
HAL Id: hal-01071642
https://hal.science/hal-01071642v1

Submitted on 6 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partially Commutative Linear Logic and Lambek
Caculus with Product: Natural Deduction,

Normalisation, Subformula Property
Maxime Amblard, Christian Retoré

To cite this version:
Maxime Amblard, Christian Retoré. Partially Commutative Linear Logic and Lambek Caculus with
Product: Natural Deduction, Normalisation, Subformula Property. IfColog Journal of Logics and
their Applications (FLAP), 2014, 1 (1), pp.53-94. �hal-01071642�

https://hal.science/hal-01071642v1
https://hal.archives-ouvertes.fr

Partially Commutative Linear Logic and

Lambek Calculus with Product: Natural

Deduction, Normalisation, Subformula

Property

Maxime Amblard

Loria (UMR 7503) Université de Lorraine, CNRS, INRIA Nancy Grand-Est
amblard@loria.fr

Christian Retoré

LaBRI (UMR 5800) Université de Bordeaux, CNRS
retore@labri.fr

Abstract

This article defines and studies a natural deduction system for partially
commutative intuitionistic multiplicative linear logic, that is a combination of
intuitionistic commutative linear logic with the Lambek calculus, which is non-
commutative, and was first introduced as a sequent calculus by de Groote.

In this logic, the hypotheses are endowed with a series-parallel partial order:
the parallel composition corresponds to the commutative product, while the
series composition corresponds to the noncommutative product. The relation
between the two products is that a rule, called entropy, allows us to replace a
series-parallel order with a sub series-parallel order — this rule (already studied
by Retoré) strictly extends the entropy rule initially introduced by de Groote.
A particular subsystem emerges when hypotheses are totally ordered: this is
Lambek calculus with product, and when orders are empty it is is multiplicative
linear logic.

So far only the sequent calculus and cut-elimination have been properly
studied. In this article, we define natural deduction with product elimination
rules as Abramsky proposed long ago. We then give a brief illustration of its
application to computational linguistics and prove normalisation, firstly for the
Lambek calculus with product and then for the full partially ordered calcu-
lus. We show that normal proofs enjoy the subformula property, thus yielding
another proof of decidability of these calculi.

The authors wish thank Jiří Maröík (LORIA, Nancy) for his prompt and efficient rereading.

Vol. 1 No. 1 2014
IFCoLog Journal of Logic and its Applications

Amblard and Retoré

This logic was shown to be useful for modelling the truly concurrent exe-
cution of Petri nets and for minimalist grammars in computational linguistics.
Regarding this latter application, natural deduction and the Curry-Howard iso-
morphism is extremely useful since it leads to the semantic representation of
analysed sentences.

Keywords: Logic; Intuitionistic Noncommutative Logic; Lambek calculus; normal-
isation

1 Presentation

Non-commutative logic arises both as a natural mathematical generalisation of com-
mutative logic and in the modeling of some computational phenomena that require
some noncommutativity.

Both truth-value semantics (phase semantics, based on monoids which can be
non commutative) and syntax (sequent calculus with sequences rather than sets of
formulae, proof nets with non-crossing axiom links) suggest the study of noncom-
mutative linear logic — which fits less well with proof semantics, except for Pomset
logic.

Non commutativity is also appealing from a real world application perspective
such as in concurrency theory, like the truly concurrent execution of Petri net, and
in our favourite application, computational linguistics. This goes back to the fifties
and the apparition of the Lambek calculus. We first give a brief presentation of
noncommutative logics and then stress their interest with respect to concurrency
theory and to computational linguistics, before introducing and studying natural
deduction for this calculus.

1.1 Noncommutative linear logics

Linear logic [10] offered a logical view of the Lambek calculus [14] and noncom-
mutative calculi. During many years, the difficulty was to integrate commutative
connectives and noncommutative connectives.

The first solution, inspired by denotational semantics (coherence spaces) was
Pomset Logic of Retoré (1993) [19, 20]. This logic was defined as an extension of
proof net syntax with a faithful interpretation in the category of coherence spaces.
In addition to the multiplicative conjunction and disjunction Pomset logic has a non-
commutative and self-dual connective called “before". By now it has been generalised
and is now studied with extended sequent calculi called Calculus of Structures [12].

54

Partially Commutative Linear Logic . . .

Another kind of calculus was introduced as a sequent calculus by de Groote
in [8]. Let us stress that it is an intuitionistic calculus (several hypotheses, a single
conclusion) and that the classical extension by [3] is quite difficult. The intuitionistic
calculus introduced by de Groote, called partially commutative linear logic, consists
of a superposition of the Lambek calculus (noncommutative) and of Intuitionistic
Linear Logic (commutative). For making a distinction between the two connec-
tives it is necessary that the context includes two different commas that mimic the
conjunctions, one being commutative and the other being noncommutative. Hence
we deal with series-parallel partial orders over multisets of formulae as right-hand
side of sequents. Let us write (..., ...) for the parallel composition and È...; ...Í for
the noncommutative one: hence È(a, b); (c, d)Í stands for the finite partial order
a<c, b<c, a<d, b<d. Of course we would like the two conjunctions to be related.
Either the commutative product entails the noncommutative one, or the converse.
Surprisingly enough, the two options work just as well — provided one direction
is fixed once and for all, of course! This relation between the two products results
from a structural rule acting on the order.

Γ ordered by I „ C

Γ ordered by J „ C

According to our view of this calculus, J can be any order such that J µ I
(ordered are viewed as sets of ordered pairs of formulae in Γ). That’s the version of
this calculus that we already used for a logical description of Petri net firing, and
for viewing derivations in minimalist grammars as proofs. Indeed Bechet, de Groote
and Retoré, in [7], showed that only four rewriting rules are needed to obtain all
possible series-parallel partial suborders from some series-parallel partial order.

In de Groote’s calculus as well as in Abrusci and Ruet’s calculus, the resulting
order J can only be obtained by replacing some noncommutative commas/products
with commutative ones. This is not equivalent to our formulation, indeed Ruet
showed in his PhD dissertation [23] that there cannot exist a classical calculus with
the classical analogue of our order rule.

Here is an example of a derivation that can be performed in our calculus but not
in theirs:

È(a, b); (c, d)Í „ (a ¢ b) § (c ¢ d)

(Èa; cÍ, Èb; dÍ) „ (a ¢ b) § (c ¢ d)

(a § c) ¢ (b § d) „ (a ¢ b) § (c ¢ d)

Up to now our calculus can only be presented with a sequent calculus: there
exist neither proof nets, nor natural deduction, only a sequent calculus that has

55

Amblard and Retoré

been proven to enjoy cut-elimination in [21]. This is the reason why this paper
proposes a natural deduction system, as well as a notion of normal proof, and a
normalisation theorem that entails the subformula property.

Commutation of rules is tricky in this calculus. Hence, although we are absolutely
convinced that there is a form of confluence and a form of strong normalisation, the
possibility to swap these rules results in a lengthy and complicated proof, although
there surely is nothing deep into these forgotten proofs.

1.2 Applications of noncommutative (linear) logics

Noncommutativity in logic is rather natural in a resource consumption perspective.
A hypothesis is viewed as a resource that can be used but then it is natural to think
of how hypotheses are organised and accessible. As argued by Abrusci [2] and others,
linearity is a mandatory condition for noncommutativity. The first noncommutative
logical calculus, namely the Lambek calculus designed for the grammatical descrip-
tion of natural language, was invented long before linear logic. It is nevertheless a
particular system of linear logic, whose relation to other logical calculi, in particular
to intuitionistic, was better understood with the help of linear logic.

Concurrency, in which the order of the computations or of the resources matters,
is of course a natural application of noncommutative logic(s). In the framework
of proofs as programs, and normalisation as computation, Pomset Logic and the
subsequent calculus of structures are easier to understand because the order on the
conclusions also concerns cuts, which are the computations to be performed [20, 12].

The noncommutative logical calculus that we study in this paper, as well as
those by Lambek, Abrusci, Ruet etc., better matches proof search as computation
that is at work in linear logic programming [13], planning [16], Petri net firing
or parsing in computational linguistics [21]. For instance, Retoré also provided a
description of the parallel execution of a Petri net in the calculus we are studying.
It is a true concurrency approach, where a||b is not reduced to a; b ü b; a (where
ü is the nondeterministic choice and ";" sequential composition). An execution
according to a series-parallel partial order corresponds to a proof in the partially
commutative calculus that we study in this paper; in this order-based approach of
parallel computations any set of minimal transitions can be fired simultaneously [21].

Our preferred motivation for such calculi is computational linguistics and gram-
mar formalisms, in particular the deductive description of mildly context-sensitive
formalisms. They are assumed to be large enough for natural language constructs,
go beyond context-free languages, but admit polynomial parsing algorithms. Logical
descriptions of grammar classes as introduced by Lambek are especially appealing
because the parse structure and a semantic lexicon automatically lead to a formula

56

Partially Commutative Linear Logic . . .

which represents the semantics of the analysed sentence. This is especially sim-
ple when the Lambek calculus or the partially commutative extensions that we are
considering here are described as natural deduction systems. Indeed, the syntactic
categories can be turned into semantic categories over two types, individuals (e) and
truth values (t), in such a way that the proof in the Lambek calculus (the syntactic
analysis) can be turned into a proof in intuitionistic logic, that is a lambda term:
when the semantic lambda terms are inserted at the place occupied by the corre-
sponding words, one obtains a lambda term that reduces to the semantics of the
sentence, i.e. a logical formula written as a lambda term.

Lambek calculus is definitely too restrictive as a syntactic formalism, in partic-
ular it only describes context-free languages, thus leaving out many common syn-
tactic constructions. This is the reason to use partially commutative calculi instead
of Lambek calculus. In particular Lecomte and Retoré managed to give a logical
presentation [15] of Stabler’s minimalist grammars [24] in partially commutative lin-
ear logic, presented in natural deduction in order to obtain semantic representations
of the parsed sentences. In such a framework and for other applications as well,
normalisation is quite important : indeed the normal form is the structure of the
analysed sentence, and normalisation ensures the coherence of the calculus. The
algorithm of normalisation, easily extracted from the proof, is important as well:
one define correct sentences as the ones such that some sequent can be proven, and
both the parse structure and the semantic reading are obtained from the normal
form.

2 Partially Commutative Intuitionnistic Multiplicative
Linear Logic (pcIMLL)

2.1 Series-parallel ordered multisets of formulae

Formulae and contexts are defined as in the initial work of de Groote in [8].

Formulae are defined from a set of propositional variables p, by the commutative
conjunction (¢), the noncommutative conjunction (§), the commutative implication
((), the two noncommutative implications (/ and \):

l ::= p | l § l | l ¢ l | l / l | l \ l | l (l

Contexts, that are left-hand side of sequents, are multisets of formulae endowed
with a series-parallel (SP) partial order. Contexts are denoted by upper case Greek
letters. Such orders can be defined by two operations: disjoint union, or parallel

57

Amblard and Retoré

Γ „ A ∆ „ A \ C
[\e]

ÈΓ; ∆Í „ C

∆ „ C / A Γ „ A
[/e]

È∆; ΓÍ „ C

Γ „ A ∆ „ A (C
[(e]

(Γ, ∆) „ C

ÈA; ΓÍ „ C
[\i]

Γ „ A \ C

ÈΓ; AÍ „ C
[/i]

Γ „ C / A

(A, Γ) „ C
[(i]

Γ „ A (C

∆ „ A § B Γ[ÈA; BÍ] „ C
[§e]

Γ[∆] „ C

∆ „ A ¢ B Γ[(A, B)] „ C
[¢e]

Γ[∆] „ C

∆ „ A Γ „ B
[§i]

È∆; ΓÍ „ A § B

∆ „ A Γ „ B
[¢i]

(∆, Γ) „ A ¢ B

[axiom]
A „ A

Γ „ C
[entropy — whenever ΓÕ

@ Γ]
ΓÕ „ C

Figure 1: Rules of pcimll.

composition, denoted by (Γ, ∆) and series composition denoted by ÈΓ; ∆Í: the do-
main is the disjoint union of Γ and ∆, and every formula in Γ comes before any
formula in ∆. Contexts obey the following syntax:

ctx ::= l|Èctx; ctxÍ | (ctx, ctx)

For example, the context ÈÈB; (A ((B \ (D / C), A)Í; CÍ denotes the sp order,
Succ(B) = (A, A((B \ (D / C)), Succ(A) = Succ(A((B \ (D / C)) = {C} where
Succ(X) is the multiset of the immediate successors of X (we only consider finite
orders).

The term denoting an sp order is unique up to the commutativity of (_, _) and
to the associativity of both (_, _) and È_; _Í. The term notation is only a short
hand: even though the sp terms denoting them are different, the left-hand sides
of two sequents are considered equal whenever they are equal as partially ordered
multisets.

An expression Γ[ú] stands for a context in which we distinguish a specific element
[ú] and an expression Γ[∆] denotes the context obtained be replacing ú in Γ[ú] by
the context ∆ in Γ[ú].

Figure 1 shows the rules of pcimll. It uses the standard rules of commutative
multiplicative intuitionistic linear logic and of non-commutative multiplicative intu-
itionistic linear logic. Both have introductions and eliminations for the implicative
connectives and the product connectives. In addition there is the axiom rule and
the entropy rule (@) which correspond to inclusions of orders.

58

Partially Commutative Linear Logic . . .

This calculus deserves some explanation and comments:

Entropy ΓÕ
@ Γ whenever these contexts that are sp partially ordered multisets of

formulae have the same multiset domain |Γ| = |ΓÕ|, and whenever considering
each occurrence of a formula as distinct if A < B in ΓÕ then A < B in Γ as well.
The inclusion @ of series-parallel partial orders can be viewed as a rewriting
system (modulo commutativity and associativity) on the sp term denoting
them as shown in [7] – see also [21] where the order rule is used the other way
round, but as said in the introduction, it does not change normalisation.

Product elimination rules In the ¢ and §e rules, A and B must be equivalent:

’X ”= A, B

I

X < A … X < B
X > A … X > B

In the ¢e case A and B are equivalent and uncomparable while in the §e case,
they are equivalent and A < B. In the conclusions of rules, they are replaced
by the context which lead to A ¢ B (i.e. ∆ in figure 1). Abramsky introduced
similar rules long ago in [1].

Although we do have normalisation and the subformula property (see next sec-
tions) we avoided complicated rules of the kind introduced in [18] for MLL. We as-
sume her rules are motivated by other properties; indeed, they work for the complete
linear calculus with additive and exponentials. But in the restricted multiplicative
case, our simple rules are preferable.

2.2 Principal branches

Let ” be a proof of this calculus, and let Sj be an occurrence of a sequent |Sj| in
”, and |Sj|

r be the conclusion of this sequent, that is the unique formula in the
right-hand side of this sequent.

We write B(S0) for the principal branch starting with the sequent S0 — see
e.g. [11, p. 75] or [17, p. 35]. It is the smallest path which contains S0 and is closed
under the following operations:

1. If S œ B(S0) is obtained by a unary rule R from an occurrence of a sequent
SÕ, then SÕ œ B(S0).

2. If S œ B(S0) is obtained by a product elimination §e (resp. ¢e), then the
premise |SÕ| = Γ[ÈA, BÍ] „ C (resp. |SÕ| = Γ[(A, B)] „ C) is also in B(S0).

59

Amblard and Retoré

3. If S œ B(S0) is obtained by an implicative elimination rule \e (resp. /e, (e),
then the premise |SÕ| = ∆ „ A \ C (resp. |SÕ| = ∆ „ A / C, |SÕ| = ∆ „ A(C)
is also in B(S0).

For every path in a principal branch B(S) from S to Si such that |S|r = |Si|
r,

if |S| is the conclusion of an elimination rule and |Si| the conclusion of introduction
rule, the two sequents are said to be conjoined — if there are no rules in-between
these two these two rules, they define a redex.

3 A brief example using pcIMLL in Computational Lin-

guistics: categorial minimalist grammars

Before we prove the normalisation and subformula property of pcimll, let us illus-
trate briefly our use of this calculus in computational linguistics — for more details
see [15, 4, 6]. As said above, Lambek calculus is too restricted to describe some
constructions in natural language syntax, hence, we need a richer logical calculus, in
order to remain in the parsing-as-deduction paradigm and to have a simple syntax
semantic interface. The calculus presented in this paper, namely partially commu-
tative intuitionistic multiplicative linear logic, pcimll, is able to account of many
more syntactical phenomena, especially when viewed as a natural deduction system.

Indeed, this logical calculus can account for Stabler’s minimalist grammars,
which are an elegant and computationally efficient formalisation of Chomsky’s min-
imalist program. As first observed in [9], such a view of syntax is not too far from
categorial grammar like Lambek grammars. [24, 22, 4, 6]. Minimalist grammars
cover all (or most of) syntactic constructions, but lacks a simple connection to se-
mantics because it is not a deductive system.

Therefore we defined categorial minimalist grammars, a deductive grammatical
formalism that resembles Lambek grammars: a lexicon maps every word into a
formula of partially commutative linear logic which describes its interaction with
other words. The main difficulty was to mimic the Chomskyan notion of movement:
the proper word order is recovered in a second step that labels the proof nodes. We
do not use all the possible combinations of rules of pcimll but only combination of
fixed sequences of rules, that correspond to minimalist-grammar rules. Thus parse
structures are derivations in pcimll where every formula of every sequent in the
proof is labelled with strings of words and variables. Parsing consists in deriving
in natural deduction sentence : C from axioms x : A „ x : A and proper axioms
„ w : T where T is the formula associated with w in the lexicon.

The merge rule is almost like residuation rules in categorial grammars with
noncommutative implications:

60

Partially Commutative Linear Logic . . .

x̨ : ∆ „ w : A x̨Õ : Γ „ wÕ : A \ C
[\e]

x̨ : ∆; x̨Õ : Γ „ wwÕ : C
[entropy]

x̨ : ∆, x̨ÕΓ „ wwÕ : C

or

x̨Õ : Γ „ wÕ : C / A x̨ : ∆ „ w : A
[/e]

x̨Õ : Γ; x̨ : ∆ „ wÕw : C
[entropy]

x̨Õ : Γ; x̨ : ∆ „ wÕw : C

The move rule was trickier to encode and required the commutative product:

y̨ : Γ „ s : A ¢ B x̨ : ∆, x : A, y : B, x̨Õ : ∆Õ „ t : C
[¢e]

x̨ : ∆, y̨ : Γ, x̨Õ : ∆Õ „ t[s / x, ‘ / y] : C

The move rule is typical of Chomskyan linguistics: our encoding in pcimll

mimics the movement of the constituent / string s from the place y to the place x .
Here is a simple example involving movement with a few entries from an Italian

lexicon — null subjects are allowed in this language, it makes the example simpler.
Observe how an interrogative noun phrase is moved to the leftmost position:

que wh ¢ (k ¢ d) / n cosa n ‘ k ¢ d
fai k \ d \ v / d infl k \ t / v comp wh\c/t

che
„ wh ¢ (k ¢ d) / n

cosa
„ n

[mg]
„ wh ¢ (k ¢ d)

wh „ wh

comp
„ wh \ c / t

‘
„ k ¢ d

k „ k

infl
„ k \ t / v

d „ d

k ¢ d „ k ¢ d

k „ k

fai
„ k \ d \ v / d d „ d

[mg]
d „ k \ d \ v

[mg]
k, d „ d \ v

[mv]
k ¢ d „ d \ v

[mg]
d, k ¢ d „ v

[mg]
d, k ¢ d „ k \ t

[mg]
k, d, k ¢ d „ t

[mv]
k ¢ d „ t

[mg]
k ¢ d „ wh \ c

[mg]
wh, k ¢ d „ c

[mv]
„ c

Figure 2: Analysis of “che cosa ‘ fai ?"

Our interest for such analyses is to automatically compute the semantic represen-
tation (usually, a formula of first-order or higher-order logic) with correct quantifier
scope. The semantic representation of our example is:

÷?(⁄x (·(cosa(x))(far(tu, x)))) © ÷?x(cosa(x) · far(tu, x)

Our presentation of categorial minimalist grammars in pcimll is extremely brief
and sketchy, but it gives an idea of why the logical calculus in this paper and its

61

Amblard and Retoré

natural deduction formulation is relevant to computational linguistics. Details can
be found in [15, 4, 5].

Regarding the application to true concurrency and Petri nets, see [21]

4 Normalisation of Lambek calculus with product (L§)

Before to give an algorithm for normalisation for the full pcimll calculus, let us deal
with L§, that is the Lambek calculus with product. For this calculus we shall define
normal natural deductions, give a normalisation algorithm and prove that it always
reach a normal proof. This restricted case is simpler, in particular entropy rule is
never used. Nevertheless this simpler case shows the difficulties of rule commutations
in such calculi, which will be tougher for full pcimll in the next section.

4.1 Some properties of the Lambek calculus with product L§

Lambek calculus with product (L§) is the restriction of pcimll to the connectives:
\, / and §. Furthermore, contexts are always totally ordered multi sets of formulae,
that are sequences of formulae: hence the associative È...; ...Í braces are omitted.
Observe that in this setting, the entropy rule cannot be applied.

Property 1. Let R be a product elimination rule §e yielding Γ[∆] „ C from a proof
”0 of ∆ „ A § B and a proof of Γ[A, B] „ C obtained by a rule RÕ from a proof ”1 of
Θ[A, B] „ X and from a second proof ”2 of Ψ „ U — if RÕ is a binary rule.

A proof for the same sequent Γ[∆] „ C can be derived by the following two steps:

1. apply R between the proof ”0 of ∆ „ A § B and the proof ”1 of Θ[A, B] „ X
as conclusion, yielding Θ[∆] „ X;

2. apply RÕ to this new proof and to the proof ”2.

In other words, provided that the hypotheses A, B that are cancelled by the R
product elimination rule are in the same premise of the RÕ rule, the R product
elimination rule can swing over RÕ, as shown in figure 3.

Proof. The proof of this proposition is rather lengthy but simple: it is a case study
of all the possible rules RÕ above the product elimination R. Here are the possible
cases:

¶ RÕ is \e:

62

Partially Commutative Linear Logic . . .

·
·
·

”0

∆ „ A § B

·
·
·

”2

Ψ „ U

·
·
·

”1

Θ[A, B] „ X
RÕ

Γ[A, B] „ C
R

Γ[∆] „ C

∆
·
·
·

”2

Ψ „ U

·
·
·

”0

∆ „ A § B

·
·
·

”1

Θ[A, B] „ X
R

Θ[∆] „ X
RÕ

Γ[∆] „ C

Figure 3: A product elimination rule R swings over a rule RÕ in L§.

• hypotheses A, B are in the left premise of \e:

Γ „ A § B

A, B „ D ∆ „ D \ C
[\e]

A, B, ∆ „ C
[§e]

Γ, ∆ „ C

∆

Γ „ A § B A, B „ D
[§e]

Γ „ D ∆ „ D \ C
[\e]

Γ, ∆ „ C

• hypotheses A, B are in the right premise of \e:

Γ „ A § B

∆ „ D A, B „ D \ C
[\e]

∆, A, B „ C
[§e]

∆, Γ „ C

∆ ∆ „ D

Γ „ A § B A, B „ D \ C
[§e]

Γ „ D \ C
[\e]

∆, Γ „ C

¶ RÕ is /e — symmetrical to the previous case.

¶ RÕ is \i:

Γ „ A § B

D, ∆, A, B, ∆Õ „ C
[\i]

∆, A, B, ∆Õ „ D \ C
[§e]

∆, Γ, ∆Õ „ D \ C

63

Amblard and Retoré

∆

Γ „ A § B D, ∆, A, B, ∆Õ „ C
[§e]

D, ∆, Γ, ∆Õ „ C
[\i]

∆, Γ, ∆Õ „ D \ C

¶ RÕ is /i — symmetrical to the previous case.

¶ RÕ is §e:

• hypotheses A, B are in the left premise of RÕ:

Γ „ A § B

∆, A, B, ∆Õ „ C § D Φ, C, D, ΦÕ „ E
[§e]

Φ, ∆, A, B, ∆Õ, ΦÕ „ E
[§e]

Φ, ∆, Γ, ∆Õ, ΦÕ „ E

∆

Γ „ A § B ∆, A, B, ∆Õ „ C § D
[§e]

∆, Γ, ∆Õ „ C § D Φ, C, D, ΦÕ „ E
[§e]

Φ, ∆, Γ, ∆, ΦÕ „ E

• hypotheses A, B are in the right premise of RÕ:

Γ „ A § B

∆ „ C § D Φ, A, B, C, D, ΦÕ „ E
[§e]

Φ, A, B, ∆, ΦÕ „ E
[§e]

Φ, Γ, ∆, ΦÕ „ E

∆ ∆ „ C § D

Γ „ A § B Φ, A, B, C, D, ΦÕ „ E
[§e]

Φ, Γ, C, D, ΦÕ „ E
[§e]

Φ, Γ, ∆, ΦÕ „ E

¶ RÕ is §i:

• hypotheses A, B are in the left premise of RÕ:

Γ „ A § B

∆, A, B, ∆Õ „ C Φ „ D
[§i]

∆, A, B, ∆Õ, Φ „ C § D
[§e]

∆, Γ, ∆Õ, Φ „ C § D

64

Partially Commutative Linear Logic . . .

∆

Γ „ A § B ∆, A, B, ∆Õ „ C
[§e]

∆, Γ, ∆Õ „ C Φ „ D
[§i]

∆, Γ, ∆Õ, Φ „ C § D

• hypotheses in the right premise of RÕ:

Γ „ A § B

∆ „ C Φ, A, B, ΦÕ „ D
[§i]

∆, Φ, A, B, ΦÕ „ C § D
[§e]

∆, Φ, Γ, ΦÕ „ C § D

∆

∆ „ C

Γ „ A § B Φ, A, B, ΦÕ „ D
[§e]

Φ, Γ, ΦÕ „ D
[§i]

∆, Φ, Γ, ΦÕ „ C § D

All possible cases of combinations of rules have been examined. The product
elimination has the ability to swing over any rule provided the cancelled hypotheses
are in the same premise.

Definition 1. Let R be a product elimination rule:

·
·
·

”0

∆ „ A § B

·
·
·

”2

Γ2 „ C2

·
·
·

”1

Γ1 „ C1
RÕ

Γ[A, B] „ C
R

Γ[∆] „ C

A §e rule R cancelling the two hypotheses A and B is said to be as high as

possible if RÕ is binary, and A and B are not in the same sequent, i.e. A is in Γ2

and B is in Γ1.

As usual, a redex consists in an introduction rule of a given connective im-
mediately followed by the elimination rule of the same connective. Hence, in this
calculus, there are four redexes: one for /, one for \ and two for § (depending in
which premise it takes place). The reductions patterns are given below. For sim-
plicity we only write the conclusions of the sequents and leave out the contexts: this
is unambiguous given that contexts are plain sequences of formulae.

¶ Redex/: /i immediately followed by /e.

65

Amblard and Retoré

[D]1
·
·
·

”0

C
[/i]1

C / D

·
·
·
·
·

”1

D
[/e]

C

∆

·
·
·
·
·

”1

D
·
·
·

”0

C

¶ Redex\: /i immediately followed by /e: symmetrical.

·
·
·
·
·

”1

D

[D]1
·
·
·

”0

C
[\i]1

D \ C
[\e]

C

∆

·
·
·
·
·

”1

D
·
·
·

”0

C

¶ Redex§: introduction §i (left) immediately followed by elimination §e.

·
·
·
·
·

”1

A

·
·
·
·
·

”2

B
[§i]

A § B

[A]1 [B]1
·
·
·

D
[§e]1

D

∆

·
·
·
·
·

”1

A

·
·
·
·
·

”2

B
·
·
·

D

¶ Redex§: introduction §i (right) immediately followed by elimination §e.

·
·
·
·
·

”1

A § B

A B
[§i]

A § B
[§e]

A § B

∆

·
·
·
·
·

”1

A § B

From the notion of redex, we define a generalisation that we call a k-extended-

redex.

Definition 2. Every path of a principal branch B(S0) of length k from S0 to Sn

with |S0|r = |Sn|r (the conclusions of those two sequents are the same), such that
|S0| is the conclusion of an elimination rule Re and Sn is the conclusion of an
introduction rule Ri of the same connective, is called a k-extended-redex. Note
that 0-extended-redexes are redexes.

66

Partially Commutative Linear Logic . . .

Proposition 1. A k-extended-redex only contains §e rules or a proper sub kÕ-
extended redex, with kÕ < k.

Proof. Assume that one of the occurrences of X results from a /e rule between
X / U , and U . In this case, the k-extended-redex contains a smaller kÕ-extended-
redex, between this elimination and same the introduction rule. Otherwise only §e

rules preserve the conclusion of the sequent, and they can be used an unspecified
number of times without changing the conclusion of the sequent (i.e. X).

4.2 Normalisation of L§

Definition 3. A normal proof is a proof which contains no k-extended-redexes
and where all §e rules are as high as possible.

Given a proof ”, and PER(”) its §e rules, we define for a product elimination
rule R in PE(”) the two following integers:

1. g(R) which is k if there is a k-extended-redex in the principal branch B(S0)
starting from the conclusion of R and 0 otherwise.

2. the integer dconj(R) is the number of rules other than product elimination
rules (i.e. not in PER(”)) between R and the rule which gathers in the same
sequent the hypotheses A and B that are cancelled by R.

With those measures, we define the measure of a proof that will be used to
established the normalisation. It is a lexically ordered triple of integers:

|”| = Èn(”), h(”), g(”)Í

where:

• n(”) is the number of rules of ”. The number of rules decreases when one
reduces a redex as in any linear calculus.

• h(”) =
q

RœP ER(δ) dconj(R) when PER is the set of Proudct Elimination rules.
The number h(”) is 0 when all product elimination rules are as high as possible
(cf. definition 1).

• g(”) = minRœP ER(δ)(g(R)) which is 0 if and only if ” contains no k-extended-
redex (cf. definition 3).

Property 2. A proof ” is normal if and only if it does not contain 0-extended-redex,
and h(”) = g(”) = 0.

67

Amblard and Retoré

Proof. Let ” a proof of L§,

¶ h(”) is there to make sure that §e rule reach their highest possible position.
During this phase, k-extended-redexes/ and \ may appear and are reduced
afterwards. If every §e is as high as possible then h(”) = 0. Only § k-
extended-redexes may still exist in ”. This case is presented in example 1 of
Figure 4.

¶ g(”) represents the number of rules in a § k-extended-redex. When it is zero,
there is no more k-extended-redex§ in ”. This case is presented in example 2
of Figure 4.

g(\e) = 1 (1-extended-redex)

„ C

„ E § F

C, E, F „ A / B
[\i]

E, F „ C \ (A / B)
[§e]

„ C \ (A / B)
[\e]

„ A / B

h(§e) = 1 (§e is not as high as possible)

„ E § F

„ C

E „ (C \ A) / B F „ B
[/e]

E, F „ C \ A
[/e]

E, F „ A
[§e]

„ A / B

Figure 4: Examples of proof which are not in normal form

Theorem 1. Every proof ” in L§ calculus can be turned into a normal form which
is unique.

Proof. We proceed by induction on |”|. By induction hypotheses, every proof ”Õ of
size |”Õ| < Èr, d, gÍ has a unique normal form. Given a proof ” of size |”| <= Èr, d, gÍ,
let us show that ” has a unique normal form as well.

68

Partially Commutative Linear Logic . . .

1. If ” contains a redex, we can reduce it, and let ”Õ, be the reduced proof. We
have n(”Õ) < n(”), hence |”Õ| < Èr, d, gÍ and by induction, ”Õ has a unique
normal form, and therefore so does ”.

2. Else, if ” contains no redex,

(a) If d ”= 0: let R be the lowest §e rule such that d(R) ”= 0. Hence, there
exists a rule RÕ ”= §e higher than R, and R can be lifted above all §e and
finally R can swing over RÕ. The induced proof ”Õ is such that n(”Õ) = n(”)
and h(”Õ) = h(”)≠1. The number dconj(Ri), for an §e rule Ri below R, is
zero because R does not contribute to dconj(_). Therefore ”Õ < Èr, d, gÍ,
and by induction , ”Õ has a unique normal form, hence so does ”.

(b) Else:

i. If g ”= 0: let RÕ such that g(RÕ) = g. This rule can swing over its left
premise. The number of rules and the sum remain unchanged. In its
part, the places of the §e rules are just exchanged, hence g decrease
of 1. Hence the proof ”Õ is such that |”Õ| < |”|. By induction, ”Õ has
a unique normal form, hence so does ”.

ii. Else: using the property 2, the proof is in normal form.

Consequently an §e rule R cancelling two hypotheses A and B may only appear
below the binary rule Rb which gathers the two hypothesis A and B in one sequent.
Moreover, only one §e can be “as high as possible", i.e. immediately below the
binary rule Rb. Indeed, an §e rule can only cancel two adjacent free hypotheses:
the rightmost hypothesis of the left premise of Rb and the leftmost hypothesis of the
right premise os Rb. We thus assign a unique position to each §e rule, and therefore
the normal form is unique.

All proofs have a unique normal form which can be computed using the afore-
mentioned strategy. The normal forms of the two previous examples, figure 4, are
the two following proofs:

4.3 Subformula property for L§

Theorem 2. Any normal proof ” of the Lambek calculus with product of a sequent
Γ „ C satisfies the subformula property: every formula in ” is a subformula of some
hypothesis in Γ or of the conclusion C.

Proof. Here we prove a stronger result than the plain subformula property:

69

Amblard and Retoré

g(\e) = 0 (0-extended-redex, i.e. visible redex to be reduced)

„ E § F

„ C

C, E, F „ A / B
[\i]

E, F „ C \ (A / B)
[\e]

„ A / B
[§e]

„ C \ (A / B)

h(§e) = 0 (§e is by now as high as possible)

„ C

„ E § F

E „ (C \ A) / B F „ B
[/e]

E, F „ C \ A
[§e]

„ C \ A
[/e]

E, F „ A

Figure 5: Applying a generalised reduction step to the examples of figure 4

1. every formula in a normal sub-proof is a formula of some hypotheses or of the
conclusion of the proof ;

2. and if the last rule used is an \e or /e every subformula is a subformulae of
some (uncancelled) hypothesis.

We proceed by a standard induction on the height of the proof, according to the
nature of the last rule:

1. A proof consisting in an axiom clearly enjoys the two properties.

2. If the last rule R is \e: let ” be the following proof, where Γi is the set of
hypotheses used in the sub-proof ”i, for i œ [1, 2]:

Γ1
·
·
·
·
·

”1

C

Γ2
·
·
·
·
·

”2

[R]
C \ D

[\e]
D

70

Partially Commutative Linear Logic . . .

Using the induction hypothesis:

• In ”1 every formula is subformula of C or Γ1;

• In ”2 every formula is subformula of C \ D or Γ2.

The conclusion D and the premise C are direct subformulae of the premise
C \ D. We have to consider the rule [R] above this premise:

¶ if R is /e or \e: we use the induction hypothesis, we conclude that C \ D
is a subformula of Γ2. Then every formula of ” is a subformula of Γ2.

¶ if R is \i: it is impossible because the rule should be a 0-extended-redex,
while ” is in normal form.

¶ if R is /i: this case is structurally impossible because this rule cannot
derive C \ D.

¶ if R is §i: this case is also impossible because this rule cannot derive
C \ D.

¶ if R is §e. Once more, it depends on the rule RÕ above R:

Γ1
·
·
·
·
·

”1

C

Γ2[A, B]
·
·
·
·
·

”2

A § B
[RÕ]

C \ D
[§e]

C \ D
[\e]

D

– If RÕ is \e or /e, by the induction hypothesis, C \ D is a subformula
of some hypotheses.

– If RÕ is \i: impossible because it would result in a 1-extended-redex,
while ” is in normal form.

– If RÕ is one of the other introduction rules (\i or §i): these cases are
structurally impossible since these rules cannot derive C \ D.

– If RÕ is §e, once more, we must consult the rule above. As the number
of rules above a given rule is finite, the proof contains a sequence of
rules that necessarily matches the following pattern:

71

Amblard and Retoré

Γ1
·
·
·
·
·

”1

C

A1 § B1

An § Bn

Γ2[A1, · · · , An, Bn, · · · , B1]
·
·
·

”2

[RÕÕ]
C \ D

[§e]
·
·
·

C \ D
[§e]

C \ D
[\e]

D
Then one of the following case applies:

ú There are only §e rules in this sequence of rules, and C \ D is
one of the hypotheses.

ú Otherwise the path stops on a rule Rn which according to what we
said about RÕ above, can only be /e or \e: therefore, by induction
hypothesis C \ D is subformula of one of the hypotheses.

In every case, the conclusion of \e is a subformula of the hypotheses and
the property holds.

3. R is /e: this case is similar to R is \e.

4. R is \i: let ” be the following proof, where Γ1 is the set of hypotheses used in
the sub-proof ”1:

C, Γ1
·
·
·
·
·

”1

D
[\i]

C \ D

In ”1 every formula is a subformula of D or of C and Γ1. Furthermore, D is a
subformula of C \D. Then, every formula of ” is subformula of C, Γ1 or C \D.

5. R is /i: is symmetrical to the previous case.

6. R is §i: let ” be the following proof, where Γi is the set of hypotheses used in
the sub-proof ”i, for i œ [1, 2]:

72

Partially Commutative Linear Logic . . .

Γ1
·
·
·
·
·

”1

C

Γ2
·
·
·
·
·

”2

D
[§i]

C § D

• In ”1 every formula is a subformula of C or of Γ1.

• In ”2 every formula is a subformula of D or of Γ2.

Furthermore, C and D are subformulae of C § D. Hence, every formula of ”
is subformula of Γ1, Γ2 or of C § D.

7. R is §e: let ” be the following proof, where Γi is the set of hypotheses used in
the sub-proof ”i, for i œ [1, 2]:

Γ1
·
·
·
·
·

”1

A § B

Γ2
·
·
·
·
·

”2

D
[§e]

D

• In ”1, every formula is a subformula of A § B or of Γ1.

• In ”2, every formula is a subformula of D or of Γ2.

The conclusion of ” is the conclusion of one premise, hence the property holds
for the part of the proof which the conclusion belongs to, i.e. ”2 and we only
have to show that formulae in ”1 are subformulae of a conclusion or of an
hypothesis of ”.

Let us show that A § B is a subformula of an hypothesis of Γ1, which entails
the result. What may be the rule R above A § B?

¶ if R is \e or /e, because of the induction hypothesis, and because A § B
is the conclusion of such a rule, A § B is a subformula of Γ1.

¶ if R is \i or /i: this case cannot happen because A § B may not be a
possible conclusion of those rules.

¶ if R is §i: this case cannot happen: there would exist a 0-extended-redex,
i.e. a redex and this impossible in a normal proof.

¶ if R is another §e rule:

73

Amblard and Retoré

E § F

Γ1[E, F]
·
·
·
·
·

”1

A § B
[§e]

A § B

Γ2[A, B]
·
·
·
·
·

”2

D
[§e]

D

There are two cases:

• If A § B can be traced up to an hypothesis of Γ1, then A § B is a
subformula of some hypothesis (itself).

• Otherwise, A § B is not an hypothesis, but there exists a rule §i

above it which generated the formula A § B. This §i introduction
rule is conjoined to the §e rule under discussion, and the proof would
contain a k-extended-redex: this case is ruled out.

In any case, A § B is subformula of some hypothesis and the subformula
property holds for §e.

Thus in L§, every proof have a unique normal form which satisfies the subformula
property. We observe that unlike [18], rules use are the usual ones for this calculus.

5 Normalisation of proofs of pcIMLL

Now, we present a notion of normal proof with the subformula property, and a
normalisation algorithm for proofs of pcimll.

As in the previous section about L§, the normalisation assigns a unique place to
the eliminations of non-commutative product, and build sequence of commutative
product eliminations. Nevertheless the relative position of each rule in a sequence of
elimination rules for commutative product is free, hence not unique unless we accept
n-ary rules.

5.1 Some properties of pcIMLL

Property 3 (product elimination rules can swing over any other rule). Let R be
a product elimination rule ¢e (resp. §e) yielding Γ[∆] „ C from a proof ”0 of
∆ „ A § B and a proof of Γ[A, B] „ C obtained by a rule RÕ from a proof ”1 of

74

Partially Commutative Linear Logic . . .

Θ[A, B] „ X (resp. Γ[ÈA; BÍ] „ C) and from a second proof ”2 of Ψ „ U — if RÕ is
a binary rule.

A proof for the same sequent Γ[∆] „ C can be derived by the following two steps:

1. apply R between the proof ”0 of ∆ „ A § B and the proof ”1 of Θ[A, B] „ X
(resp. Θ[ÈA; BÍ] „ X) as conclusion, yielding Θ[∆] „ X;

2. apply RÕ to this new proof and to the proof ”2.

In other words, provided that the hypotheses A, B that are cancelled by the R
product elimination rule are in the same premise of the RÕ rule, the R product
elimination rule can swing over RÕ, as shown in figure 6.

·
·
·

”0

∆ „ A ¢ B

·
·
·

”2

Ψ „ U

·
·
·

”1

Θ[(A, B)] „ X
RÕ

Γ[(A, B)] „ C
R

Γ[∆] „ C

∆
·
·
·

”2

Ψ „ U

·
·
·

”0

∆ „ A ¢ B

·
·
·

”1

Θ[(A, B)] „ X
R

Θ[∆] „ X
RÕ

Γ[∆] „ C

Figure 6: The product elimination R swings over a rule RÕ in pcimll.

Proof. The proof is similar to the one of property 1. This is a case study according
to the rule over the product elimination. This elimination rule can only float up
when the hypotheses that must be cancelled are in the same premise and occupy
the proper respective position required by the elimination rule.

Let us check that ¢e may swing over any other rule RÕ:

¶ RÕ is \e:

• if the hypotheses to be cancelled are in the left premise of \e:

∆ „ A ¢ B

Γ[(A, B)] „ D Φ „ D \ C
[\e]

ÈΓ[(A, B)]; ΦÍ „ C
[¢e]

ÈΓ[∆]; ΦÍ „ C

∆

∆ „ A ¢ B Γ[(A, B)] „ D
[¢e]

Γ[∆] „ D Φ „ D \ C
[\e]

ÈΓ[∆]; ΦÍ „ C

75

Amblard and Retoré

• if the hypotheses to be cancelled are in the right premise of \e:

∆ „ A ¢ B

Γ „ D Φ[(A, B)] „ D \ C
[\e]

ÈΓ; Φ[(A, B)]Í „ C
[¢e]

ÈΓ; Φ[∆]Í „ C

∆ Γ „ D

∆ „ A ¢ B Φ[(A, B)] „ D \ C
[¢e]

Φ[∆] „ D \ C
[\e]

ÈΓ; Φ[∆]Í „ C

¶ RÕ is /e — symmetrical to the previous case.

¶ RÕ is (e:

• if the hypotheses to be cancelled are in the left premise of (e:

∆ „ A ¢ B

Γ[(A, B)] „ D Φ „ D (C
[(e]

(Γ[(A, B)], Φ) „ C
[¢e]

(Γ[∆]; Φ) „ C

∆

∆ „ A ¢ B Γ[(A, B)] „ D
[¢e]

Γ[∆] „ D Φ „ D (C
[(e]

(Γ[∆], Φ) „ C

• if the hypotheses to be cancelled are in the right premise of (e:

∆ „ A ¢ B

Γ „ D Φ[(A, B)] „ D (C
[(e]

(Γ, Φ[(A, B)]) „ C
[¢e]

(Γ, Φ[∆]) „ C

∆ Γ „ D

∆ „ A ¢ B Φ[(A, B)] „ D (C
[¢e]

Φ[∆] „ D (C
[(e]

(Γ, Φ[∆]) „ C

76

Partially Commutative Linear Logic . . .

¶ RÕ is /i:

∆ „ A ¢ B

ÈΓ[(A, B)]; DÍ „ C
[/i]

Γ[(A, B)] „ C / D
[¢e]

Γ[∆] „ C / D

∆

∆ „ A ¢ B ÈΓ[(A, B)]; DÍ „ C
[¢e]

ÈΓ[∆]; DÍ „ C
[/i]

Γ[∆] „ C / D

¶ RÕ is \i — symmetrical to the previous case.

¶ RÕ is (i:

∆ „ A ¢ B

(Γ[(A, B)], D) „ C
[(i]

Γ[(A, B)] „ D (C
[¢e]

Γ[∆] „ D (C

∆

∆ „ A ¢ B (Γ[(A, B)], D) „ C
[¢e]

(Γ[∆], D) „ C
[(i]

Γ[∆] „ D (C

¶ RÕ is ¢e (as R):

• if the hypotheses to be cancelled are in the right premise of ¢e:

Γ „ A ¢ B

∆ „ C ¢ D (Φ, (A, B), (C, D), ΦÕ) „ E
[¢e]

(Φ, (A, B), ∆, ΦÕ) „ E
[¢e]

(Φ, Γ, ∆, ΦÕ) „ E

∆ ∆ „ C ¢ D

Γ „ A ¢ B (Φ, (A, B), (C, D), ΦÕ) „ E
[¢e]

(Φ, Γ, (C, D), ΦÕ) „ E
[¢e]

(Φ, Γ, ∆, ΦÕ) „ E

• if the hypotheses to be cancelled are in the left premise of ¢e:

Γ „ A ¢ B

(∆, (A, B), ∆Õ) „ C ¢ D (Φ, (C, D), ΦÕ) „ E
[¢e]

(Φ, ∆, (A, B), ∆Õ, ΦÕ) „ E
[¢e]

(Φ, ∆, Γ, ∆Õ, ΦÕ) „ E

77

Amblard and Retoré

∆

Γ „ A ¢ B (∆, (A, B), ∆Õ) „ C ¢ D
[¢e]

(∆, Γ, ∆Õ) „ C ¢ D (Φ, (C, D), ΦÕ) „ E
[¢e]

(Φ, ∆, Γ, ∆, ΦÕ) „ E

¶ RÕ is §e:

• if the hypotheses to be cancelled are in the right premise of §e:

Γ „ A ¢ B

∆ „ C § D (Φ, (A, B), Ψ, ÈC; DÍ, ΨÕ, ΦÕ) „ E
[§e]

(Φ, (A, B), Ψ, ∆, ΨÕ, ΦÕ) „ E
[¢e]

(Φ, Γ, Ψ, ∆, ΨÕ, ΦÕ) „ E

∆ ∆ „ C § D

Γ „ A ¢ B (Φ, (A, B), Ψ, ÈC; DÍ, ΨÕ, ΦÕ) „ E
[¢e]

(Φ, Γ, Ψ, ÈC; DÍ, ΨÕ, ΦÕ) „ E
[§e]

(Φ, Γ, Ψ, ∆, ΨÕΦÕ) „ E

• if the hypotheses to be cancelled are in the left premise of §e:

Γ „ A ¢ B

(∆, (A, B), ∆Õ) „ C § D (Φ, Ψ, ÈC; DÍ, ΨÕ, ΦÕ) „ E
[§e]

(Φ, Ψ, ∆, (A, B), ∆Õ, ΨÕ, ΦÕ) „ E
[¢e]

(Φ, Ψ, ∆, Γ, ∆Õ, ΨÕ, ΦÕ) „ E

∆
Γ „ A ¢ B (∆, (A, B), ∆Õ) „ C § D

[¢e]
(∆, Γ, ∆Õ) „ C § D (Φ, Ψ, ÈC; DÍ, ΨÕ, ΦÕ) „ E

[§e]
(Φ, Ψ, ∆, Γ, ∆Õ, ΨÕ, ΦÕ) „ E

¶ RÕ is ¢i:

• if the hypotheses to be cancelled are in the left premise of ¢i:

Γ „ A ¢ B

(∆, (A, B), ∆Õ) „ C Φ „ D
[¢i]

(∆, (A, B), ∆Õ, Φ) „ C ¢ D
[¢e]

(∆, Γ, ∆Õ, Φ) „ C ¢ D

78

Partially Commutative Linear Logic . . .

∆

Γ „ A ¢ B (∆, (A, B), ∆Õ) „ C
[¢e]

(∆, Γ, ∆Õ) „ C Φ „ D
[¢i]

(∆, Γ, ∆Õ, Φ) „ C ¢ D

• if the hypotheses to be cancelled are in the right premise of ¢i:

Γ „ A ¢ B

∆ „ C (Φ, (A, B), ΦÕ) „ D
[¢i]

(∆, Φ, (A, B), ΦÕ) „ C ¢ D
[¢e]

(∆, Φ, Γ, ΦÕ) „ C ¢ D

∆ ∆ „ C

Γ „ A ¢ B (Φ, (A, B), ΦÕ) „ D
[¢e]

(Φ, Γ, ΦÕ) „ D
[¢i]

(∆, Φ, Γ, ΦÕ) „ C ¢ D

¶ RÕ is §i:

• if the hypotheses to be cancelled are in the left premise of §i:

Γ „ A ¢ B

(∆, (A, B), ∆Õ) „ C Φ „ D
[§i]

È(∆, (A, B), ∆Õ); ΦÍ „ C § D
[¢e]

È(∆, Γ, ∆Õ); ΦÍ „ C § D

∆

Γ „ A ¢ B (∆, (A, B), ∆Õ) „ C
[¢e]

(∆, Γ, ∆Õ) „ C Φ „ D
[§i]

È(∆, Γ, ∆Õ); ΦÍ „ C § D

• if the hypotheses to be cancelled are in the right premise of §i:

Γ „ A ¢ B

∆ „ C (Φ, (A, B), ΦÕ) „ D
[§i]

È∆; (Φ, (A, B), ΦÕ)Í „ C § D
[¢e]

È∆; (Φ, Γ, ΦÕ)Í „ C § D

∆ ∆ „ C

Γ „ A ¢ B (Φ, (A, B), ΦÕ) „ D
[¢e]

(Φ, Γ, ΦÕ) „ D
[§i]

È∆; (Φ, Γ, ΦÕ)Í „ C § D

79

Amblard and Retoré

¶ RÕ is entropy @:

Γ „ A ¢ B
[@]

ΓÕ „ A ¢ B ∆[A, B] „ D
[¢e]

∆[ΓÕ] „ D

∆

Γ „ A ¢ B ∆[A, B] „ D
[¢e]

∆[Γ] „ D
[@]

∆[ΓÕ] „ D

The elimination of the non-commutative product may swing over any rule. Most
cases are easy adaptation of the cases in the proof of the property 1 (and almost
similar to the ¢e that we exhaustively presented). Let us nevertheless show how
R = §e can swings over RÕ when RÕ is entropy (@), since this case did not occur in
the proof of property 1.

Γ „ A ¢ B
[@]

ΓÕ „ A ¢ B ∆[ÈA; BÍ] „ D
[§e]

∆[ΓÕ] „ D

∆

Γ „ A ¢ B ∆[ÈA; BÍ] „ D
[§e]

∆[Γ] „ D
[@]

∆[ΓÕ] „ D

The procedure for turning a proof into a normal proof is analogous to the one
for L§. To do so, we firstly introduce the redexes of this calculus and generalise
the notion of k-extended redex.

The logic contains seven redexes: one for each implicative connective and two
for each product connective (the conjoined introduction could be in the left premise
or in the right premise):

¶ Redex/: /i immediately followed by /e.

·
·
·

ÈΓ; DÍ „ C
[/i]

Γ „ C / D

·
·
·
·
·

”1

∆ „ D
[/e]

ÈΓ; ∆Í „ C

∆

·
·
·
·
·

”1

∆ „ D
·
·
·

ÈΓ; ∆Í „ C

¶ Redex\: \i immediately followed by \e.

80

Partially Commutative Linear Logic . . .

·
·
·
·
·

”1

∆ „ D

·
·
·

ÈD; ΓÍ „ C
[\i]

Γ „ D \ C
[\e]

È∆; ΓÍ „ C

∆

·
·
·
·
·

”1

∆ „ D
·
·
·

È∆; ΓÍ „ C

¶ Redex(: (i immediately followed by (e.

·
·
·
·
·

”1

∆ „ D

·
·
·

(D, Γ) „ C
[(i]

Γ „ D (C
[(e]

(∆, Γ) „ C

∆

·
·
·
·
·

”1

∆ „ D
·
·
·

(∆, Γ) „ C

¶ Redex§: §i immediately followed by §e on the left.

·
·
·
·
·

”1

∆1 „ A

·
·
·
·
·

”2

∆2 „ B
[§i]

È∆1; ∆2Í „ A § B

·
·
·

Γ[ÈA; BÍ] „ D
[§e]

Γ[È∆1; ∆2Í] „ D

∆
Γ[È

·
·
·
·
·

”1

A ;

·
·
·
·
·

”2

B Í] „ D

¶ Redex§: §i immediately followed by §e on the right.

·
·
·
·
·

”1

Γ „ A § B

A „ A B „ B
[§i]

ÈA; BÍ „ A § B
[§e]

Γ „ A § B

∆

·
·
·
·
·

”1

Γ „ A § B

¶ Redex¢: ¢i immediately followed by ¢e on the left.

·
·
·
·
·

”1

A

·
·
·
·
·

”2

B
[¢i]

A ¢ B

A B
·
·
·

D
[¢e]

D

∆
Γ[(

·
·
·
·
·

”1

A ,

·
·
·
·
·

”2

B)] „ D

¶ Redex¢: ¢i immediately followed by ¢e on the right.

81

Amblard and Retoré

·
·
·
·
·

”1

Γ „ A ¢ B

A „ A B „ B
[¢i]

(A, B) „ A ¢ B
[¢e]

Γ „ A ¢ B

∆

·
·
·
·
·

”1

Γ „ A ¢ B

Here as well, we consider k-extended-redexes, defined as in definition 2:

Definition 4. Every path of a principal branch B(S0) of length k — counting every
rule, including entropy rules if any — from S0 to Sn with |S0|r = |Sn|r (i.e. the
conclusions of those two sequents are the same), such that |S0| is the conclusion of
an elimination rule Re and Sn is the conclusion of an introduction rule Ri of the
same connective, is called a k-extended-redex. Note that 0-extended-redexes are
redexes.

Definition 5. A proof is said to be in normal form whenever it does not contain
any k-extended-redexes, ’k œ IN.

5.2 Normalisation of pcIMLL

A proof is in normal form if it does not contain any k-extended-redex.

As we did for L§, we define the three components of the measure to be used for
proving normalisation.

1. Given an implication elimination rule R (\e, /e or (e) with conclusion S0 the
integer e(R) is k if there is a k-extended-redex in B(S0) (called an implication
k-extended-redex over R), and 0 otherwise — the k-rules may include entropy
rules.

2. Given a product elimination rule R (§e or ¢e) with S0 as conclusion, the
integer g(R) is k if there is a k-extended-redex in B(S0) (called a product
k-extended-redex over R) and 0 otherwise — the k-rules may include entropy
rules.

We introduce the size |”| of a proof ” as a triple of integers, with the lexicographic
order:

|”| = Èr(”), e(”), g(”)Í

where:

• r(”) is simply the number of rules in ” — the number of rules decreases when
one reduces a redex, in pcimll as in any linear calculus.

82

Partially Commutative Linear Logic . . .

• e(”) = minRœIER(δ)(e(R)) or 0 when there is no implication k-extended-redex,
where IER is the set of Implication Elimination Rules.

• g(”) = minRœP ER(δ)(g(R)) or 0 when there is no product k-extended-redex
where PER is the set of Product Elimination Rules.

Property 4. A proof ” is normal if and only if it does not contain 0-extended-redex,
and e(”) = g(”) = 0.

Proof. Let ” a proof of pcimll.

¶ e(”) is the minimal distance between the introduction rule and the elimination
rule of an implication k-extended-redex (\, / or (). If its value is zero, while
there is no redex that can be reduced, then there is no implication k-extended-
redex.

¶ g(”) is the distance between the introduction rule and the elimination rule of
a product k-extended-redex (§ or ¢). If its value is zero, while there is no
redex that can be reduced, then there is no product k-extended-redex.

Note that the two other redexes could only be 0-extended-redexes. Thus a proof
without 0-extended redex and such that e(”) = g(”) = 0 is in normal form. The
figure 7 shows example of proofs which are not in normal form.

g(¢e) = 1(1-extended-redex) :

„ A ¢ B

A „ E B „ F
[¢i]

(A, B) „ E ¢ F
[¢e]

„ E ¢ F (E, F) „ D
[¢e]

„ D

Figure 7: Yet another example of a non normal proof in pcimll — see figure 4 for
other examples

Property 5. A k-extended-redex S0 · · · Sk that includes an implication elimination
rule contains a kÕ-extended-redex, with k > kÕ.

83

Amblard and Retoré

Proof. Let ” a proof in normal form, and let us consider the principal branch starting
with the conclusion.

Any minimal k-extended-redex has the following structure:

[introduction]
X
·
·
·
·
·

”3

U
[/i]

U / A
·
·
·
·
·

”2

U / A A
[/e]

U
·
·
·
·
·

”1

X
[elimination]

Then, we define:

• ”1 as a sequence of implication elimination rules and entropy;

• ”2 as a sequence of product elimination rules and entropy.

The formula U is the conclusion of the highest implication elimination rule. For
this derivation, the number of symbols in U is greater than the number of symbols
in X.

Then, still following the principal branch, ”2 is a sequence of product eliminations
and entropy.

The formula U / A can only result from an introduction rule.
On the example, the only introduction rule that we could structurally use is /i

on the formula A. Because this introduction is in the principal branch, it must be
the conjoined rule of the previous introduction. Then, we have a new kÕ-extended-
redex inside the k-extended-redex. kÕ is the number of rules in ”2 and because ”2 is
a sub-part of the full proof, k > kÕ.

Here is a consequence of the previous property:

Lemma 1. In the proof ”, a minimal k-extended-redex (whose size is e(”)) only
contains product elimination rules and entropy.

84

Partially Commutative Linear Logic . . .

Proof. If the k-extended-redex is minimal, with the property 5, it does not contain
any elimination rule. Moreover, if we do not use elimination rules, the number of
symbols in the formula could not decrease. Hence it must be constant in the k-
extended-redex. In this case, the rules that we could use are rules whose conclusion
is one of the premises. Therefore the sequence of rules may only contain product
elimination rules and entropy rules: §e, ¢e or @.

Property 6. Product eliminations and entropy rules may swing under implication
elimination rules:

Let R a product elimination rule ¢e (resp. §e) yielding Γ[∆] „ C from a proof
”0 of ∆ „ A ¢ B and a proof ”1 of Γ[(A, B)] „ C (resp. Γ[ÈA; BÍ] „ C). Assume that
the result is merged with a proof ”2 of Θ „ U via an implication elimination rule
RÕ \e (resp. /e, (e) yielding ÈΘ; Γ[∆]Í „ V if RÕ is \e (resp. ÈΓ[∆]; ΘÍ „ V if RÕ,
(Γ[∆], Θ) „ V). Figure 8 presents the case where RÕ is \e.

Then, we can obtain a proof for the same sequent which depends on RÕ by applying
first the rule RÕ between the proof ”2 of Θ „ U and the proof ”1 of Γ[(A, B)] „ X
(resp. Γ[ÈA; BÍ] „ X) yielding ÈΘ; Γ[(A, B)]Í „ V (resp. ÈΓ[ÈA; BÍ]; ΘÍ „ V and
(Θ, Γ[(A, B)]) „ V). Applying the rule R on this new proof, we get the same sequent
ÈΘ; Γ[∆]Í „ V (resp. ÈΓ[∆]; ΘÍ „ V and (Θ, Γ[∆]) „ V).

·
·
·

”2

Θ „ U

·
·
·

”0

∆ „ A ¢ B

·
·
·

”1

Γ[(A; B)] „ C
R

Γ[∆] „ C
[\e]

ÈΘ; Γ[∆]Í „ V

∆
·
·
·

”0

∆ „ A ¢ B

·
·
·

”2

Θ „ U

·
·
·

”1

Γ[(A; B)] „ C
[\e]

ÈΘ; Γ[(A; B)]Í „ V
R

ÈΘ; Γ[∆]Í „ V

Figure 8: The product elimination rule R swings under the rule \e in pcimll.

Proof. Implication eliminations do not modify the order between formulae of the
same premise and do modify hypotheses of the premises. Product elimination and
entropy rules do not modify the conclusions of the premises but only their hypothe-
ses. Consequently those rule do not interact and may commute.

Theorem 3. Every proof ” of pcimll has a normal form.

Proof. We proceed by induction on the size of the proof. Let ” be a proof with |”| =
Èn, e, gÍ. By induction, we may assume that every proof ”Õ of measure |”Õ| < Èn, e, gÍ
has a normal form.

85

Amblard and Retoré

If ” contains a redex, the reduction of this redex reduces the number of rules in
”, then the resulting proof ”Õ is such that n(”Õ) < n(”), hence |”Õ| < |”|. By induction
hypothesis ”Õ has a normal form, hence ” has one too.

From now on, we can assume without loss of generality that ” has no

redex.

If e(”) ”= 0, then there is an implicative elimination rule S such that S is in a e(”)-
extended-redex. As an e(”)-extended-redex is minimal, the property 1 implies that
it contains only product elimination and entropy rules. Moreover, the property 6
allows to swing S over the rule above it (a product elimination rule or an entropy
rules swings under an implication elimination rule). The proof obtained ”Õ is such
that n(”Õ) = n(”) and e(”Õ) = e(”) ≠ 1 < e(”). By induction hypothesis ”Õ has a
normal form and hence ” has one too.

From now on, we can assume without loss of generality that e(”) = 0

If g(”) ”= 0: then there exists a product elimination rule R such that R is in a g(”)-
extended-redex. In this case, ” does not contain any implication extended-redex and
g(R) is minimal, hence the extended redex only contains product elimination rule
and entropy rules. So R can swing over its left premise (where the rule conjoined ¢i

is) and over product elimination rule and entropy rule (as property 3 shows). Thus
we turned ” into a proof ”Õ with n(”Õ) = n(”).

To apply the induction hypothesis we need the size of ”Õ to be less than the size
of ”, and the only thing to check is that no k-extended-redex based on a rule of
IER(”) appears:

If ” looks like:

·
·
·
·
·
·
·

”2

X

A § B
·
·
·
·
·
·
·

”3

A § B
[R]

A § B

·
·
·
·
·
·
·

”1

D
[§e]

D
·
·
·
·
·
·
·

”4

¶ every principal branch in ”3 followed by ”4 does not contain extended-redex
because ”3 is in the left part of §e;

¶ every principal branch in ”1 followed by ”4 may contain extended-redexes;

86

Partially Commutative Linear Logic . . .

¶ every principal branch in ”2 followed by ”4 does not contain extended-redexes
because ”2 is in the left part of §e (only for product elimination rules).

The reduction scheme of the redex then gives the new structure of the proof ”Õ:

·
·
·
·
·
·
·

”2

X

A § B
·
·
·
·
·
·
·

”3

A § B

·
·
·
·
·
·
·

”1

D
[§e]

D
[R]

D
·
·
·
·
·
·
·

”4

In this new proof:

¶ every principal branch in ”3 followed by ”4 does not contain extended-redexes
because ”3 is in the left part of §e;

¶ every principal branch in ”1 followed by ”4 does not contain new extended-
redexes, and the measure of these extended-redexes is decremented by 1;

¶ every principal branch in ”2 followed by ”4 does not contain extended-redexes
because ”2 is in the left part of R (which is necessary a product elimination
rule).

The proof does not contain any new k-extended-redex ; in particular the proof does
not contain any new implication k-extended-redex. Then, we have e(”Õ) = e(”) and
g(”Õ) = g(”)≠1. Thus |”Õ| < |”| and by induction ”Õ has a normal form, and therefore
” also has one.

If none of the previous transformations applies we have e(”) = g(”) = 0, and
therefore, because of property 4, ” is in normal form.

Figure 9 is the normal form of the example from figure 7, obtained by following
the procedure described in the proof above.

Now, let us establish that proofs in normal form enjoy the subformula property.

87

Amblard and Retoré

g(¢e) = 0(no more k-extended-redex) :

„ A ¢ B

A „ E B „ F
[¢i]

(A, B) „ E ¢ F (E, F) „ D
[¢e]

(A, B) „ D
[¢e]

„ D

Figure 9: Normal proof for the proof in figure 7

5.3 Subformula property for pcIMLL

Theorem 4. The subformula property holds for pcimll: in a normal proof ” of a
sequent Γ „ C, every formula of a sequent is a subformula of some hypothesis (Γ)
or of the conclusion (C).

Proof. We proceed by induction on the number of rules in the normal proof. Once
again, we prove a stronger property:

1. every formula in a normal proof is subformula of some hypotheses or of the
conclusion of the proof;

2. if the last rule used is an implicative elimination \e, /e or (e every subformula
is a subformula of some hypothesis.

Axioms enjoy the subformula property.

When the last rule is an entropy rule, the subformula property holds simply
because of the induction hypothesis. Indeed, the formulae of a sequent are preserved
under entropy rule which only affects the order on the formulae.

Let us call Rú the last rule of the proof.

1. Rú is \e:

∆1
·
·
·

”1

∆ „ C

Γ2
·
·
·

”2

Γ „ C \ D
[\e]

È∆; ΓÍ „ D

88

Partially Commutative Linear Logic . . .

By induction hypothesis, every formula in ”1 is a subformula of some hypothesis
in ∆1 or of the conclusion C. In addition every formula in ”2 is a subformula
of Γ2 or of the conclusion C \ D. However C is a subformula of C \ D and D
too. Let us show that C \ D is subformula of some hypothesis in ”2.

Let us look at the rule RÕ that yields C \ D:

• if RÕ is \i: this may not happen because it would be a 0-extended-redex
while the proof is in normal form.

• if RÕ is /i, (i, ¢i or §i: these cases are structurally impossible because
they can not produce C \ D.

• if RÕ is \e, /e or (e: we use the induction hypothesis and C \ D is a
subformula of Γ2.

• if RÕ is ¢e, §e or entropy: they preserve the conclusion, thus we have to
investigate what the rule above can be:

If it is one of the previous rule, we use the same argument. Else, the
proof is a finite sequence of ¢e, §e and entropy. Those rules preserve the
conclusion and therefore C \ D is one of the hypothesis in Γ2.

2. Rú is /e or (e: similar to \e above.

3. Rú is (i, let ” be the following proof:

Γ
·
·
·

”1

ÈΓ; CÍ „ D
[(i]

Γ „ C (D

By induction hypothesis, every formula in ”1 is a subformula of some hypothesis
in Γ or of the conclusion D. The formula D is a subformula of D (C, hence
every formula of ” is a subformula of some hypothesis Γ or of the conclusion
D (C. The property holds for ”.

4. Rú is \i or /i — similar to the previous case.

5. Rú is ¢i: let ” be the following proof:

∆1
·
·
·

”1

∆ „ C

Γ2
·
·
·

”2

Γ „ D
[¢i]

(∆, Γ) „ C ¢ D

89

Amblard and Retoré

• every formula in ”1 is a subformula of some hypothesis in ∆1 or of the
conclusion C.

• every formula in ”2 is a subformula of some hypothesis in Γ2 or of the
conclusion D.

• however C and D are themselves subformulae of C ¢ D, then in Γ, ev-
ery formula is a subformula of some hypotheses in ∆ and Γ or of the
conclusion C ¢ D.

6. Rú is §i: similar to the previous case.

7. Rú is ¢e:

∆1
·
·
·

”1

∆ „ A ¢ B

Γ2
·
·
·

”2

Γ[A, B] „ D
[¢e]

Γ[∆] „ D

• every formula of ”1 is a subformula of some hypothesis in ∆1 or of the
conclusion A ¢ B.

• every formula of ”2 is a subformula of some hypothesis in Γ2 or of the
conclusion D.

• moreover, D is the conclusion of ”. Thus, every formula of ”2 is a sub-
formula of some hypothesis in Γ2 or of the conclusion of the proof ”:
D.

In order to prove that the property holds for the other part of the proof, we
must prove that A ¢ B is a subformula of some hypothesis in ”1. Let us look
at the rule RÕ above:

¶ if RÕ is \e, /e or (e, using the induction hypothesis A ¢ B is subformula
of hypotheses ∆1.

¶ if RÕ is ¢i: this case is impossible because there cannot be any 0-extended-
redex in a normal proof.

¶ if RÕ is \i, /i, (i or §i: these cases are structurally impossible because
these rules cannot produce A ¢ B.

¶ if RÕ is ¢e, §e or entropy which preserve the conclusion of the proof, let
us analyse the rule above:

90

Partially Commutative Linear Logic . . .

• either it is one of the previous rules, thus, using the same arguments
we conclude.

• either, given that a proof only contains a finite number of rules, the
sequence of such rules is finite. Givven that it contains only ¢e, §e

and entropy rules, thus the formula is a hypothesis in ∆1.

In every possible case, A ¢ B or A § B is subformula of hypotheses.

8. Rú is §i: similar to the previous case.

In pcimll, all proofs have a normal form which enjoys the subformula property.

6 Decidability

An immediate but interesting consequence of normalisation with a subformula prop-
erty is the following:

Theorem 5. The provability of a sequent in pcimll is decidable, and in L§ as well.

Proof. Because of normalisation, one only has to look for normal proofs. Given that
normal proofs enjoy the subformula property it is enough to try the finite number
of rules that are possible. There are finitely many rules, and each of them may only
lead to try to prove a finite number of sequents because of the subformula property.
By considering principal branches, premises of these rules are sequents that have less
connectives. Therefore an easy induction shows that the calculus is decidable. For
more details, see the proof of decidability for product free Lambek calculus based
on natural deduction in [17].

7 Conclusion

With concurrency and linguistics motivations, we defined pcimll in natural deduc-
tion and proved normalisation. For Lambek calculus with product, a subcalculus of
pcimll, we also characterised the unique normal form.

As a perspective, we look forward a proof net syntax for pcimll. This would
also allow to easily compute lambda terms (that are semantic reading in linguistic
applications). Although related systems do have proof nets (MLL, Lambek calculus,
NL of Abrusci and Ruet) there is not yet any proof net calculus for pcimll. The
present work on natural deduction can be viewed as a first step in this direction.

We avoided tricky details and discussions about the uniqueness of the normal
form for pcimll. Let us say it can be achieved if one consider as equivalent proofs

91

Amblard and Retoré

that only differ because of the relative order of several commutative product elimi-
nation rules in a sequence of product eliminations that are just below the rule which
gathers the cancelled hypotheses.

With respect to computational linguistic application, we look forward a simpler
translation from pcimll formulae to arrow types on e and t and thus from parse
structures that are pcimll deduction to intuitionistic deductions, which are seman-
tic readings. This is related to the interpretation of noun phrase and generalised
quantifiers as the combination of the categories k (case) and d (entities).

References

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 111:3–57, 1993.

[2] V. Michele Abrusci. Phase semantics and sequent calculus for pure noncommutative
classical linear propositional logic. The Journal of Symbolic Logic, 56(4):1403–1451,
December 1991.

[3] V. Michele Abrusci and Paul Ruet. Non-commutative logic I: The multiplicative frag-
ment. Annals of pure and applied logic, 101(1):29–64, 1999.

[4] Maxime Amblard. Calcul de représentations sémantiques et suntaxe générative: les
grammaires minimalistes catégorielles. PhD thesis, université de Bordeaux 1, 2007.

[5] Maxime Amblard. Encoding Phases using Commutativity and Non-commutativity in
a Logical Framework. In Sylvain Pogodalla and Jean-Philippe Prost, editors, Logical
Aspect of Computational Linguistic, volume 6736 of Lecture Notes in Computer Science,
pages 1–16, Montpellier, France, June 2011. Springer.

[6] Maxime Amblard, Alain Lecomte, and Christian Retoré. Categorial minimalist gram-
mars: From generative grammar to logical form. Linguistic Analysis, 36(1–4):273–306,
2010. Festschrift on the occasion of Jim Lambek’s 85th birthday.

[7] Denis Bechet, Philippe de Groote, and Christian Retoré. A complete axiomatisation of
the inclusion of series-parallel partial orders. In H. Comon, editor, Rewriting Techniques
and Applications, RTA‘97, volume 1232 of LNCS, pages 230–240. Springer Verlag, 1997.

[8] Philippe de Groote. Partially commutative linear logic: sequent calculus and phase
semantics. In Vito Michele Abrusci and Claudia Casadio, editors, Third Roma Work-
shop: Proofs and Linguistics Categories – Applications of Logic to the analysis and
implementation of Natural Language, pages 199–208. Bologna:CLUEB, 1996.

[9] Samuel Epstein and Robert Berwick. On the convergence of ’minimalist’ syntax and
categorial grammar. In A. Nijholt, G. Scollo, and R. Steetkamp, editors, Algebraic
Methods in Language Processing. Universiteit Twente, 1995.

[10] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[11] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1988.

92

Partially Commutative Linear Logic . . .

[12] Alessio Guglielmi. A system of interaction and structure. ACM Trans. Comput. Logic,
8(1), January 2007.

[13] J.. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear
logic. Information and computation, pages 327–365, 1994.

[14] Joachim Lambek. The mathematics of sentence structure. American mathematical
monthly, pages 154–170, 1958.

[15] Alain Lecomte and Christian Retoré. Extending Lambek grammars: a logical account
of minimalist grammars. In Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics, ACL 2001, pages 354–361, Toulouse, July 2001. ACL.

[16] Marcel Masseron, Christophe Tollu, and Jacqueline Vauzeilles. Generating plans in
linear logic: I. actions as proofs. Theoretical Computer Science, 113:349–370, 1993.

[17] Richard Moot and Christian Retoré. The logic of categorial grammars: a deductive
account of natural language syntax and semantics, volume 6850 of LNCS. Springer,
2012. http://www.springer.com/computer/theoretical+computer+science/book/

978-3-642-31554-1.

[18] Sara Negri. A normalizing system of natural deduction for intuitionistic linear logic.
Archive for Mathematical Logic, 2002.

[19] Christian Retoré. Réseaux et Séquents Ordonnés. Thèse de Doctorat, spécialité Math-
ématiques, Université Paris 7, février 1993.

[20] Christian Retoré. Pomset logic: a non-commutative extension of classical linear logic.
In Philippe de Groote and James Roger Hindley, editors, Typed Lambda Calculus and
Applications, TLCA’97, volume 1210 of LNCS, pages 300–318, 1997.

[21] Christian Retoré. A description of the non-sequential execution of petri nets in partially
commutative linear logic. In Jan van Eijck, Vincent van Oostrom, and Albert Visser,
editors, Logic Colloquium 99, Lecture Notes in Logic, pages 152–181. ASL and A. K.
Peters, 2004.

[22] Christian Retoré and Edward Stabler. Generative grammar in resource logics. Research
on Language and Computation, 2(1):3–25, 2004. Introductory survey for the special
issue on Resource logics and minimalist grammars.

[23] Paul Ruet. Logique non-commutative et programmation concurrente. Thèse de doctorat,
spécialité logique et fondements de l’informatique, Université Paris 7, 1997.

[24] Edward Stabler. Derivational minimalism. In Christian Retoré, editor, Logical Aspects
of Computational Linguistics, LACL‘96, volume 1328 of LNCS/LNAI, pages 68–95.
Springer-Verlag, 1997.

Received January 201493

