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This paper is concerned with a robust estimator of the intensity of a stationary spatial point process. The estimator corresponds to the median of a jittered sample of the number of points, computed from a tessellation of the observation domain. We show that this median-based estimator satisfies a Bahadur representation from which we deduce its consistency and asymptotic normality under mild assumptions on the spatial point process. Through a simulation study, we compare the new estimator, in particular, with the standard one counting the mean number of points per unit volume. The empirical study confirms the asymptotic properties established in the theoretical part and shows that the median-based estimator is more robust to outliers than standard procedures.

Introduction

Spatial point patterns are datasets containing the random locations of some event of interest. These datasets arise in many scientific fields such as biology, epidemiology, seismology, hydrology. Spatial point processes are the stochastic models generating such data. We refer to [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF] or [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF] for an overview on spatial point processes. These references cover practical as well as theoretical aspects. A point process X in R d is a locally finite random subset of R d meaning that the restriction to any bounded Borel set is finite. The point process X takes values in Ω, which contains in all locally finite subsets of R d . Thus, the distribution of X is a probability measure on an appropriate σ-algebra of Ω. The Poisson point process is the reference process to model random locations of points without interaction. Many alternative models such as Cox point processes, determinantal point processes, Gibbs point processes allow us to introduce clustering effects or to produce regular patterns (see again e.g. [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF] and [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] for an overview). If the distribution of X is invariant by translation, we say that X is stationary. We are interested in this paper in first-order characteristics of X, which under the assumption of stationarity, reduce to a single real parameter denoted by λ. This intensity λ measures the average number of points per unit volume.

Estimating λ is a well-known problem and has been the subject of a large literature. Based on a single realization of the point process X in a bounded domain W of R d , the natural way of estimating λ is to compute the average number of points observed by unit volume, i.e. to evaluate N (W )/|W | where N (W ) denotes the number of points of X falling into the observation domain W with volume |W |. We denote this estimator by λ std for this estimator. If the point process is a homogeneous Poisson point process, λ std is also the maximum likelihood estimator. Asymptotic properties of λ std are well established for a large class of models. In particular, as the observation window expands to R d , it can be shown under mild assumptions on X (mainly mixing conditions) that λ std is consistent and satisfies a central limit theorem with asymptotic variance, which can be consistently estimated (see [START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF] and the references therein for more details). In some applications, it may be too time-consuming to count all points. In such situations, distance based methods, where mainly nearest distances between points are used, have been developed (see e.g. [START_REF] Byth | On robust distance-based intensity estimators[END_REF]; [START_REF] Diggle | Statistical Analysis of Spatial Point Patterns[END_REF]; [START_REF] Magnussen | Fixed-count density estimation with virtual plots[END_REF]). Unlike the estimator λ std , those methods are quite sensitive to the model, which explains why the only practically applicable case is the Poisson process [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF]. Other moment-based methods include the adapted estimator proposed by [START_REF] Mrkvička | Optimisation of linear unbiased intensity estimators for point processes[END_REF] or the recent Stein estimator (in the Poisson case) proposed by [START_REF] Clausel | Stein estimation of the intensity of a spatial homogeneous Poisson point process[END_REF].

As outlined in particular in the book [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], an important step in the statistical analysis of point patterns is the search for unusual points or unusual point configurations, i.e. the search of outliers. Two kinds of outliers appear when dealing with point pattern: first points may appear at locations where they are not expected. This situation could appear for instance when two species of plants or trees cannot be distinguished at the time of data collection. Second, it is possible that there are missing points in the pattern, i.e. areas of the observation domain where, according to the general structure of the pattern, points are expected. [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF] or Baddeley et al. (2005) have proposed several diagnostic tools to detect outliers and more generally to judge the quality of fit of a model. To the best of our knowledge, the works by [START_REF] Berndt | Automatic determination of dendritic arm spacing in directionally solidified matters[END_REF] and [START_REF] Assunção | Robustness for inhomogeneous Poisson point processes[END_REF] are the only works where robustness of estimation procedures are tackled. [START_REF] Assunção | Robustness for inhomogeneous Poisson point processes[END_REF] developed an M-estimator to estimate the intensity of an inhomogeneous Poisson point process. For an application in materials science, [START_REF] Berndt | Automatic determination of dendritic arm spacing in directionally solidified matters[END_REF] proposed the following methodology to estimate the intensity parameter of a stationary point process: let C be a typical cell of the Voronoi tessellation built from a stationary point process. It is known, see e.g. [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF]; [START_REF] Møller | Lectures on random Voronoi tessellations[END_REF], that E |C| = 1/λ, whereby an estimator of λ can be deduced by evaluating the sample mean of cell areas produced by the Voronoi tessellation of the observed point pattern. [START_REF] Berndt | Automatic determination of dendritic arm spacing in directionally solidified matters[END_REF] proposed to replace the sample mean by a more robust estimator like a sample median or a trimmed-mean. Illian et al. (2008, p. 252) have suggested a slightly different procedure. Let G = {g 1 , . . . , g #G } be a grid of #G dummy points and let a(g, X) be the cell area of the closest point g ∈ G in X. Starting from the fact that (#G) -1 g∈G a(g, X) -1 is an unbiased estimator of λ (up to edge effects), then a robust estimator can be constructed by replacing the sample mean by a trimmed-mean for instance (see Section 5 for more details). The two latter procedures described, which were not supported by theoretical results, are the closest to the present work and we discuss them in Section 5.

As far as we know, no model free robust techniques supported by theoretical results have been developed. In this paper, we aim at developing a simple medianbased estimator of λ. It is not so straightforward to see what a median means for a spatial point process but we may remark that if W is decomposed as a union of K non-overlapping cells C k , then N (W ) = k N (C k ), which yields that λ std can be actually rewritten as the empirical mean of the normalized counts variables

N (C k )/|C k |.
We have the cornerstone to define a more robust estimator by simply replacing the sample mean by the sample median.

The classical definition of sample quantiles and their asymptotic properties for continuous distributions are nowadays well-known, see e.g. [START_REF] David | Order statistics[END_REF]. In particular, sample medians in the i.i.d. setting, computed from an absolutely continuous distribution, f , positive at the true median, Me, are consistent and satisfy a central limit theorem with asymptotic variance 1/4f (Me) 2 . Such a result obviously fails for discrete distributions. In this paper, we follow a strategy introduced by [START_REF] Stevens | Fiducial limits of the parameter of a discontinuous distribution[END_REF] and applied to count data by [START_REF] Machado | Quantiles for counts[END_REF] which consists in artificially imposing smoothness in the problem through jittering: i.e. we add to each count variable N (C k ) a random variable U k following a uniform distribution on (0, 1). Now, the random variable N (C k ) + U k admits a density and asymptotic results can be expected. To get around the problem of large sample behavior for discrete distributions, another approach could be to consider the median based on the mid-distribution, see [START_REF] Ma | Asymptotic properties of sample quantiles of discrete distributions[END_REF]. The authors prove that such sample quantiles behave more favourably than the classical one and satisfy, in the i.i.d. setting, a central limit theorem even if the distribution is discrete. We leave to a future work the question of deriving asymptotic properties for the sample median based on the mid-distribution in the context of this paper.

The rest of the paper is organized as follows. Section 2 gives a short background on spatial point processes. General notation as well as the definition of our estimator are presented in Section 3. We also examine in Section 3 how far the true median of N (C k ) + U k is from the intensity λ|C k |. Section 4 contains our main asymptotic results. General assumptions are discussed and a particular focus on Cox point processes is investigated. The main difficulty here is to establish a Bahadur representation for the jittered sample median, which can be applied to a large class of models. Section 5 presents the results of a simulation study where we compare our procedure with the standard estimator λ std and the estimator proposed by [START_REF] Berndt | Automatic determination of dendritic arm spacing in directionally solidified matters[END_REF]. The research contained in this paper leads to a number of interesting open questions, which are mentioned in Section 6. Proofs of the results and additional comments are postponed to Appendices A and B 2 Background on spatial point processes Let X be a spatial point process defined on R d , which we see as a random locally finite subset of R d . Let W be a bounded Borel set of R d , then the number of points in X ∩ W , denoted by N (W ), is finite, and a realization of X ∩ W is of the form x = {x 1 , . . . , x m } ⊂ W for some nonnegative finite integer m. If m = 0, then x = ∅ is an empty point pattern in W . For u ∈ R d , we denote by u its Euclidean norm. For further background and measure theory on spatial point processes, see e.g. [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF] and [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]. We assume that X is a stationary point process with intensity λ, which, by Campbell's theorem (see e.g. [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]), is characterized by the fact that for any real Borel function h defined on R d and absolutely integrable (with respect to the Lebesgue measure on R d )

E u∈X h(u) = λ h(u)du.
(2.1) Furthermore, for any integer l ≥ 1, X is said to have an lth-order product density ρ l if ρ l is a non-negative Borel function on R dl such that for all non-negative Borel functions h defined on R dl ,

E = u 1 ,...,u l ∈X h(u 1 , . . . , u l ) = R d • • • R d h(u 1 , . . . , u l )ρ l (u 1 , . . . , u l ) du 1 • • • du l , (2.2)
where the sign = over the summation means that u 1 , . . . , u l are pairwise distinct.

Note that λ = ρ 1 and that for the homogeneous Poisson point process ρ l (u 1 , . . . , u l ) = λ l . If ρ (2) exists, then by the stationarity of X, ρ (2) (u, v) depends only on u -v. In that case, we define the pair correlation function g as a function from

R d to R + by g(u -v) = ρ (2) (u, v)/λ 2 .
In this paper, we sometimes pay attention to Cox point processes, which are defined as follows.

Definition 2.1. Let (ξ(s), s ∈ R d ) be a non-negative locally integrable random field. Then, X is a Cox point process if the distribution of X given ξ is an inhomogeneous Poisson point process with intensity function ξ. If ξ is stationary, so is X and λ = E(ξ(s)) for any s.

Among often used models of stationary Cox point processes, we can cite • Log-Gaussian Cox processes (e.g. [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]): Let Y be a stationary Gaussian process on R d with mean µ and stationary covariance function c(u) = σ 2 r(u), u ∈ R d , where σ 2 > 0 is the variance and r the correlation function. If X conditional on Y is a Poisson point process with intensity function ξ = exp(Y ), then X is a (homogeneous) log-Gaussian Cox process. One example of correlation function is the Matérn correlation function (which includes the exponential correlation function) given by r

(u) = ( √ 2ν u /φ) ν K ν ( √ 2ν u /φ)/(2 ν-1 Γ(ν))
where Γ is the gamma function, K ν is the modified Bessel function of the second kind, and φ and ν are non-negative parameters. In particular, the intensity of X equals λ = e µ+σ 2 /2 .

• Neyman-Scott processes (e.g. [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]): Let C be a stationary Poisson point process with intensity κ > 0, and f σ a density function on R d . If X conditional on C is a Poisson point process with intensity

α c∈C f σ (u -c)/κ, u ∈ R 2 , (2.3)
for some α > 0, then X is a (homogeneous) Neyman-Scott process. When f σ corresponds to the density of a uniform distribution on B(0, σ 2 ) (resp. a Gaussian random variable with mean 0 and variance σ 2 ), we refer to X as the (homogeneous) Matérn Cluser (resp. Thomas) point process. In particular, the intensity of X equals λ = ακ.

3 Median-based estimator of λ

For any real-valued random variable Y , we denote by F Y (•) its cdf, by F -1 Y (p) its quantile of order p ∈ (0, 1), by Me Y = F -1 Y (1/2) its theoretical median. Based on a sample Y = (Y 1 , . . . , Y n ) of n identically distributed random variables we denote by F (•; Y) the empirical cdf, by F -1 (p; Y) the sample quantile of order p given by

F -1 (p; Y) = inf{x ∈ R : p ≤ F (x; Y)}. (3.1)
The sample median is simply denoted by Me(Y) = F -1 (1/2; Y). We will study the large-sample behavior of estimators of the intensity λ. Specifically, we consider a region W n assumed to increase to R d as n → ∞. We assume that the domain of observation W n can be decomposed as W n = ∪ k∈Kn C n,k where the cells C n,k are non-overlapping and equally sized with volume c n = |C n,k | and where K n is a subset of Z d with cardinality k n = |K n |. More details on W n , c n and k n will be provided in the appropriate Section 4 when we present asymptotic results. Finally, for any random variable Y or any random vector Y, we denote by Y = Y /c n and Y = Y/c n .

The classical estimator of the intensity λ is given by λ std = N (W n )/|W n |. In order to define a more robust estimator, we can note that

λ std = 1 k n k∈Kn N (C n,k ) c n (3.2) since |W n | = k n c n , i.e.
λ std is nothing else that the sample mean of intensity estimators computed in cells C n,k . The strategy adopted in this paper is to replace the sample mean by the sample median, which is known to be more robust to outliers.

As underlined in the introduction, quantile estimators based on count data or more generally on discrete data can cause some troubles in the asymptotic theory. The problems come from the fact that, in the continuous case, the asymptotic variance of the sample median involves the probability distribution function at the true median.

To overcome the problem of discontinuity of the counts variables N (C n,k ), we follow a well-known technique (e.g. [START_REF] Machado | Quantiles for counts[END_REF]) which introduces smoothness in the problem. Let (U k , k ∈ K n ) be a collection of independent and identically distributed random variables, distributed as U ∼ U([0, 1]). Then, for any k ∈ K n , we define

Z n,k = N (C n,k ) + U k and Z = (Z n,k , k ∈ K n ). (3.3)
Since X is stationary, the variables Z n,k are identically distributed and we let Z ∼ Z n,k . The jittering effect shows up right away: the cdf of Z is given for any t ≥ 0 by

F Z (t) = P (N (C n,0 ) ≤ t -1) + P (N (C n,0 ) = t ) (t -t ),
which is a continuously differentiable function whereby we deduce that Z admits a density f Z at t given by

f Z (t) = P (N (C n,0 ) = t ). (3.4)
We define the jittered estimator of the intensity λ by

λ J = Me( Ž) = Me(Z) c n (3.5)
where the sample median is defined by (3.1). Since it is expected that Me( Ž) is close to Me Ž = Me Z /c n , we need to understand how far Me Ž is from λ. Using the definition of the median we can prove the following result.

Proposition 3.1. Assume that the pair correlation function of the stationary point process X exists for u, v ∈ R d and satisfies R d |g(w)-1|dw < ∞, then for any ε > 0 we have for n sufficiently large

|Me Ž -λ| ≤ 1 c n 1 2 + 1 12 + (1 + ε) σ c n = O(c -1/2 n ) (3.6)
where

σ 2 = λ + λ 2 R d (g(w) -1)dw.
The assumption |g(w) -1|dw < ∞ is quite standard when we deal with asymptotics for spatial point processes, see e.g. [START_REF] Guan | A thinned block bootstrap procedure for modeling inhomogeneous spatial point patterns[END_REF] or [START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF]. It ensures that for any sequence of regular domains ∆ n ,

|∆ n | -1 Var(N (∆ n )) → σ 2 as n → ∞.
We refer the reader to these papers and to Section 4.1 for a discussion on this assumption.

Proof. By the previous remark

, c n -1 Var(N (C n,k )) → σ 2 as n → ∞. Since for any continuous random variable Y with finite first two moments, |Me Y -E(Y )| ≤ Var(Y )
and since E(Z) = λc n + 1/2, then for any ε > 0 we have for n sufficiently large

|Me Z -λc n | ≤ 1 2 + 1 12 + (1 + ε) 2 σ 2 c n .
Dividing both sides of the inequality by c n leads to (3.6).

Let Π ∼ P(ν) be a Poisson random variable with mean ν > 0. Several results are known for the theoretical median of Π, see e.g. [START_REF] Adell | The median of the Poisson distribution[END_REF]. For instance, when ν is an integer Me Π = ν and for non integer ν, -log 2 ≤ Me Π ≤ 1/3 (see Figure 1). Based on this, we can obtain a sharper inequality than (3.6) for Poisson and Cox point processes.

Proposition 3.2. Let X be a stationary Cox point process with latent random field ξ, then

λc n -log 2 ≤ Me N (C n,0 ) ≤ λc n + 1 3 and |Me Z -λc n | ≤ 4 3 . (3.7) A reformulation of (3.7) is of course Me Ž -λ = O(c -1 n ). Proof. Given ξ, for any k ∈ K n , N (C n,k ) follows a Poisson distribution with mean C n,k ξ(s)ds. Denote by Me N (C n,k )|ξ the median of N (C n,k ) given ξ defined by Me N (C n,k )|ξ = inf z ∈ R : F N (C n,k )|ξ (z) ≥ 1/2 where F N (C n,k )|ξ is the cumulative distribution function of N (C n,k ) given ξ.
From the property of the median of a Poisson distribution, we have for any

k ∈ K n C n,k ξ(s)ds -log 2 ≤ Me N n,k |ξ ≤ C n,k ξ(s)ds + 1 3 .
Since E C n,k ξ(s)ds = λc n , the first result is deduced by taking the expectation of each term of the previous inequality. Since

N (C n,0 ) ≤ Z ≤ N (C n,0 ) + 1, Me N (C n,0 ) ≤ Me Z ≤ Me N (C n,0
) + 1 which leads to the second result.

Asymptotic results

We state in this section our main results and the general assumptions required to obtain them. Proofs of the different results presented here, as well as auxiliary results, are presented in Appendix A.

General assumptions and discussion

We recall the classical definition of mixing coefficients (see e.g. [START_REF] Politis | Large sample inference for irregularly spaced dependent observations based on subsampling[END_REF]): for j, k ∈ N ∪ {∞} and m ≥ 1, define

α j,k (m) = sup{|P (A ∩ B) -P (A)P (B)| : A ∈ F(Λ 1 ), B ∈ F(Λ 2 ), Λ 1 ∈ B(R d ), Λ 2 ∈ B(R d ), |Λ 1 | ≤ j, |Λ 2 | ≤ k, d(Λ 1 , Λ 2 ) ≥ m} (4.1)
where

F(Λ i ) is the σ-algebra generated by X ∩ Λ i , i = 1, 2, d(Λ 1 , Λ 2 )
is the minimal distance between the sets Λ 1 and Λ 2 , and B(R d ) denotes the class of Borel sets in R d . We require the following assumptions to prove our asymptotic results.

(i) For any n ≥ 1, we assume that W n = ∪ k∈Kn C n,k where K n is a subset of Z d with cardinality k n = |K n | and where the cells C n,k are equally sized and non-overlapping cubes with volume c n , defined by

C n,k = u = (u 1 , . . . , u d ) ∈ R d : c 1/d n (k l -1/2) ≤ u l ≤ c 1/d n (k l + 1/2), l = 1 . . . , d .
We assume that 0 ∈ K n and that there exists 0 < η < η such that as n → ∞

k n → ∞, c n → ∞, k n c η /2∧(1-2 ) n → 0
where is given by Assumption (ii) and η by Assumption (iv).

(ii

) (ii-1) Me Z -λc n = O(c n ) with 0 ≤ < 1/2. (ii-2) ∀t n = λc n + O( c n /k n ), P(N (C n,0 ) = t n )/P(N (C n,0 ) = λc n ) → 1.
(ii-3) There exist κ, κ > 0 such that for n large enough,

κ ≤ √ c n f Z (Me Z ) ≤ κ.
(iii) X has a pair correlation function g satisfying

R d |g(w) -1|dw < ∞. (iv) There exists η > 0 such that α(m) = sup p≥1 α p,p (m) p = O(m -d(1+η) ) and α 2,∞ (m) = O(m -d(1+η) )
where α j,k (m) for j, k ∈ N ∪ {∞} is defined by (4.1). Now, we discuss the different assumptions. The last statement of Assumption (i) is required to control the dependency between the variables Z n,k through the control of the mixing coefficients and to ensure that asymptotically

|W n | 1/2 ( λ J -λ) behaves as |W n | 1/2 ( λ J -Me Ž ). We note that if X is a stationary Cox point process, Proposition 3.2 yields that (ii-1) is satisfied for = 0. So if η > 2, Assumption (i) can be rewritten as c n → ∞, k n → ∞ and k n /c n → 0 as n → ∞.
Regarding Assumption (ii), Proposition 4.1 stated below shows it can be simplified for a large class of Cox point processes. We underline that Assumptions (i), (ii-1)-(ii-2) imply the existence of κ < ∞ such that √ c n f Z (Me Z ) ≤ κ, so (ii-3) could actually be simplified.

Assumption (iii) is classical when dealing with asymptotics of intensity estimates, see e.g. [START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF]. For isotropic pair correlation functions, i.e. g(w) = g( w ) for g : R + → R, Assumption (iii) is fulfilled when g(r) = 0 for r ≥ R or when g(r) = O(r -d-γ ) for some γ > d. This includes the Matérn cluster and Thomas processes and the log-Gaussian Cox process with Matérn-Whittle covariance functions.

Assumption (iv) is also quite standard and has been discussed a lot in the literature: [START_REF] Guan | A thinned block bootstrap procedure for modeling inhomogeneous spatial point patterns[END_REF]; Guan et al. (2007); [START_REF] Prokešová | Asymptotic Palm likelihood theory for stationary point processes[END_REF] discussed the first part of (iv) while the second one was commented in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF]; [START_REF] Coeurjolly | Variational approach to estimate the intensity of spatial point processes[END_REF]. Both of them are satisfied for the Matérn Cluster and Thomas processes and for log Gaussian Cox processes with correlation function decaying fast enough to zero.

We point out that it is not so common to use both the mixing coefficients α(m) and α 2,∞ (m). As detailed in the proof of Theorem 4.2, the first one is used to control the dependence between the random variables Z n,k for k ∈ K n and derive a central limit theorem using the blocking technique developed by [START_REF] Ibragimov | Independent and Stationary Sequences of Random Variables[END_REF] which is pertinent and appropriate here since the cells C n,k are increasing. The second mixing coefficient is necessary to apply a multivariate central limit theorem inside the cell C n,0 . We prove in particular that

P(N (C n,0 ) ≤ λc n , N (C - n,0 ) ≤ λc n ) → 1/2 as n → ∞
where C - n,0 is a "small" erosion of C n,0 (see the proof of Step 1 of Theorem 4.2 for more details).

The next result shows the simplifications we can obtain for Cox point processes.

Proposition 4.1. Let X be a stationary Cox point process with latent random field (ξ(s), s ∈ R d ) satisfying the Assumptions (iii)-(iv). Assume there exists δ > 2/η, where η is given by Assumption (iv), such that E(|ξ(0

)| 2+δ ) < ∞. Let t n = λc n + O( c n /k n ) and T n = t n -1
C n,0 ξ(s)ds. We also assume that the sequence of random variables

(B n ) n defined by log(B n ) = t n (log(T n ) -(T n -1) + (T n -1) 2 /2) is uniformly integrable. Then, Assumption (ii) holds (with = 0) and as n → ∞ √ c n P(N (C n,0 ) = λc n ) → 2πσ 2 -1/2 (4.2)
where

σ 2 = λ + λ 2 R d (g(w) -1)dw.

Results

In this section, we present asymptotic results for F (•; Z), the empirical cumulative distribution function based on Z and for the median-based estimator λ J .

Theorem 4.2. Under the Assumptions (i)-(iv), we have the following two statements.

(a) Let (a n ) n≥1 be a sequence of real numbers satisfying

λc n = a n + o( √ c n ), then as n → ∞ k n F (λc n + a n ; Z) -F Z (λc n + a n ) → N (0, 1/4) in distribution. (b) As n → ∞ k n F (Me Z ; Z) -1/2 → N (0, 1/4) in distribution.
If Z corresponds to a sample of n i.i.d. random variables, √ n( F (p; Z) -p) tends to a Gaussian random variable with mean zero and variance p(1 -p). Hence, we recover the same result as in our dependency setting.

The next result establishes a Bahadur representation for the sample median, leading to its asymptotic normality. The notation X n = o P (v -1 n ) for a sequence of random variables X n and a sequence of positive real numbers v n means that v n X n tends to 0 in probability as n → ∞.

Theorem 4.3. Under the assumptions (i)-(iv), we have the following two statements.

(a) As n → ∞ Me(Z) -Me Z = 1/2 -F (Me Z ; Z) f Z (Me Z ) + o P c n k n . (4.3) (b) Let s n = √ c n P(N (C n,0 ) = λc n ), then as n → ∞ |W n | 1/2 s n λ J -λ → N (0, 1/4) (4.4) in distribution.
We deduce the following Corollary given without proof for Cox point processes.

Corollary 4.4. Under the Assumption (i) and the Assumptions of Proposition 4.1, we have as

n → ∞ |W n | 1/2 λ J -λ → N 0, πσ 2 /2
in distribution, where σ 2 = λ + λ 2 R d (g(w) -1)dw. As detailed after Proposition 3.1, σ 2 corresponds to the asymptotic variance of

|W n | -1 N (W n ).
Actually, if we denote by λ std the standard estimator of λ given by λ std = |W n | -1 N (W n ) then with quite similar assumptions, it has been proved, see e.g. [START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF], that |W n | 1/2 ( λ std -λ) → N (0, σ 2 ). It is worth noting that the two estimators λ std and λ J only differ from their asymptotic variance and that the ratio of the asymptotic variances is equal to π/2. When we estimate the location of a Gaussian sample using the sample mean or the sample median, it is remarkable that the ratio of the asymptotic variances is also π/2.

Finally, let us add that on the basis of Corollary 4.4, an asymptotic confidence interval of λ can be constructed using a consistent estimator of σ 2 . By the previous remark, we can use the kernel-based estimator proposed by [START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF] (or any other estimator presented in the mentioned paper), which precisely estimates the asymptotic variance of λ std , i.e. σ 2 .

Simulation study

We present in this section a simulation study where, in particular, we intend to compare the median-based estimator defined by (3.5) with the standard momentbased estimator λ std = N (W )/|W |. In the end of this section, we also investigate the robust estimator proposed by [START_REF] Berndt | Automatic determination of dendritic arm spacing in directionally solidified matters[END_REF].

We focus on the planar case d = 2. Three models of spatial point processes are considered:

• Poisson point processes (referred to as poisson) with intensity λ.

• Log-Gaussian Cox Processes (referred to as lgcp) point processes with exponential covariance function. We fixed the variance to 0.5 and φ to 0.02. The parameter µ is fixed by the relation µ = log λ-σ 2 /2 (see Section 2 for details).

• Poisson hard-core (referred to as phc) with parameter β and hard core R. The resulting process consists in a conditional Poisson point process with intensity β where we have conditioned on the hard core condition which consists in prohibiting points from being closer than distance R apart. We fixed β to 200 and R to 0.05.

The poisson model is used as a benchmark. The lgcp model enters into the class of Cox point processes for which we focused a lot in our asymptotic results. We have also considered the Thomas model in a separate simulation study and have obtained quite similar results to the lgcp case. The phc model is used as an example of repulsive point process model. Note that for fixed β, R the intensity parameter λ of the process is not explicit. In our simulation study, we fixed λ = 100 for the poisson and lgcp models. With the parameters β = 200 and R = 0.05, we estimated the intensity of a phc to λ 86 using 10000 Monte-Carlo replications. The simulations have been performed using the R package spatstat (Baddeley and Turner, 2005).

To illustrate the performances of (3.5) we generated the point processes on the domain of observation W n = [-n, n] 2 for different values of n and considered the three following settings: let y be a realization from one of the three models described above, generated on W n and with m points. The observed point pattern is denoted by x and is obtained as follows.

(A) Pure case: no modification is considered, x = y.

(B) A few points are added: in a sub-square ∆ n with side-length n/5 included in W n and randomly chosen, we generated a point process y add of n add = ρ m uniform points in ∆ n . We chose ρ = 0.05 or 0.1. Then, we defined x = y ∪y add .

(C) A few points are deleted: let ∆ n = ∪ 4 q=1 ∆ q n where the ∆ q n 's are the four equally sized squares included in W n , located in each corner of W n . The volume of

∆ n is chosen such that E(N (∆ n )) = ρ E(N (W n )) = ρλ|W n |
and we chose either ρ = 0.05 or 0.1. Then, we define x = y \ (y ∩ ∆ n ), .i.e. x is the initial configuration thinned by 5% or 10% of its points.

We conducted a Monte-Carlo simulation and generated 1000 replications of the models poisson, lgcp, phc and for the three different settings (A)-(C). The observation windows for which we report the empirical results hereafter are n = 1, 2. Regarding the setting (C), we placed the squares in which points are thinned at the corners of W n . By stationarity, the empirical results are the same if we decide to choose them randomly. For each replication, we evaluated λ std and λ J for different number of non-overlapping and equally sized cells k n . More precisely, we chose k n = 9, 16, 25, 36, 49.

Empirical means and standard deviations related to the case (A) are reported in Table 1. We can check that the standard estimator is of course unbiased and that the standard deviation decreases by a factor close to 2, which is equal to |W 2 |/|W 1 |. The median-based estimator is not theoretically unbiased but the bias is clearly not important and tends to decrease when the observation window grows up. Similarly, the rate of convergence of the empirical standard deviation is not too far from the expected value 2. We also computed separately Var( λ std )/ Var( λ J ) for each value of k n and n and found interesting that these ratios are not too far from π/2. Finally, we underline that the choice of the number of cells k n has little influence on the performances. When n = 1, a too large value of k n seems to increase the bias, especially for the lgcp and phc model. The differences are however reduced when n = 2. We also note that the empirical variance is almost the same whatever the value of k n .

Tables 2 and3 are respectively related to the settings (B) and (C) (described above). Both these contaminations (B) or (C) can affect significantly the bias of the estimator. In both tables, we report the bias of the different estimators and the gain (in percent) in terms of mean squared error of the median based-estimator with respect to the standard one, i.e. for each model and each value of ρ, n, k n , we computed

Gain = MSE( λ std ) -MSE( λ J ) MSE( λ std ) × 100% (5.1)
where MSE is the empirical mean squared error based on the 1000 replications. Thus a positive (resp. negative) empirical gain means that the median-based estimator is more efficient (resp. less efficient) than the standard procedure. The standard estimator, based only on the global number of points, is of course not robust to perturbations. It is clearly seen that λ std has a positive bias when we add points (setting (B)) and a negative one when we delete points (setting (C)). This bias is obviously all the more important as ρ (the ratio of points added or deleted) increases. Unlike this, the median-based estimator shows its advantages. When points are added (setting (B)), the estimator λ J remains much more stable and is more efficient in terms of MSE except when ρ = 0.05 and n = 1 for the three models where the empirical results do not lead to clear conclusions. When n and/or ρ increases the gains in percent are quite important and it is worth noticing that results do not fluctuate that much with the choice of the number of cells k n . We also mention that, in a separate simulation study not shown here, we tried to add a clustered point process or repulsive point process, instead of adding uniform points. The empirical results remained almost unchanged.

Comments regarding Table 3 (setting (C)) are very similar. The results vary a lot when n = 1 and ρ = 0.05 but as soon as one of this parameter increases, the bias of the median-based estimators are clearly reduced, which implies they outperform significantly the standard estimator. 1: Empirical means and standard deviations between brackets of estimates of the intensity λ for different models of spatial point processes (poisson, lgcp, phc). The empirical results are based on 1000 replications simulated on [-n, n] 2 for n = 1, 2. The second and third columns correspond to the standard estimator λ std = N (W n )/|W n |, while the following ones correspond to the median-based estimator (3.5) for different number of cells k n . The intensity λ equals 100 for the models poisson,lgcp and (approximately) 86 for the model phc.

Bias (Gain of MSE %) std

k n = 9 16 25 36 49 ρ = 0.05 poisson, n = 1 5.4 (0) 4.2 (-14) 4.5 (-9) 4.8 (-19) 6.3 (-53) 7.1 (-75) n = 2 5 (0) 1.9 (50) 1.8 (51) 2.2 (47) 2.3 (47) 2.7 (43) lgcp, n = 1 5 (0) 3.2 (-9) 3.6 (-6) 4.6 (-26) 5.3 (-35) 6.4 (-64) n = 2 5.2 (0) 2.2 (44) 2.2 (49) 2.2 (46) 2.5 (47) 2.8 (39) phc, n = 1 5 (0) 3.3 ( 14 -5 (0) -3.9 (-13) -2.8 (2) -2 (8) -0.7 (13) 0.6 (11) n = 2 -4.9 (0) -4.2 (6) -3 (34) -2 (46) -1 (59) -0.4 (62) lgcp, n = 1 -5 (0) -3.9 (0) -3.1 (-2) -2.1 (2) -1.1 ( 17 -10 (0) -7.2 (34) -3.1 (81) -1.9 (88) -1 (88) -2.4 (86) lgcp, n = 1 -10.4 (0) -9.3 (2) -6.4 (35) -4 (50) -2.4 (59) -2.7 (58) n = 2 -10 (0) -7.6 (23) -3.7 (73) -2.3 (82) -1.4 (86) -2.7 (81) phc, n = 1 -8.5 (0) -6.7 (19) -3.1 (62) -0.7 (74) 1.8 (72) 1.9 ( 74) n = 2 -8.6 (0) -4.8 (55) -1.8 (88) -0.7 (92) 0 (94) -1 (91) Finally, we compared our estimator with the one proposed by [START_REF] Berndt | Automatic determination of dendritic arm spacing in directionally solidified matters[END_REF]. In particular, we used the version presented by Illian et al. (2008, p. 252).

Let G be a grid of #G dummy points, and for any g ∈ G, let a(g, X) be the Voronoi cell area of the cell corresponding to the closest point of g in X, then (#G) -1 g a(g, X) -1 is (up to edge effects) an unbiased estimator of λ. [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF], proposed to replace the previous sample mean by a sample median or sample trimmed-mean. We investigated the latter estimator, referred to as the Voronoi estimator in the following, in a shorter simulation study. We considered only the poisson model (similar results were observed for the lgcp and phc models), fixed the grid G to a regular grid of #G = 200 2 dummy points (the results were very stable to that parameter) and used a symmetrically trimmed mean with a fraction of f = 0.025, 0.05 or 0.1 observations trimmed from each end. The spatstat R package was used to compute the Voronoi tessellation and cell areas. As suggested by the authors, to correct border effects, we removed all border cells from the analysis. Empirical means and standard deviations for the Voronoi estimator in the settings (A)-(C), described above, are reported in Table 4.

In the setting (A), the Voronoi estimator has a bias comparable to the one of the median-based estimator (see Table 1) when f = 0.025 and f = 0.05. The bias is surprisingly very large when f = 0.1. When extra points are observed (setting (B)) or omitted (setting (C)), the results are less ambiguous: the Voronoi estimator remains strongly biased, even more than with the standard estimator λ std in a few cases when f = 0.025 or f = 0.1. The choice f = 0.05 seems to offer a better compromise. We computed the gains for the Voronoi estimator as we did for the median-based estimator in Tables 2-3 using (5.1). The results, not reported, show that the median-based estimator is more efficient in the settings (A), (B) and (C) when f = 0.025 and f = 0.1 and slightly more efficient when f = 0.05.

From a computational point of view, the Voronoi estimator is more expensive to evaluate. For instance it takes 6 seconds in average to evaluate the Voronoi estimator when n = 2 while it takes approximately 0.03 second to evaluate the median-based estimator (for all the values of k n = 9, 16,25,36,49). This precludes from using the Voronoi estimator (at least in that form) for very large point pattern. Asymptotic properties were not the focus of the paper by [START_REF] Berndt | Automatic determination of dendritic arm spacing in directionally solidified matters[END_REF] or the book by [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF]. But another argument in support of our approach is that we believe that deriving asymptotic results for the Voronoi estimator (consistency, asymptotic variance, central limit theorem) looks more awkward.

(A) (B) (C) ρ = 0.05 ρ = 0.1 ρ = 0.05 ρ = 0.1 f = 0.025
n = 1 98.4 (5.8) 104.7 (5.7) 109.7 (5.9) 96 (5.4) 94.9 (5.7) n = 2 98 (2.6) 104.6 (2.6) 107.3 (2.8) 95.4 (3) 91.1 (3.1) f = 0.05 n = 1 99.3 (5.5) 103.4 (5.5) 104.9 (5.7) 94.4 (4.9) 92 (5.4) n = 2 98.8 (2.7) 101.8 (2.5) 103.8 (2.7) 94 (2.5) 91.9 (3) f = 0.1 n = 1 94.1 (5.1) 97.1 (5) 98.5 (5.1) 91.5 (5.1) 88.9 (5.5) n = 2 94.5 (2.3) 97.4 (2.4) 97.1 (2.7) 88.9 (2.3) 87.9 (2.7) Table 4: Empirical means and standard deviations between brackets of estimates of the intensity λ = 100 based on 1000 replications of the poisson on [-n, n] 2 for n = 1, 2 and in the settings (A), (B) and (C) described in the text. The estimator considered in this table is the Voronoi cell estimator proposed by Illian et al. (2008, p.252).

Conclusion

In this paper, we propose a median-based estimator of the intensity parameter of a stationary spatial point process. We prove asymptotic properties of this estimator as the observation window expands to R d . In particular for a large class of models, we show that the estimator λ J satisfies a central limit theory, which allows us to derive asymptotic confidence intervals.

As a general conclusion of the simulation study, it turns out that the estimator λ J confirms expected asymptotic properties and improves the robustness property of the standard procedure. Even if the choice of the tuning parameter k n has a moderate influence on the empirical results when the observation window is large or when the point pattern is strongly contaminated, it is an open question to propose a data-driven procedure to select the number of cells k n .

In this paper, we did not aim at detecting outliers or detecting areas where problems are suspected (abundance or lack of points). If the assumption of stationarity seems valid, a large difference between the median-based estimator and a classical estimator of the intensity parameter might allow the user to reconsider the observation window in a second step.

The research contained in this paper leads to interesting open issues: (i) It could be worth continuing the comparison between the Voronoi estimator and our approach. This would require to propose a data-driven procedure to fix the tuning parameter of the fraction of deleted observations, to investigate a more evolved border correction and to derive asymptotic properties. (ii) In the setting (B), we considered outliers as extra points added in a small subsquare. Extra points could be uniformly distributed on the observation domain. Such a situation would be closer to the application in image analysis investigated by [START_REF] Berndt | Automatic determination of dendritic arm spacing in directionally solidified matters[END_REF]. A similar problem was also considered by [START_REF] Redenbach | Classification of points in superpositions of strauss and poisson processes[END_REF]. (iii) A quantile based estimator is the most natural way of defining a robust estimator. A more advanced technique would consist in extending our theory to M-estimators. (iv) Another step could be to tackle the problem of robust estimators for second-order characteristics like the K, F or G functions. (v) Finally, extending the methodology and results to the estimation of the intensity of inhomogeneous spatial point processes constitutes also an interesting perspective.

Proof. (a) is a classical result, see e.g. [START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF]. As we need to refer to specific equations, we report the proof here. By Campbell's Theorem and since X admits a pair correlation function

Var(N (C τ )) = λ|C τ | + R d R d 1(u ∈ C τ )1(v ∈ C τ )(g(u -v) -1)dudv = λ|C τ | + λ 2 R d |C τ ∩ (C τ ) -w |(g(w) -1)dw = λ|C τ | + λ 2 C 2τ |C τ ∩ (C τ ) -w |(g(w) -1)dw (A.1) = λ|C τ | + λ 2 C 2τ d l=1 (τ c 1/d n -|w l |)(g((w 1 , . . . , w d ) ) -1)dw 1 . . . dw d (A.2) ∼ |C τ | λ + λ 2 R d (g(w) -1)dw
by Assumption (iii).

(b) For brevity, let K ε denote the covariance to evaluate. Following (a) we have

K ε = λ|C 1-ε ∩ C 1 | + R d R d 1(u ∈ C 1-ε )1(v ∈ C 1 )(g(u -v) -1)dudv = λ|C 1-ε | + λ 2 R d |C 1-ε ∩ (C 1 ) -w |(g(w) -1)dw.
Let w = (w 1 , . . . , w d ) . We can check that

|C 1-ε ∩ (C 1 ) -w | = 0 if w ∈ R d \ C 2-ε d l=1 1 -ε 2 c 1/d n -|w l | if w ∈ C 2-ε
whereby we deduce using (A.1)-(A.2) and Assumption (iii) that

K ε = λ|C 1-ε | + λ 2 C 2-ε d l=1 (1 -ε/2)c 1/d n -|w l | g((w 1 , . . . , w d ) ) -1 dw 1 . . . dw d = λ|C 1-ε | + λ 2 C 2-ε |C 1-ε/2 ∩ (C 1-ε/2 ) -w |(g(w) -1)dw ∼ λ|C 1-ε | + λ 2 |C 1-ε/2 | R d (g(w) -1)dw
as n → ∞.

(c) The assumptions on the sequence (ε n ) allow us to apply (a)-(b) which leads to the result since

|C 1 | ∼ |C 1-εn | ∼ |C 1-εn/2 | ∼ c n as n → ∞.
Now we present a central limit theorem for stationary random fields with asymptotic covariance matrix not necessarily positive definite. It is very close to Guyon (1991, Theorem 3.3.1) and to Karáczony (2006, Theorem 1) but we were not able to find it in the following form in the literature.

For two square matrices A, B, A ≥ B (resp. A > B) means that A -B is a positive (resp. positive definite) matrix. Finally, A stands for the Frobenius norm of A given by A = Tr(A A) 1/2 . Assumptions (ii-2) and (ii-3). By definition of X, Since t n /(λc n ) → 1 as n → ∞, then using Stirling's Formula we obviously have v n → 1 as n → ∞. Now using the notation

2πλc n P(N (C n,0 ) = t n | ξ) = C n,
T n = t n -1
C n,0 ξ(s)ds, we rewrite the first equation as follows

(v n ) -1 2πλc n P(N (C n,0 ) = t n | ξ) = T tn n e tn (1-Tn) = A n B n
where A n and B n are defined by A n = e -tn (Tn-1) 2 /2 and B n = e tn (log Tn-(Tn-1)+(Tn-1) 2 /2) .

Let η be given by Assumption (iv). Since E |ξ(0)| 2+δ < ∞ for some δ > 2/η, we are ensured that α 2,∞ = O(m -ν ) for some ν > d(2 + δ)/δ. Therefore, we can apply Guyon (1991, Theorem 3.3.1) and show that there exists τ > 0 such that √ λc n (I n -1) → N (0, τ 2 ) in distribution where I n = (λc n ) -1 C n,0 ξ(s)ds. To compute τ 2 , we observe that using the definition of a Cox point process

Var(N (C n,0 )) = E (Var(N (C n,0 ) | ξ)) + Var (E (N (C n,0 )) | ξ) = λc n + Var C n,0 ξ(s)ds.
We use Assumption (iii) and Lemma A.1 (a) to deduce that as n → ∞

Var C n,0 ξ(s)ds ∼ λ 2 c n R d (g(w) -1)dw which leads to Var( √ λc n I n ) → τ 2 = λ R d (g(w) -1)dw as n → ∞.
From the definition of t n and Slutsky's Lemma, it can be shown that t n (T n -I n ) → 0 in probability which leads to T n → 1 in probability and t n (T n -1) → N (0, τ 2 ) in distribution. We deduce that A n → A = e -τ 2 L 2 /2 in distribution, where L ∼ N (0, 1), which, by the uniform integrability of the sequence (A n ) n , leads to A n → A in L 1 . Now a Taylor expansion shows that there exists

T n ∈ (0 ∧ (T n -1), 0 ∨ (T n -1)) such that | log(B n )| = t n |T n -1| T 2 n 1 + T n ≤ t n (T n -1) 2 |T n -1| T n + 1 .
It is clear that T n tends to 0 in probability as n → ∞, which yields that log(B n ) → 0 and B n → 1 in probability by Slutsky's Lemma. Again, the uniform integrability assumption of the sequence

(B n ) n implies that B n → 1 in L 1 . Since |A n B n -A| ≤ A n |B n -1| + |A n -A| ≤ |B n -1| + |A n -A| we conclude that A n B n → A in L 1 as n → ∞.
In other words as n → ∞

2πλc n P(N (C n,0 ) = t n ) ∼ v -1 n E 2πλc n P(N (C n,0 ) = t n | ξ) → E(A).
Using the definition of the moment generating function of a χ 2 1 distribution, we have E(A) = (1 + τ 2 ) -1/2 whereby we deduce that

√ c n P(N (C n,0 ) = t n ) → 2πλ(1 + τ 2 ) -1/2 = 2πσ 2 -1/2 with σ 2 = λ + λ 2 R d (g(w) -1)dw.
A.3 Proof of Theorem 4.2

Proof. We focus only on (a) as (b) follows from (a), Slutsky's Lemma and Assumption (ii-2). Let t n = λc n + a n . By definition

F (t n ; Z) -F Z (t n ) = 1 k n k∈Kn 1(Z n,k ≤ t n ) -P(Z n,k ≤ t n ) . (A.3) Let (ε n ) n≥1 be a sequence of real numbers such that ε n → 0 and ε n c 1/d n → ∞ as n → ∞.We denote by Z - n,k = N (C - n,k ) + U k where C - n,k is the erosion of the cell C n,k by a closed ball with radius ε n c 1/d n . Two cells C - n,k and C - n,k for k, k ∈ K n (k = k ) are therefore at distance greater than 2ε n c 1/d n .
To prove Theorem 4.2 (a), we use the blocking technique introduced by [START_REF] Ibragimov | Independent and Stationary Sequences of Random Variables[END_REF] and applied to spatial point processes by [START_REF] Guan | A thinned block bootstrap procedure for modeling inhomogeneous spatial point patterns[END_REF]; Guan et al. (2007) and [START_REF] Prokešová | Asymptotic Palm likelihood theory for stationary point processes[END_REF]. To this end, we need additional notation. For any n ≥ 1 and k

∈ K n , let t - n = λ|C - n,k | + 1/2 = λ(1 -ε n ) d c n + 1/2 and let ( Z - n,k , k ∈ K n ) be a collection of independent random variables such that Z - n,k d = Z - n,k . We decompose the sum in (A.3) as follows k∈Kn 1(Z n,k ≤ t n ) -P(Z n,k ≤ t n ) = D n + S - n + S - n (A.4)
where

D n = k∈Kn D n,k = k∈Kn 1(Z n,k ≤ t n ) -P(Z n,k ≤ t n ) -1(Z - n,k ≤ t - n ) + P(Z - n,k ≤ t - n ) S - n = k∈Kn 1(Z - n,k ≤ t - n ) -P(Z - n,k ≤ t - n ) S - n = k∈Kn 1( Z - n,k ≤ t - n ) -P( Z - n,k ≤ t - n ).
We split the proof into three steps. As n → ∞, we prove that

Step 1.

D n / √ k n → 0 in probability. Step 2. for any u ∈ R, φ - n (u) -φ - n (u) → 0 as n → ∞ where i = √ -1, φ - n (u) = E(e iuS - n / √ kn ) and φ - n (u) = E(e iu S - n / √ kn ), which will imply that (S - n -S - n )/ √ k n → 0. Step 3. S - n / √ k n → N (0, 1/4) in distribution.
The conclusion will follow directly from Steps 1-3, (A.3)-(A.4) and Slutsky's Lemma.

Step 1. To achieve this step, we will prove that k Zhengyan and Chuanrong (1996, Lemma 2.1)

-1 n E(D 2 n ) = k -1 n Var(D n ) → 0 as n → ∞. We have 1 k n Var(D n ) = 1 k n k,k ∈Kn |k-k |≤1 Cov(D n,k , D n,k ) + 1 k n k,k ∈Kn |k-k |>1 Cov(D n,k , D n,k ). Let k, k ∈ K n with k = k , Assumption (i) asserts that d(C n,k , C n,k ) = |k-k -1|c 1/d n . Since D n,k ∈ F(C n,k ) and D n,k ∈ F(C n,k ), we have from
Cov(D n,k , D n,k ) ≤ 4α cn,cn (|k -k -1|c 1/d n ) ≤ 4c n α(|k -k -1|c 1/d n ) = O(|k -k -1| -d(1+η) c -η n ).
Since the series k∈Z d \{0} |k| -d(1+η) converges, it is clear that

1 k n k,k ∈Kn |k-k |>1 Cov(D n,k , D n,k ) = O(c -η n ), (A.5)
which tends to 0 as n → ∞. Since the variables D n,k are identically distributed, we get from the Cauchy-Schwarz inequality

1 k n k,k ∈Kn |k-k |≤1 Cov(D n,k , D n,k ) ≤ 1 k n k,k ∈Kn |k-k |≤1 Var(D n,k ) Var(D n,k ) ≤ Var(D n,0 ) 1 k n k,k ∈Kn |k-k |≤1 1 ≤ 3 d Var(D n,0 ).
Thus, Step 1 is achieved once we prove that Var(D n,0 ) → 0 as n → ∞. A straightforward calculation yields that

Var(D n,0 ) = P(Z n,0 ≤ t n )(1 -P(Z n,0 ≤ t n )) + P(Z - n,0 ≤ t - n )(1 -P(Z - n,0 ≤ t - n )) + 2P(Z n,0 ≤ t n )P(Z - n,0 ≤ t - n ) -2P Z n,0 ≤ t n , Z - n,0 ≤ t - n .
Let ∆ j be the unit cube centered at j ∈ Z d and let

J n = {j ∈ Z d : ∆ j ∩ C n,0 = ∅}.
We denote by Y n,j the random vector

Y n,j = U 0 j n + 1(u ∈ C n,0 ∩ ∆ j ), U 0 j n + 1(u ∈ C - n,0 ∩ ∆ j )
variables, we have the following upper-bound on their covariance by means of the strong mixing coefficient, see Zhengyan and Chuanrong (1996, Lemma 2.1)

Cov(A j , V j+1 ) ≤ 4α j(1-εn) d cn,(1-εn) d cn (2ε n c 1/d n ) ≤ 4jc n sup p α p,p (2ε n c 1/d n ) p ≤ 4c n k n O(ε -d(1+η) n c -(1+η) n ) = O(k n ε -d(1+η) n c -η n ) whereby we deduce that |φ - n (u) -φ - n (u)| = O(k 2 n c -η n ε -d(1+η) n
). Now we can fix the sequence (ε n ) n≥1 . Specifically, we set

ε n = c (η -η)/d(1+η) n for some 0 < η < η. This choice ensures that ε n → 0, c 1/d n ε n = c (1+η )/d(1+η) n → ∞ and yields that |φ - n (u) -φ - n (u)| = O(k 2 n /c η n
) which tends to 0 as n → ∞ by Assumption (i).

Step

3. Since Z - n,k d = Z - n,k and since P(Z - n,k ≤ t - n ) → 1/2 as n → ∞ from Step 2, we deduce that Var( S - n ) = k∈Kn P( Z - n,k ≤ t - n )(1 -P( Z - n,k ≤ t - n )) = k n P( Z - n,0 ≤ t - n )(1 -P( Z - n,0 ≤ t - n )) ∼ k n /4 as n → ∞. Since (1( Z - n,k ≤ t - n ), k ∈ K n
) is a collection of bounded and independent random variables, Step 3 follows from an application of Lyapounov Theorem.

A.4 Proof of Theorem 4.3

Proof. (a) Let us define for any t ≥ 0

A n = k n c n Me(Z) -Me Z and B n (t) = k n c n F Z (t) -F (t; Z) f Z (Me Z ) .
We have to prove that A n -B n (Me Z ) converges in probability to 0 as n → ∞.

The proof is based on the application of Ghosh (1971, Lemma 1) which consists in satisfying the two following conditions: (I) for all δ > 0, there exists ε = ε(δ) such that P(|B n (Me Z )| > ε) < δ.

(II) for all y ∈ R and ε > 0 

B Additional comments

B.1 The way of jittering a sample of counts

We could think of slightly generalizing (3.3) and introduce the jittering effect as

Z n,k = N (C n,k ) + ϕ -1 (U k )
for any k ∈ K n , where ϕ : [0, 1] → [0, 1] is a continuously differentiable increasing function. The cumulative distribution function of Z would be in that case F Z (t) = P (N (C n,0 ) ≤ t -1) + P (N (C n,0 ) = t ) ϕ(t -t ) and for any t / ∈ N, Z would admit a density f Z at t given by f Z (t) = P (N (C n,0 ) = t ) ϕ (t -t ).

When t ∈ N, since (F Z (t + h) -F Z (t))/h tends to P(N (C n,0 ) = t )ϕ (0) when h → 0 + and to P(N (C n,0 ) = t )ϕ (1) when h → 0 -, Z would also admit a density at t if we add the condition ϕ (0) = ϕ (1). However, our Theorem 4.3 requires another assumption. Namely, we need to assume that for any t n = λc n +O( c n /k n ), f Z (t n )/f Z (λc n ) tends to 1. To this end, we would have to combine Assumption (ii-2), with an assumption like inf t ϕ (t) = sup t ϕ (t). This explains why we focused on the case ϕ(t) = t in Section 3 and in the presentation of our asymptotic results in Section 4.

B.2 Rule of thumb under the Poisson case

In this section, we want to examine the value of the true median of Z under the Poisson case. Even if this is useless we also had a look at different functions ϕ.

Figure 1 presents the true median of Π and Z = Π + ϕ -1 (U ) where Π follows a Poisson distribution with mean ν and where U is a uniform random variable on [0, 1]. We considered the cases ϕ(t) = √ t, t, t 2 and examined the true median minus ν in terms of ν. First, we recover a result obtained by [START_REF] Adell | The median of the Poisson distribution[END_REF]: when ν is an integer, the median of Π equals ν and for other values of ν, it lies in the interval [ν -log(2), ν + 1/3]. It is worth observing that the choice ϕ(t) = t leads us to conjecture that when ν is large Me Z is very close to ν + 1/3.

So, we could use the rule of thumb derived under the Poisson case and modify the jittered estimator (3.5) as follows

λ J,2 = λ J - 1 3c n = MeŽ - 1 3c n . (B.1)
Since |W n | 1/2 /c n = k n /c n → 0 by Assumption (i), this produces no differences asymptotically: λ J,2 has the same behaviour as λ J and satisfies the central limit theorem given by (4.4) or Corollary 4.4. We compared λ J and λ J,2 in the framework of the simulation study presented in Section 5. The evidence of better empirical results was unclear which explains why we did not present λ J,2 before and kept λ J in the simulation study. 
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 1 Figure1: Sample medians based on 10 6 replications of Π or Π+ϕ -1 (U ) random variables where Π (resp. U ) follows a Poisson distribution with mean ν (resp. uniform distribution on [0,1]) and where ϕ = (t) = t, t 2 , (t).

Table 2 :

 2 Bias and empirical gains in percent between brackets, see (5.1), for the standard and median based estimators for different values of k n . The empirical results are based on 1000 replications generated on [-n, n] 2 for n = 1, 2 for the models poisson, lgcp, phc where 5% or 10% of points are added to each configuration. This corresponds to the case (B) described in details above.

		Bias (Gain of MSE %)			
	std	k n = 9	16	25	36	49
	ρ = 0.05					
	poisson, n = 1					

Table 3 :

 3 Bias and empirical gains in percent between brackets, see (5.1), for the standard and median based estimators for different values of k n . The empirical results are based on 1000 replications generated on [-n, n] 2 for n = 1, 2 for the models poisson, lgcp, phc where 5% or 10% of points are deleted to each configuration. This corresponds to the case (C) described in details above.

  0 ξ(s)ds

					tn	e -C n,0	ξ(s)ds
					t n tn e -tn	v n
	where	v n =	λc n t n	√ 2π t n	tn +1/2 e -tn t n !	.
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A Proofs

In all the proofs, κ denotes a generic constant which may vary from line to line. For k = (k 1 , . . . , k d ) ∈ Z d , we denote |k| = max(|k 1 |, . . . , |k d |).

A.1 Auxiliary results

We present in this section an auxiliary lemma providing a control of the covariance of counting variables and a general central limit theorem adapted to our context. Under Assumption (iii), we have the following three statements. (a) For any τ ∈ (0, 1]

where f n,k : S → R p for some p ≥ 1 is a measurable function. We denote by S n = k∈Kn Y n,k and by Σ n = Var(S n ) and assume that for any n ≥ 1, k ∈ K n , E Y n,k = 0. We also assume that (I)

We present Theorem A.2 for bounded random vectors and with only one mixing coefficient, namely α 2,∞ . It can obviously be generalized along similar lines as in Guyon (1991, Theorem 3.3.1).

Proof. Assume Σ > 0, then for n large enough k -1 n Σ n ≥ Σ/2 > 0, which combined with Assumptions (I)-(II) allows us to apply Karáczony (2006, Theorem 1) to conclude the result.

The end of the proof follows the same arguments as the proof of a central limit theorem for triangular arrays of conditionally centered random fields obtained by Coeurjolly and Lavancier (2013, Theorem 2). If Σ is not positive definite, we can find an orthonormal basis (h 1 , . . . , h p ) of R p where the f i 's are eigenvectors of Σ. We let (f 1 , . . . , f r ) be the basis of the image of Σ and (f r+1 , . . . , f p ) be the basis of its kernel. Let also H Im (resp. H Ker ) be the matrix formed by the column vectors of (f 1 , . . . , f r ) (resp. (f r+1 , . . . , f p )). Similarly for v ∈ R p , we denote by v j its jth coordinate in the basis of (f 1 , . . . , f p ), v Im = (v 1 , . . . , v r ) and v Ker = (v r+1 , . . . , v p ). Using the Cramer-Wold device, we need to prove that for any v ∈ R p , v k -1/2 n S n converges towards a Gaussian random variable. We have

S n tends to a Gaussian random variable in distribution as n → ∞. By Slutsky's Lemma (see e.g. [START_REF] Van Der | Asymptotic statistics[END_REF]), the proof will be done if v Ker H Ker k -1/2 n S n tends to 0 in probability as n → ∞. Since, H Ker ΣH Ker = 0, the expected convergence follows from

n Σ n -Σ which tends to 0 by Assumption (III).

A.2 Proof of Proposition 4.1

Proof. Assumption (ii-1) corresponds to Proposition 3.2.

where j n = |J n | satisfies j n ∼ c n as n → ∞. We have (Z n,0 , Z - n,0 ) = j∈Jn Y n,j and we note that sup n≥1 sup j∈Jn Y n,j ∞ < ∞. Since ε n → 0 and c

In other words,

which is a matrix with rank 1. By combining this with Assumption (iv), we can apply Theorem A.2 to get as n → ∞

n ) by definition of t n , an application of Slutsky's Lemma yields that

in distribution as n → ∞ whereby we deduce that [START_REF] Rose | The multivariate normal distribution[END_REF] proved that if U = (U 1 , U 2 ) follows a bivariate normal distribution with mean 0, variance 1 and correlation ρ, P(U 1 ≤ 0, U 2 ≤ 0) = 1/4 + sin -1 (ρ)/2π which equals to 1/2 when ρ = 1. From (A.6), this shows that

Step 2. This step is the core of the blocking technique. Let h denote a bijection from

and

Since A j and V j+1 are bounded random (II) Let y ∈ R (and without loss of generality, assume y ≥ 0). By definition of the sample median, we have

Now, we intend to prove that as n → ∞, y n → y and

First, since Z admits a density everywhere, there exists

which tends to 1 by Assumptions (ii-1)-(ii-2) and implies the convergence of y n towards y. Second, we show that Var( B n ) → 0 as n → ∞ by decomposing the variance as follows.

We follow the proof of Step 1 of Theorem 4. for every y ∈ R. So we can apply (A.7) which leads to P(Z n,0 ≥ Me Z ) → 1/2, P(Z n,0 ≤ Me Z + y c n /k n ) → 1/2 and finally to Var( B n,0 ) → 0 and B n → 0 in probability as n → ∞.