = 1 and l = 2. The same idea of construction could be done in the

other cases, with a small adaptation in the definition of the weak strategic approximation.

Fix ε > 0 and define x0 = t0 < s0 < t1, ... < sK−1 < tK = y0, a discretization of [x0, y0]

with a mesh smaller than some η > 0 so that payoff functions f and g do not change by more

than ε/4 if the pure strategy moves by no more than η. As in the first case, we let D be a

finite discretization of [0, x0[∪]y0, 1] with a mesh smaller than η > 0 so that payoff functions f

and g do not change by more than ε
2 if the pure strategy moves by no more than η and such

that if x < x0 is in D, then hi(x, x) > gi(y, x) for all x < y < x + η and if x > y0 is in D,

then hi(x, x) > fi(y, x) for all x > y > x + η. Now, the finite approximation of G′ is defined

as follows: player 1 is restricted to play in D or uniformly on one of the intervals [tk, sk],

k = 0, ...,K − 1, or to choose tK = y0. Player 2 is restricted to play in D or uniformly on one

of the intervals [sk, tk+1], k = 0, ...,K − 1, or to choose t0 = x0. Observe that the intervals

where players are uniformly mixing are disjoint and alternate. We let σ be some strategy of
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player 2 in the restricted game. Let y be some ε/4 pure best response of player 1 in G, which

is not in the discretization D (again, if it does not exist, this is finished). Several subcases

have to be examined. First subcase, if y < x0 or y > y0, we proceed as in the first case to

construct an ε-best reply in D. Second subcase, if y is in some interval ]sk, tk+1[ of player 2

(k ∈ {0, 1, ...,K−1}), and if player 2 is choosing that interval with positive probability, an easy

computation proves that the payoff of player 1 coming from that interval is, up to ε/4, a convex

combination of his payoff if he chooses tk+1 and his payoff if he chooses sk. But, the payoff of

player 1 coming from Player 2 playing in the other intervals or in D changes by no more that

ε/4 when he moves in the interval [tk, sk+1]. Consequently, player 1 has a 3
4ε-best response

at the extreme points tk or sk+1 of the interval, a case which is treated in the next subcase:

Third subcase, let z ∈ [tk, sk] being a 3
4ε-best response, for some k ∈ {0, 1, ...,K − 1}. If k > 0,

by assumption, there is zero probability that player 2 stops in that interval and so player 1’s

payoff does not move by more that ε/4 if he plays uniformly in [tk, sk] (which is authorized

for player 1) instead of playing z. This gives an ε-best response. If k = 0, if player 2 is playing

x0 with positive probability and player 1 is playing z = x0, then player 1 does not lose more

than ε/4 by playing slightly more than x0 instead of x0 (since h1(x0, x0) < g1(x, x0) + ε
4 for

every x ∈]x0, x0 + η[.): then remains the case where z belongs to the interval ]t0, s0[. But,

again, since his payoff moves continuously in that interval, playing uniformly in it is an ε-best

response. The proof for player 2 is similar (we use the fact that h2(y0) < f2(y, y0)+ ε
4 for every

y ∈]y0 − η, y0[).

The three remaining cases for k and l are solved similarly, by a judicious choice of who of

the two players is allowed to stop at x0 and y0: if k = 2 and l = 1, then player 1 can stop at

x0 and player 2 at y0; if k = 2 and l = 2, (only) player 1 is allowed to stop at both x0 and

y0; if k = 1 and l = 1, only player 2 is allowed to stop at both points. If some player can stop

at x0 then it is the other player who is authorized to stop uniformly in the small interval of

the dicretization just after x0, and the intervals in which players can stop uniformly alternate

until the point y0, and the last interval belongs to the player who is not allowed to stop at y0.

Third case. x0 = y0, implying hk(x0) < gk(x, x0) + ε
4 for x ∈]x0, x0 + η[ and hl(x0) <

fl(x, x0) + ε
4 for x ∈]x0− η, x0[ for some k ∈ {1, 2} and l ∈ {1, 2} (if x0 is 0 or 1, then only one

of the inequalities holds). Suppose for example that h1(x0) < g1(x, x0) + ε
4 for x ∈]x0, x0 + η[.

We let D1 = {0 = t0 < ... < tK} be a discretization on the left of x0, not including x0, and

empty if x0 = 0; let D2 = {s0 < ... < sK = 1} be a discretization on the right of y0, not

including y0, and empty if y0 = 1. Again, without any loss of generality, assume that the mesh

of the discretizations is smaller than η > 0, so that payoff functions f and g do not change

by more than ε
2 if a player moves by no more than η. Consider a strategic approximation

where Player 2 is allowed to play in D1 ∪ D2 ∪ {x0} and player 1 to play in D1 ∪ D2 or to

mix uniformly in the length [x0, s0]. Let y ∈ [0, 1] be some ε/2-best reply of player 1 to some
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mixed strategy of player 2 which is not in D1 (if such strategy does not exist, this is finished).

If y < x0, moving from y to the highest element in D1 smaller than y gives an ε-best reply

for player 1. If y > x0, moving from y to the smallest element in D1 larger than y gives an

ε-best reply for player 1. Last, if y = x0, playing uniformly in [x0, y0] instead of playing x0 is

an ε-best reply for player 1, because of h1(x0) < g1(x, x0) + ε
4 for x ∈]x0, x0 + η[. We treat in

a similar way the case of player 2, and the case k = 2.

6.7. Proof of Proposition 4.12

Case c2: the multiplayer private value setting

Define a weak strategic approximation of the initial game G as follows: for each integer m, a

strategy (in Mi) of player i (whatever his type) is some element of the finite set Dm of uniform

distributions on Ikm = [ km ,
k+1
m ] (k ∈ {0, 1, ...,m− 1}). By Nash theorem, this finite (Bayesian)

game has a mixed Nash equilibrium σm. We shall prove that if players j 6= i play according

to σm−i, each type ti of player i has some ε-best response (in G′) which belongs to Dm. This

proves that σm is an ε-Nash equilibrium of G′ for m large enough.

Consider ε > 0, and suppose m is large enough so that for every t ∈ T , fi(t, ., y) and

gi(t, ., y) does not move by more than ε in the interval [ km ,
k+2
m ] (k = 0, ...,m− 2) uniformly in

y. If player i of type ti chooses a pure strategy x ∈ [0, 1] and if the realized strategy profile of

its opponents is x−i, then its payoff can be written wi(ti, x, φ(x−i)), where wi(ti, x, φ(x−i)) is

almost surely equal to fi(ti, x, φ(x−i)) or gi(ti, x, φ(x−i)), depending on the position of φ(x−i)

with respect to x. This is because the image probability measure of σm−i by φ has no atoms26.

It also implies that the expected payoff of player i is a continuous function of x. Consequently,

there exists x∗ ∈ [0, 1], a pure best response of player ti (in the game G′). From x∗, one can

construct an ε-best response in Dm as follows: if x∗ ∈ [0, 1
m ], from assumption (a), replacing

x∗ by the uniform distribution on I1m is a ε-best response for m large enough. If k
m < x∗ < k+1

m

for some k = 1, ...,m − 2 then, either gi(ti, x
∗, x∗) ≤ fi(ti, x

∗, x∗) and then replace with the

uniform strategy on Ik+1
m , or gi(ti, x

∗, x∗) > fi(ti, x
∗, x∗), and then replace x∗ with the uniform

distribution on Ik−1m . In both cases, this gives an ε-best response in Dm for m large enough.

Last if Assumption b1) is satisfied and not b2) and x∗ ∈ [1 − 1
m , 1], then replace x∗ with

the uniform distribution on Im−1m . Note that this proof works also when the payoff of type

26To prove that, consider the event [φ(x1, ..., xN−1) = α] for some α ∈ [0, 1]. Let S = {(x1, ..., xN−1) ∈
[0, 1]N−1 :

∑N−1

k=1
xk = 1} be the (N − 2)-simplex. The monotonicity assumption guarantees that for every

(x1, ..., xN−1) ∈ S, there is no more than one y ∈ R such that φ((x1, ..., xN−1) + y(1, ..., 1)) = α. For every

x = (x1, ..., xN−1) ∈ S, define g(x1, ..., xN−1) = y if such y exists, and g(x1, ..., xN−1) = 0 otherwise. Clearly,

identifying in a natural way S×R to a subset of RN−1, the graph of g contains the event [φ(x1, ..., xN−1) = α].

But g is measurable, and thus its graph has a 0-Lebesgue-measure in RN−1 (from Fubini theorem). The

assertion follows from the fact that σm
−i is a convex combination of uniform probabilities whose supports are

rectangles with nonempty interiors.
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ti depends also on (ti, t−i) if we add the following assumption: for every player i and every

x∗ ∈ [0, 1], if gi(t, x
∗, x∗) ≤ fi(t, x

∗, x∗) is true for one t̄−i then it is true for every t−i, and

similarly for the inequality gi(t, x
∗, x∗) ≥ fi(t, x

∗, x∗). Remark that this proof only requires

the (strict) Monotonicity of φ, and not the other properties.

Case c1: the two-player general value setting

When there are two players, by uninimity φ(y) = y. Now, we mimic the proof and the

approximation scheme of the second case of Proposition 3.21 with x0 = 0 and y0 = 1, proving

that if σ is some mixed strategy profile of player 2 in the approximated game, then any type t1

has an ε-best response against σ in the full game that belongs to his set of authorized strategies.

That is, take the following discretization of [0, 1]: 0 = s0 < t0 < s1 < t1 < ... < tK < sK+1 = 1.

Player 1 is restricted to play uniformly on one of the intervals [sk, tk], k = 0, ...,K, or to choose

x = 1. Player 2 is restricted to play uniformly on one of the intervals [tk, sk+1], k = 0, ...,K, or

to choose x = 0. Observe that the intervals where players are mixing are disjoint and alternate

(player 1 can stop uniformly in the first interval, player 2 in the second, player 1 in the third,

etc.). This kind of discretizations do not work for 3 player-player games...

Finally, in both cases (two players or private value with N players), by construction, in the

weak strategic approximations, ties have zero probability. Consequently, our ε-equilibria are

independent on the tie-breaking rule h.

6.8. Proof of Example 4.17

Start with the maxmin. We let α be the probability with which player 1 stops at x = 0

(so with probability (1 − α) he stops after zero). If α = 0, player 2 by stoping at time zero

gets 1 (and so player 1 gets −1). If α > 0, type A for player 2 can stop uniformly between

0 and some ε where ε is very small so that with high probability, if the game has not been

stopped at time zero, he is stopped by player 2 (just after zero). Assume that type B of player

2 stops at time zero. Payoff of player 1 is thus very close to α( 1
2 × 1 + 1

2 ×−2) + (1−α)×−1.

Consequently, the best strategy for player 1 against such behavior by player 2 is to stop at

t = 0 with probability 1 so that max min ≤ − 1
2 .

Let us now compute the min max. Let us restrict player 1 to playing best-replies to the

following kind of strategies : (1) to stop at time t = 0 or (2) to stop uniformly between 0 and

some ε very small, which depends of course on the strategy of player 2. Knowing this behavior,

type B must stop at time zero. We let β be the probability that type A stops at time zero. The

payoff of player 1 if he stops at 0 (choose option 1) is 1
2×−2+ 1

2×(β×3+(1−β)×1) = −1
2 +β,

while if he chooses option 2 his payoff is close to 1
2 × −1 + 1

2 (β × −1 + (1 − β) × 1) = −β.

Thus, the optimal β for type B against this behavior of player 1 must be equalizing and so is

β = 1
4 . Consequently, min max ≥ − 1

4 .
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