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Abstract

This paper is concerned with a robust estimator of the intensity of a stationary
spatial point process. The estimator corresponds to the median of a jittered
sample of the number of points, computed from a tessellation of the observa-
tion domain. We show that this median-based estimator satisfies a Bahadur
representation from which we deduce its consistency and asymptotic normality
under mild assumptions on the spatial point process. Through a simulation
study, we compare the new estimator with the standard one counting the mean
number of points per unit volume. The empirical study verifies the asymptotic
properties established and shows that the median-based estimator is more
robust to outliers than the standard estimator.

Keywords: Spatial point processes; Robust statistics; Sample quantiles; Ba-
hadur representation.

1 Introduction

Spatial point patterns are datasets containing the random locations of some event of
interest. These datasets arise in many scientific fields such as biology, epidemiology,
seismology, hydrology. Spatial point processes are the stochastic models generat-
ing such data. We refer to Stoyan et al. (1995), Illian et al. (2008) or Møller and
Waagepetersen (2004) for an overview on spatial point processes. These references
cover practical as well as theoretical aspects. A point process X in Rd is a locally
finite random subset of Rd meaning that the restriction to any bounded Borel set is
finite. The point process X takes values in Ω consisting in all locally finite subsets of
Rd. Thus the distribution of X is a probability measure on an appropriate σ-algebra
consisting of subsets of Ω. The Poisson point process is the reference process which
models random locations of points without interaction. Many alternative models
such as Cox point processes, determinantal point processes, Gibbs point processes
allow to introduce clustering effects or to produce regular pattern (see again e.g.
Møller and Waagepetersen (2004) for an overview). If the distribution of X is invari-
ant by translation, we say that X is stationary. We are interested in this paper in
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first-order characteristics of X, which under the assumption of stationarity, reduce
to a single real parameter denoted by λ. This intensity parameter λ measures the
mean number of points per unit volume.

Estimating λ has become a well-known problem and the source of a large liter-
ature. Based on a single realization of the point process X in a bounded domain W
of Rd, the natural way of estimating λ is to compute the mean number of points
observed by unit volume, i.e. to evaluate n(X ∩W )/|W | where n(y) represents the
number of a finite set of points y and where |W | is the volume of W . We refer

to as λ̂std for this estimator. If the point process is a homogeneous Poisson point
process, λ̂std is also the maximum likelihood estimator. Asymptotic properties of
λ̂std are now well established for a large class of models. In particular, as the win-
dow of observation expands to Rd, it can be shown under mild assumptions on
X (mainly mixing conditions) that λ̂std is consistent and satisfies a central limit
theorem with asymptotic variance which can be consistently estimated (see Hein-
rich and Prokešová (2010) and the references therein for more details). In some
applications, it may be too time-consuming to count all points. In such situations,
distance based methods, where mainly nearest distances between points are used,
have been developed (see e.g. Särkkä (1992); Diggle (2003)). Unlike the estimator

λ̂std, those methods are very sensitive to the model which explains that the only
case where it may be realistically applied is the Poisson process (Illian et al., 2008).
Other moment-based methods include the adapted estimator proposed by Mrkvička
and Molchanov (2005) or the recent Stein estimator (in the Poisson case) proposed
by Clausel et al. (2014).

As outlined in particular in the book written by Illian et al. (2008), an important
step in the statistical analysis of point patterns is the search for unusual points or
unusual point configurations, i.e. the search of outliers. Two kind of outliers make
sense when dealing with point pattern: first points may appear at locations where
they are not expected. This situation could appear for instance when two species
of plants or trees cannot be distinguished at the time of data collection. Second,
it is possible that there are unusual missing points in the pattern, i.e. areas of the
observation domain, where, according to the general structure of the pattern, points
would have been expected. Illian et al. (2008) or Baddeley et al. (2005) have pro-
posed several diagnostic tools to detect outliers and more generally to judge the
quality of fit of a model. Assunção and Guttorp (1999) is the only work where ro-
bustness estimation procedures are tackled. The authors developed an M-estimator
to estimate the intensity of an inhomogeneous Poisson point process. To the best of
our knowledge, no free-model robust techniques have been developed in the frame-
work of spatial point processes. The present paper seems to be the first advance in
that direction and aims at developing a median-based estimator of λ. It is not so
straightforward to see what a median means for a spatial point process but we may
remark that if W can be decomposed as a disjoint union of K cells Ck with similar
volume, then n(X ∩ W ) =

∑
k n(X ∩ Ck) which yields that λ̂std can be actually

rewritten as the empirical mean of the normalized counts variables n(X∩Ck)/|Ck|.
We have the cornerstone of defining a more robust estimator by simply replacing
the empirical mean by the sample median.

The classical definition of sample quantiles and their asymptotic properties for
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continuous distributions are nowadays well-known, see e.g. David and Nagaraja
(2003). In particular, sample medians in the i.i.d. setting, computed from an ab-
solutely continuous distribution positive, f , at the true median, Me, are consistent
and satisfy a central limit theorem with asymptotic variance 1/4f(Me)2. Such a
result obviously fails for discrete distributions. In this paper, we follow a strategy
introduced by Stevens (1950) and applied to count data by Machado and San-
tos Silva (2005) which consists in artificially imposing smoothness in the problem
through jittering: i.e. we add to each count variable n(X ∩ Ck) a random variable
Uk following a uniform distribution on (0, 1). The random variable n(X ∩ Ck) + Uk

admits now a density and asymptotic results can be expected. To get around the
problem of large sample behavior for discrete distributions, another approach could
be to consider the median based on the mid-distribution, see Ma et al. (2011). The
authors prove that such sample quantiles behave more favourably than the classical
one and satisfy, in the i.i.d. setting, a central limit theorem even if the distribution
is discrete. We leave to a future work the question of deriving asymptotic properties
for the sample median based on the mid-distribution in our framework of dependent
spatial point processes models.

The rest of the paper is organized as follows. Section 2 gives the background on
spatial point processes necessary for the present paper, proposes the general strategy
to estimate the intensity and presents general notation. The median-based estimator
and results establishing a control of the difference between the true median of a
jittered count and the intensity parameter λ are described in Section 3. Section 4
contains our main asymptotic results. General assumptions are discussed and a
particular focus on Cox point processes is investigated. The main difficulty here is
to establish a Bahadur representation for the jittered sample median which can be
applied to a large class of point process models. Section 5 presents the results of
a simulation study where we compare our procedure with the standard estimator
λ̂std. Proofs of the results and additional figures and comments are postponed to
Appendices A and B

2 Background and strategy

2.1 Spatial point processes

Let X be a spatial point process defined on Rd, which we view as a random locally
finite subset of Rd. Let XW = X ∩W where W ⊂ Rd is a compact set of positive
Lebesgue measure |W |. Then, the number of points in XW , denoted by n(XW ),
is finite, and a realization of XW is of the form x = {x1, . . . , xm} ⊂ W for some
nonnegative finite integer m. If m = 0, then x = ∅ is an empty point pattern in
W . For further background and measure theory on spatial point processes, see e.g.
Daley and Vere-Jones (2003) and Møller and Waagepetersen (2004). We assume
that X is a stationary point process with intensity parameter λ, characterized by
Campbell’s theorem (see e.g. Møller and Waagepetersen (2004)), by the fact that
for any real Borel function h defined on Rd and absolutely integrable (with respect
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to the Lebesgue measure on Rd)

E
∑

u∈X
h(u) = λ

∫
h(u)du. (2.1)

Furthermore, for any integer l ≥ 1, X is said to have an lth-order product density
ρl if ρl is a non-negative Borel function on Rdl such that for all non-negative Borel
functions h defined on Rdl,

E

6=∑

u1,...,ul∈X
h(u1, . . . , ul) =

∫

Rd

· · ·
∫

Rd

h(u1, . . . , ul)ρl(u1, . . . , ul) du1 · · · dul, (2.2)

where the sign 6= over the summation means that u1, . . . , ul are pairwise distinct.
Note that λ = ρ1 and that for the homogeneous Poisson point process ρl(u1, . . . , ul) =
λl. If ρ(2) exists, then by stationarity of X, ρ(2)(u, v) depends only on u− v. In that
case, we define the pair correlation function g as a function from Rd to R+ by
g(u− v) = ρ(2)(u, v) = λ2. In this paper, we sometimes pay attention on Cox point
processes, which are defined as follows.

Definition 2.1. Let (ξ(s), s ∈ Rd) be a non-negative locally integrable random field.
Then, X is a Cox point process if the distribution of X given ξ is an inhomogeneous
Poisson point process with intensity function ξ. If ξ is stationary, so is X and
λ = E(ξ(s)) for any s.

Among often used models of stationary Cox point processes, we can cite

• Log-Gaussian Cox processes (e.g. Møller and Waagepetersen (2004)): Let Y
be a stationary Gaussian process on Rd with mean µ and stationary covari-
ance function c(u) = σ2r(u), u ∈ Rd, where σ2 > 0 is the variance and r
the correlation function. If X conditional on Y is a Poisson point process
with intensity function ξ = exp(Y ), then X is a (homogeneous) log-Gaussian
Cox process. One example of correlation function is the Mattérn correla-
tion function (which includes the exponential correlation function) given by
r(u) = (

√
2ν‖u‖/φ)νKν(

√
2ν‖u‖/φ)/(2ν−1Γ(ν)) where Γ is the gamma func-

tion, Kν is the modified Bessel function of the second kind, and φ and ν are
non-negative parameters. In particular, the intensity of X equals λ = eµ+σ2/2.

• Neyman-Scott processes (e.g. Møller and Waagepetersen (2004)): Let C be
a stationary Poisson point process with intensity κ > 0, and fσ a density
function on Rd. If X conditional on C is a Poisson point process with intensity

α
∑

c∈C
fσ(u− c)/κ, u ∈ R2, (2.3)

for some α > 0, then X is a (homogeneous) Neyman-Scott process. When
fσ corresponds to the density of a uniform distribution on B(0, σ2) (resp. a
Gaussian random variable with mean 0 and variance σ2), we refer to X as the
(homogeneous) Mattérn Cluser (resp. Thomas) point process. In particular,
the intensity of X equals λ = ακ.
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2.2 Notation and strategy

For any real-valued random variable Y , we denote by FY (·) its cdf, by F−1
Y (p) its

quantile of order p ∈ (0, 1), by MeY = F−1
Y (1/2) its theoretical median. Based on a

sample Y = (Y1, . . . , Yn) of n identically distributed random variables we denote by

F̂ (·;Y) the empirical cdf, by F̂−1(p;Y) the sample quantile of order p. The sample

median is simply denoted by M̂e(Y) = F̂−1(1/2;Y).
We will study the large-sample behavior of estimators of the intensity λ. Specifi-

cally, we consider a region Wn assumed to increase to Rd as n → ∞. We assume that
the domain of observation Wn can be decomposed as Wn = ∪k∈Kn

Cn,k where the
cells Cn,k are disjoints cells with similar volume cn = |Cn,k| and where Kn is a subset
of Zd with cardinality kn = |Kn|. More details on Wn, cn and kn will be provided
in the appropriate Section 4 when we present asymptotic results. For any k ∈ Kn,
we denote by Nn,k = n(XCn,k

) and by N = (Nn,k, k ∈ Kn). Finally, for any random

variable Y or any random vector Y, we denote by Y̌ = Y/cn and Y̌ = Y/cn.

The classical estimator of the intensity λ is given by λ̂std = n(XWn
)/|Wn|. In

order to define a more robust estimator, we can remark that

λ̂std =
1

kn

∑

k∈Kn

n(XCn,k
)

cn
=

1

kn

∑

k∈Kn

Ňn,k (2.4)

since |Wn| = kncn, i.e. λ̂std is nothing else that the sample mean of intensity estima-
tors computed in cells Cn,k. The strategy we adopt in this paper is to replace the
sample mean by the sample median which is known to be more robust to outliers.
As underlined in the introduction, estimators based on count data or more generally
on discrete data can cause some troubles in the asymptotic theory. The problems
come from the fact that, in the continuous case, the asymptotic variance of the sam-
ple median involves the probability distribution function at the true median. We
get around the difficulty in the next section by considering an estimator based on
jittered data.

3 Median-based estimator of λ

To overcome the problem of discontinuity of the counts variables Nn,k, we follow
a well-known technique (e.g. Machado and Santos Silva (2005)) which introduces
smoothness in the problem. Let (Uk, k ∈ Kn) be a collection of independent and
identically distributed random variables, distributed as U ∼ U([0, 1]). Then for any
k ∈ Kn, we define

Zn,k = n(XCn,k
) + Uk = Nn,k + Uk (3.1)

Z will stand for (Zn,k, k ∈ Kn). Since X is stationary, the variables Zn,k are identically
distributed and we let Z ∼ Zn,k. The jittering effect is straightforwardly seen: the
cdf of Z is given for any t ≥ 0 by

FZ(t) = FN(⌊t⌋ − 1) + P (N = ⌊t⌋) (t− ⌊t⌋)
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and for any t, Z admits a density fZ at t given by

fZ(t) = P (N = ⌊t⌋). (3.2)

We define the jittered estimator of the intensity λ by

λ̂J = M̂e(Ž). (3.3)

Since it is expected that M̂e(Ž) is close to MeŽ = MeZ/cn, we need to understand
how far MeŽ is from λ. Using the definition of the median we can prove the following.

Proposition 3.1. Assume that the pair correlation function of the stationary point
process X exists for u, v ∈ Rd and satisfies

∫
Rd |g(w)−1|dw < ∞, then for any ε > 0

we have for n sufficiently large

|MeŽ − λ| ≤ 1

cn

(
1

2
+

√
1

12

)
+ (1 + ε)

√
σ

cn
= O(c−1/2

n ) (3.4)

where σ2 = λ+ λ2
∫
Rd(g(w)− 1)dw.

The assumption is quite standard when we deal with asymptotic for spatial point
processes, see e.g. Guan and Loh (2007) or Heinrich and Prokešová (2010). It ensures
that for any regular domain ∆n, |∆n|−1 Var(n(X∆n

)) → σ2 as n → ∞. We refer the
reader to these papers and to Section 4.1 for a discussion of this assumption.

Proof. By the previous remark cn
−1 Var(Nn,k) → σ2 as n → ∞. Since for any

continuous random variable Y having two moments |MeY − E(Y )| ≤
√

Var(Y ) and
since E(Z) = λcn + 1/2, then for any ε > 0 we have for n sufficiently large

|MeZ − λcn| ≤
1

2
+

√
1

12
+ (1 + ε)2σ2cn

which leads to the result.

Several results are known for the theoretical median of a Poisson distribution,
see e.g. Adell and Jodrá (2005). For instance, when ν is an integer MeP(ν) = ν and
for non integer ν, − log 2 ≤ MeP(ν) ≤ 1/3 (see Figure 1). Based on this, we can
obtain a sharper inequality than (3.4) for Poisson and Cox point processes.

Proposition 3.2. Let X be a stationary Cox point process with latent random field
ξ, then

λcn − log 2 ≤ MeN ≤ λcn +
1

3
and |MeZ − λcn| ≤

4

3
. (3.5)

A reformulation of (3.5) is of course MeŽ − λ = O(c−1
n ).

Proof. For any k ∈ Kn, given ξ, Nn,k follows a Poisson distribution with intensity∫
Cn,k

ξ(s)ds. Denote by MeNn,k|ξ the median of Nn,k given ξ defined by

MeNn,k|ξ = inf
{
z ∈ R : FNn,k|ξ(z) ≥ 1/2

}
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where FNn,k|ξ is the cumulative distribution function of Nn,k given ξ. From the prop-
erty of the median of a Poisson distribution, we have for any k ∈ Kn∫

Cn,k

ξ(s)ds− log 2 ≤ MeNn,k|ξ ≤
∫

Cn,k

ξ(s)ds+
1

3
.

Since E
∫
Cn,k

ξ(s)ds = λcn, the first result is deduced by taking the expectation of

each term of the previous inequality. Since N ≤ Z ≤ N +1, MeN ≤ MeZ ≤ MeN +1
which leads to the second result.

4 Asymptotic results

We state in this section our main results and the general assumptions required
to obtain them. Proofs of the different results presented here, as well as auxiliary
results, are presented in Appendix A.

4.1 General assumptions and discussion

We recall the classical definition of mixing coefficients (see e.g. Politis et al. (1998)):
for j, k ∈ N ∪ {∞} and m ≥ 1, define

αj,k(m) = sup{|P (A ∩ B)− P (A)P (B)| : A ∈ F(Λ1), B ∈ F(Λ2),

Λ1 ∈ B(Rd), Λ2 ∈ B(Rd), |Λ1| ≤ j, |Λ2| ≤ k, d(Λ1,Λ2) ≥ m}
where F(Λi) is the σ-algebra generated by X∩Λi, i = 1, 2, d(Λ1,Λ2) is the minimal
distance between the sets Λ1 and Λ2, and B(Rd) denotes the class of Borel sets in Rd.

We require the following assumptions to derive our asymptotic results.

(i) For any n ≥ 1, we assume that Wn = ∪k∈Kn
Cn,k where Kn is a subset of Zd with

cardinality kn = |Kn| and where the cells Cn,k are disjoint cubes with volume cn
defined by

Cn,k =
{
u = (u1, . . . , ud)

⊤ ∈ Rd : c1/dn (kl − 1/2) ≤ ul ≤ c1/dn (kl + 1/2), l = 1 . . . , d
}
.

We assume that 0 ∈ Kn and that there exists 0 < η′ < η such that as n → ∞

kn → ∞, cn → ∞,
kn

c
η′/2∧(1−2ℓ)
n

→ 0

where ℓ is given by Assumption (ii) and η by Assumption (iv).
(ii)

(ii-1) MeZ − λcn = O(cn
ℓ) with 0 ≤ ℓ < 1/2.

(ii-2) ∀tn = λcn +O(
√
cn/kn), P(N = ⌊tn⌋)/P(N = ⌊λcn⌋) → 1.

(ii-3) There exists κ, κ > 0 such that for n large enough, κ ≤ √
cnfZ(MeZ) ≤ κ.

(iii) X has a pair correlation function g satisfying
∫
Rd |g(w)− 1|dw < ∞.

(iv) There exists η > 0 such that

α(m) = sup
p≥1

αp,p(m)

p
= O(m−d(1+η)) and α2,∞(m) = O(m−d(1+η)).
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We now discuss the different assumptions. The decomposition of Wn as a disjoint
union of cubes is really related to our estimation procedure. Other shapes of domains
Wn should be possible. The last statement of Assumption (i) is required to control
the dependence between the variables Zn,k via a control of mixing coefficients and to

ensure that asymptotically |Wn|1/2(λ̂J − λ) behaves as |Wn|1/2(λ̂J −MeŽ). We note
that if X is a stationary Cox point process, Proposition 3.2 yields that (ii-1) is satis-
fied for ℓ = 0. And so if η > 2, Assumption (i) can be rewritten as cn → ∞, kn → ∞
and kn/cn → 0 as n → ∞. Regarding Assumption (ii), Proposition 4.1 shows it can
be simplified for a large class of Cox point processes. We underline that Assump-
tions (i), (ii-1)-(ii-2) imply the existence of κ < ∞ such that

√
cnfZ(MeZ) ≤ κ, so

(ii-3) could actually be simplified. Assumption (iii) is very classical when dealing
with asymptotics of intensity parameter estimates, see e.g. Heinrich and Prokešová
(2010). For isotropic pair correlation functions, i.e. g(w) = g(‖w‖) for g : R+ → R,
Assumption (iii) is fulfilled when g(r) = 0 for r ≥ R or when g(r) = O(r−d−γ) for
some γ > d. This includes the Mattérn cluster and Thomas processes and the log-
Gaussian Cox process with Mattérn-Whittle covariance functions. Assumption (iv)
is also quite standard and has been discussed a lot in the literature: Guan and
Loh (2007); Guan et al. (2007); Prokešová and Jensen (2013) discussed the first
part of (iv) while the second one has been commented in Waagepetersen and Guan
(2009); Coeurjolly and Møller (2014). Both of them are satisfied for Cox point pro-
cesses mentioned above. We point out that it is not so common to use both the
mixing coefficients α(m) and α2,∞(m). As detailed in the proof of Theorem 4.2,
the first one is used to control the dependence between the random variables Zn,k

for k ∈ Kn and derive a central limit theorem using the blocking technique de-
veloped by Ibragimov and Linnik (1971) which is pertinent and well-suited here
since the cells Cn,k are increasing. The second mixing coefficient is used to apply a
multivariate central limit theorem inside the cell Cn,0 to prove, in particular, that
P(n(X ∩ Cn,0) ≤ λcn, n(X ∩ C−

n,0) ≤ λcn) → 1/2 as n → ∞ where C−
n,0 is a "small"

erosion of Cn,0 (see the proof of Step 1 of Theorem 4.2 for more details).
We now present how some of the assumptions can be simplified for Cox point

processes.

Proposition 4.1. Let X be a stationary Cox point process with latent random field
(ξ(s), s ∈ Rd) satisfying the Assumptions (iii)-(iv). Assume there exists δ > 2/η,
where η is given by Assumption (iv), such that E(|ξ(0)|2+δ) < ∞. Let tn = λcn +
O(
√

cn/kn) and Tn = ⌊tn⌋−1
∫
Cn,0

ξ(s)ds. We also assume that the sequence of ran-

dom variables (Bn)n defined by log(Bn) = ⌊tn⌋ (log(Tn)− (Tn − 1) + (Tn − 1)2/2) is
uniformly integrable. Then Assumption (ii) holds (with ℓ = 0) and as n → ∞

√
cnP(N = ⌊λcn⌋) →

(
2πσ2

)−1/2
(4.1)

where N is a random variable distributed as Nn,0 = n(XCn,0) and where σ2 = λ +
λ2
∫
Rd(g(w)− 1)dw.

4.2 Results

In this section, we present, in particular, the asymptotic results we obtained for the
median-based estimator λ̂J .
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Theorem 4.2. Under the Assumptions (i)-(iv), we have the two following state-
ments.
(a) Let (an)n≥1 be a sequence of real numbers satisfying λcn = an + o(

√
cn) then as

n → ∞ √
kn

(
F̂ (λcn + an;Z)− FZ(λcn + an)

)
→ N (0, 1/4)

in distribution.
(b) As n → ∞ √

kn

(
F̂ (MeZ ;Z)− 1/2

)
→ N (0, 1/4)

in distribution.

The next result establishes a Bahadur representation for the sample median
which leads to its asymptotic normality. The notation Xn = oP(v

−1
n ) for a sequence

of random variables Xn and a sequence of positive real numbers vn means that vnXn

tends to 0 in probability as n → ∞.

Theorem 4.3. Under the assumptions (i)-(iv), we have the two following state-
ments.
(a) As n → ∞

M̂e(Z)−MeZ =
1/2− F̂ (MeZ ;Z)

fZ(MeZ)
+ oP

(√
cn
kn

)
. (4.2)

(b) Let sn =
√
cnP(N = ⌊λcn⌋) where N is a random variable distributed as Nn,0 =

n(XCn,0), then as n → ∞

|Wn|1/2sn
(
λ̂J − λ

)
→ N (0, 1/4) (4.3)

in distribution.

We deduce the following Corollary given without proof for Cox point processes.

Corollary 4.4. Under the Assumption (i) and the Assumptions of Proposition 4.1,
we have

|Wn|1/2
(
λ̂J − λ

)
→ N

(
0, πσ2/2

)

where σ2 = λ+ λ2
∫
Rd(g(w)− 1)dw.

As detailed after Proposition 3.1, σ2 corresponds to the asymptotic variance of
|Wn|−1n(XWn

). Actually, if we denote by λ̂std the standard estimator of λ given by

λ̂std = |Wn|−1n(XWn
) then with quite similar assumptions, it has been proved, see

e.g. Heinrich and Prokešová (2010), that |Wn|1/2(λ̂std − λ) → N (0, σ2). It is worth

interesting to note that the two estimators λ̂std and λ̂J only differ on their asymptotic
variance and that the ratio of the asymptotic variances is equal to π/2. When we
estimate the location of a Gaussian sample using the sample mean or the sample
median, it is remarkable that the ratio of the asymptotic variances is also π/2.

Finally, let us add that on the basis of Corollary 4.4, an asymptotic confidence
interval of λ can be constructed using a consistent estimator of σ2. By the previous
remark, we can use the kernel-based estimator proposed by Heinrich and Prokešová
(2010) (or any other estimator presented in the mentioned paper), which precisely

estimates the asymptotic variance of λ̂std, i.e. σ2.
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5 Simulation study

We present in this section a simulation study where in particular we intend to
compare the median-based estimator defined by (3.3) with the standard moment-

based estimator λ̂std = n(XW )/|W |. We focus on the planar case d = 2. In all this
section, we fixed the intensity parameter to the value λ = 50. Three models of spatial
point processes are considered (see Section 2.1 for details):

• Poisson point processes (referred to as poisson) with intensity λ

• Thomas point processes (referred to as thomas) with the parameters κ = 10
and σ = 0.05. The parameter α is fixed by the relation α = κ/λ.

• Log-Gaussian Cox Processes (referred to as lgcp) point processes with ex-
ponential covariance function. We fixed the variance to 1 and φ to 0.05. The
parameter µ is fixed by the relation µ = log λ− σ2/2.

Figure 2 illustrates these three models and in particular the clustering effect inher-
ent to the two last ones. The simulations have been performed using the R package
spatstat (Baddeley and Turner, 2005). To illustrate the performances of (3.3) we
generated the point processes on the domain of observation Wn = [−n, n]2 for dif-
ferent values of n and considered the three following settings: let y be a replication
of one of the three models above generated on Wn

(A) Pure case: no modification is considered, xWn
= y.

(B) A few points are added: in a sub-square ∆n with side-length n/5 included in
Wn and randomly chosen, we have generated a point process yadd of nadd =
ρ n(y) uniform points in ∆n. We chose ρ = 10% or 20%. Then we defined
xWn

= y ∪ yadd.

(C) A few points are deleted: let ∆n = ∪4
m=1∆

m
n where the ∆m

n ’s are the four
squares included in Wn, located in each corner of Wn and with similar volume.
The volume |∆n| is chosen such that E(n(Y∆n

)) = ρ E(n(Y)) = ρλ|Wn| and
we chose either ρ = 10% or 20%. Then, we define xWn

= y \ y∆n
, .i.e. xWn

is
the initial configuration thinned by 10% or 20% of its points.

We conducted a Monte-Carlo simulation and generated 1000 replications of the
models poisson, thomas, lgcp and for the three different settings (A)-(C). The
observation windows for which we report the empirical results hereafter are n = 1, 2
when we consider the setting (A) or (B) and n = 2, 3 when we consider the setting
(C). The last setting requires more observable points to clearly see the advantages
of the median-based estimator. Regarding that setting (C), we placed the squares
where points are thinned at the corners of Wn. By stationarity, the empirical results
are the same if we had decided to choose them randomly.

For each replication, we evaluated λ̂std and λ̂J for different number of cells kn
with same volume. More precisely, we chose kn = 9, 16, 25, 36, 49.

Table 1 and Figure 3 in Appendix B are related to the case (A). Empirical means
and standard deviations are reported. We can check, as expected, that the standard
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estimator is of course unbiased and that the variance decreases by a factor close to 4
which is equal to |W2|/|W1|. The median-based estimator is not theoretically unbi-
ased but the bias is clearly not important and tend to decrease when the observation
window grows up. Similarly, the rate of convergence of the empirical variance is not
too far from the expected value 4. We also computed separately V̂ar(λ̂std)/V̂ar(λ̂J)
for each value of kn and n and found interesting that these ratios lie in the inter-
val [1.31, 1.67], i.e. not to far from π/2. Finally, we underline that the choice of
the number of cells kn has a little influence on the performances. When n = 1, a
too large value of kn seems to increase the bias, especially for the thomas model.
The differences are however erased when n = 2. We also remark that the empirical
variance is almost the same whatever the value of kn.

Tables 2 and 3 are respectively related to the settings (B) and (C) described
above and are summaries of Figures 4 and 5 postponed to Appendix B. In both
tables, we reported only the gain (in percent) in terms of mean squared error of the
median based-estimator with respect to the standard one, i.e. for each model and
each value of ρ, n, kn, we computed

Ĝain =

(
M̂SE(λ̂std)− M̂SE(λ̂J)

M̂SE(λ̂std)

)
× 100% (5.1)

where M̂SE is the empirical mean squared error based on the 1000 replications.
Thus a positive (resp. negative) empirical gain means that the median-based is
more efficient (resp. less efficient) than the standard procedure.

The standard estimator, based only on the global number of points, is of course
not robust to perturbations. It is clearly seen in Figures 4 and 5 where we can observe
that λ̂std is more and more biased as ρ (the ratio of points added or deleted) increases.
Unlike this, the median-based estimator shows its advantages. When points are
added (setting (B)), the estimator λ̂J remains much more stable and is more efficient
in terms of MSE except when ρ = 10%, n = 1 for the thomas and lgcp models.
But when the window of observation expands or when ρ takes a higher value, the
conclusions are unambiguous. The empirical gains are more important under the
poisson and lgcp models than for the very clustered thomas process. Still, when
ρ = 20%, the gain is at least 9% for the worst choice of kn and at least 30% if kn
is appropriately chosen. We also mention that in a separate simulation study not
show here, we also tried to add a clustered point process or repulsive point process,
instead of adding ρn(xWn

) uniform points. The empirical results remained almost
unchanged.

Comments regarding Table 3 (setting (C)) are very similar. It seems however
that the choice of kn is more sensitive. For example for the lgcp model and when
ρ = 20% and n = 2 the empirical gain is 29% when kn = 9 and can reach 75% when
kn = 16.

As a conclusion of the simulation study, it turns out that the estimator λ̂J clearly
satisfies expected asymptotic properties and improves the robustness property of
the standard procedure. It is the topic of a future work to propose a data-driven
procedure to select the number of cells kn.
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λ̂std λ̂J

kn = 9 16 25 36 49

poisson, n = 1 49.9 (3.5) 50.7 (4.3) 51.2 (4.2) 51.9 (4.2) 53.0 (4.2) 54.0 (4.5)
n = 2 50.0 (1.7) 50.2 (2.1) 50.4 (2.2) 50.5 (2.2) 50.8 (2.1) 51.1 (2.1)

thomas, n = 1 49.8 (9.0) 49.1 (10.4) 48.5 (10.3) 47.2 (10.6) 45.9 (10.4) 44.0 (11.2)
n = 2 49.9 (4.3) 49.7 (5.1) 49.5 (5.1) 49.1 (5.2) 48.8 (5.3) 48.4 (5.3)

lgcp, n = 1 49.8 (4.6) 50.2 (5.5) 50.3 (5.4) 50.4 (5.4) 51.0 (5.3) 51.6 (5.5)
n = 2 50.0 (2.5) 50.0 (3.0) 50.1 (3.1) 50.1 (3.0) 50.0 (3.0) 50.1 (3.0)

Table 1: Empirical means and standard deviations between brackets of estimates of
the intensity λ = 50 for different models of spatial point processes (poisson, thomas,

lgcp). The empirical results are based on 1000 replications simulated on [−n, n]2 for
n = 1, 2. The second and third columns corresponds to the standard estimator λ̂std =
n(XWn)/|Wn|, while the following ones correspond to the median-based estimator (3.3) for
different number of cells kn.

Gain of MSE (%)
kn = 9 16 25 36 49

ρ = 10%, poisson, n = 1 3 0 -18 -48 -76
n = 2 62 65 63 61 56

thomas, n = 1 -26 -16 -13 -17 -30
n = 2 3 19 19 28 33

lgcp, n = 1 -5 -5 -5 -7 -17
n = 2 45 54 54 56 52

ρ = 20%, poisson, n = 1 58 60 53 46 31
n = 2 86 89 88 88 86

thomas, n = 1 9 21 24 31 26
n = 2 59 60 63 68 70

lgcp, n = 1 47 53 52 52 46
n = 2 78 82 83 84 84

Table 2: Empirical gains in percent, see (5.1), of the median based estimator for different
values of kn. The empirical results are based on 1000 replications generated on [−n, n]2

for n = 1, 2 for the models poisson, thomas, lgcp where ρ = 10% or 20% of points are
added to each configuration. This corresponds to the case (B) described in details above.
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Gain of MSE (%)
kn = 9 16 25 36 49

ρ = 10%, poisson, n = 2 3 52 69 78 74
n = 3 31 76 84 87 83

thomas, n = 2 -29 -29 -41 -22 -45
n = 3 -20 -0 9 33 13

lgcp, n = 2 -9 22 41 58 46
n = 3 1 56 69 76 66

ρ = 20%, poisson, n = 2 56 86 78 59 59
n = 3 78 93 83 69 76

thomas, n = 2 -20 25 19 -9 -46
n = 3 7 64 53 23 5

lgcp, n = 2 29 75 64 41 33
n = 3 63 88 76 56 57

Table 3: Empirical gains in percent, see (5.1), of the median based estimator for different
values of kn. The empirical results are based on 1000 replications generated on [−n, n]2

for n = 2, 3 for the models poisson, thomas, lgcp where ρ = 10% or 20% of points are
deleted to each configuration. This corresponds to the case (C) described in details above.
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A Proofs

In all the proofs, κ denotes a generic constant which may be different from line to
line. For k = (k1, . . . , kd)

⊤ ∈ Zd, we denote by |k| the norm, |k| = max(|k1|, . . . , |kd|).

A.1 Proof of Proposition 4.1

Proof. Assumption (ii-1) corresponds to Proposition 3.2.

Assumptions (ii-2) and (ii-3). By definition of X,

√
2πλcnP(Nn,0 = ⌊tn⌋ | ξ) =

(∫
Cn,0

ξ(s)ds
)⌊tn⌋

e
−

∫
Cn,0

ξ(s)ds

⌊tn⌋⌊tn⌋e−⌊tn⌋ vn

where

vn =

√
λcn
⌊tn⌋

√
2π⌊tn⌋⌊tn⌋+1/2e−⌊tn⌋

⌊tn⌋!
.

Since tn/(λcn) → 1 as n → ∞, then using Stirling’s Formula we obviously have
vn → 1 as n → ∞. Now using the notation Tn = ⌊tn⌋−1

∫
Cn,0

ξ(s)ds, we rewrite the
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first equation as follows

(vn)
−1
√

2πλcnP(Nn,0 = ⌊tn⌋ | ξ) = T ⌊tn⌋
n e⌊tn⌋(1−Tn) = AnBn

where An and Bn are defined by

An = e−⌊tn⌋(Tn−1)2/2 and Bn = e⌊tn⌋(log Tn−(Tn−1)+(Tn−1)2/2).

Since E |ξ(0)|2+δ < ∞ for some δ > 2/η where η is given by Assumption (iv) we
ensure that α2,∞ = O(m−ν) for some ν > d(2+δ)/δ. Therefore, we can apply Guyon
(1991, Theorem 3.3.1) and show that there exists τ > 0 such that

√
λcn(In − 1) →

N (0, τ 2) in distribution where In = (λcn)
−1
∫
Cn,0

ξ(s)ds. To compute τ 2, we observe

that using the definition of a Cox point process

Var(Nn,0) = Var(n(XCn,0)) = E
(
Var(n(XCn,0) | ξ)

)
+Var

(
E
(
n(XCn,0)

)
| ξ
)

= λcn +Var

∫

Cn,0

ξ(s)ds.

We use Assumption (iii) and Lemma A.1 to deduce that as n → ∞

Var

∫

Cn,0

ξ(s)ds ∼ λ2cn

∫

Rd

(g(w)− 1)dw

which leads to Var(
√
λcnIn) ∼ λ

∫
Rd(g(w)− 1)dw as n → ∞. From the definition of

tn and Slutsky’s Lemma, it can be shown that
√

⌊tn⌋(Tn − In) → 0 in probability

which leads to Tn → 1 in probability and
√

⌊tn⌋(Tn− 1) → N (0, τ 2) in distribution.

We deduce that An → A = e−τ2L2/2 in distribution, where L ∼ N (0, 1), which,
by the uniform integrability of the sequence (An)n, leads to An → A in L1. Now a

Taylor expansion shows that there exists T̃n ∈ (0 ∧ (Tn − 1), 0 ∨ (Tn − 1)) such that

| log(Bn)| = ⌊tn⌋|Tn − 1| T̃ 2
n

1 + T̃n

≤ ⌊tn⌋(Tn − 1)2
|Tn − 1|
T̃n + 1

.

It is clear that T̃n tends to 0 in probability as n → ∞, which yields that log(Bn) → 0
and Bn → 1 in probability by Slutsky’s Lemma. Again, the uniform integrability
assumption of the sequence (Bn)n implies that Bn → 1 in L1. Since |AnBn − A| ≤
|An−A|+ |A||Bn−1|, we conclude that AnBn → A in L1 as n → ∞. In other words
as n → ∞

√
2πλcnP(N = ⌊tn⌋) ∼ v−1

n E
(√

2πλcnP(Nn,0 = ⌊tn⌋ | ξ)
)
→ E(A).

Using the definition of the moment generating function of a χ2
1 distribution, we have

E(A) = (1 + τ 2)−1/2 whereby we deduce that

√
cnP(N = ⌊tn⌋) →

(
2πλ(1 + τ 2)

)−1/2
=
(
2πσ2

)−1/2

with σ2 = λ+ λ2
∫
Rd(g(w)− 1)dw.
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A.2 Proof of Theorem 4.2

Proof. We focus only on (a) as (b) follows from (a), Slutsky’s Lemma and Assump-
tion (ii-2). Let tn = λcn + an. By definition

F̂ (tn;Z)− FZ(tn) =
1

kn

∑

k∈Kn

(
1(Zn,k ≤ tn)− P(Zn,k ≤ tn)

)
.

We let (εn)n≥1 be a sequence of real numbers such that εn → 0 and εnc
1/d
n → ∞

as n → ∞.We denote by Z−
n,k = n(X ∩ C−

n,k) + Uk where C−
n,k is the erosion of the

cell Cn,k by a closed ball centered at k and with radius εnc
1/d
n . Two cells C−

n,k and

C−
n,k′ for k, k′ ∈ Kn (k 6= k′) are therefore at distance greater than 2εnc

1/d
n . To prove

Theorem 4.2 (a), we use the blocking technique introduced by Ibragimov and Linnik
(1971) and applied to spatial point processes by Guan and Loh (2007); Guan et al.
(2007) and Prokešová and Jensen (2013). To this end, we need additional notation.
For any n ≥ 1 and k ∈ Kn, let t−n = λ|C−

n,k| + 1/2 = λ(1 − εn)
dcn + 1/2 and let

(Z̃−
n,k, k ∈ Kn) be a collection of independent random variables such that Z̃−

n,k

d
= Z−

n,k.
Finally we define the random variables Dn,k by

Dn,k = 1(Zn,k ≤ tn)− P(Zn,k ≤ tn)− 1(Z−
n,k ≤ t−n ) + P(Z−

n,k ≤ t−n ).

We decompose the proof into three steps. As n → ∞, we prove that
Step 1. Dn/

√
kn → 0 in probability where Dn =

∑
k∈Kn

Dn,k.

Step 2. for any u ∈ R, φ−
n (u) − φ̃−

n (u) → 0 as n → ∞ where i =
√
−1, φ−

n (u) =

E(eiuS
−

n /
√
kn) and φ̃−

n (u) = E(eiuS̃
−

n /
√
kn). This will imply that (S−

n − S̃−
n )/

√
kn → 0

in probability where

S−
n =

∑

k∈Kn

1(Z−
n,k ≤ t−n )− P(Z−

n,k ≤ t−n ) and S̃−
n =

∑

k∈Kn

1(Z̃−
n,k ≤ t−n )− P(Z̃−

n,k ≤ t−n ).

Step 3. S̃−
n /

√
kn → N (0, 1/4) in distribution.

The conclusion will follow directly from Steps 1-3 and Slutsky’s Lemma.

Step 1. To achieve this step, we prove that k−1
n Var(Dn) → 0 as n → ∞. We have

1

kn
Var(Dn) =

1

kn

∑

k,k′∈Kn

|k−k′|≤1

Cov(Dn,k, Dn,k′) +
1

kn

∑

k,k′∈Kn

|k−k′|>1

Cov(Dn,k, Dn,k′).

Let k, k′ ∈ Kn k 6= k′, Assumption (i) asserts that d(Cn,k, Cn,k′) = |k − k′ − 1|c1/dn .
Since Dn,k ∈ F(Cn,k) and Dn,k′ ∈ F(Cn,k′), we have from Zhengyan and Chuanrong
(1996, Lemma 2.1)

Cov(Dn,k, Dn,k′) ≤ 4αcn,cn(|k − k′ − 1|c1/dn )

≤ 4cnα(|k − k′ − 1|c1/dn ) = O(|k − k′ − 1|−d(1+η)c−η
n ).

15



Since the series
∑

k∈Zd\{0} |k|−d(1+η) is convergent, it is clear that

1

kn

∑

k,k′∈Kn

|k−k′|>1

Cov(Dn,k, Dn,k′) = O(c−η
n ) (A.1)

which tends to 0 as n → ∞. From Cauchy-Schwarz’s inequality and since the vari-
ables Dn,k are identically distributed

∣∣∣ 1
kn

∑

k,k′∈Kn

|k−k′|≤1

Cov(Dn,k, Dn,k′)
∣∣∣ ≤ 1

kn

∑

k,k′∈Kn

|k−k′|≤1

√
Var(Dn,k) Var(Dn,k′)

≤ Var(Dn,0)
1

kn

∑

k,k′∈Kn

|k−k′|≤1

1

≤ 3d Var(Dn,0).

Thus, Step 1 is achieved once we prove that VarDn,0 → 0 as n → ∞. A straightfor-
ward calculation yields that

Var(Dn,0) = P(Zn,0 ≤ tn)(1− P(Zn,0 ≤ tn)) + P(Z−
n,0 ≤ t−n )(1− P(Z−

n,0 ≤ t−n ))

+ 2P(Zn,0 ≤ tn)P(Z
−
n,0 ≤ t−n )− 2P

(
Zn,0 ≤ tn, Z

−
n,0 ≤ t−n

)
.

Let ∆j the unit cube centered at j ∈ Zd, let Jn be the subset of Zd of cubes ∆j

which intersect Cn,0. We denote by Yn,j the following random vector

Yn,j =

(
Un,0

jn
+ 1(u ∈ Cn,0 ∩∆j),

Un,0

jn
+ 1(u ∈ C−

n,0 ∩∆j)

)⊤

where jn = |Jn| satisfies jn ∼ cn as n → ∞. We have (Zn,0, Z
−
n,0)

⊤ =
∑

j∈Jn
Yn,j

and we remark that supn≥1 supj∈Jn
‖Yn,j‖∞ < ∞. Since εn → 0 and c

1/d
n εn → ∞ as

n → ∞, we can apply Lemma A.1 (c) to derive

Var(Zn,0) ∼ Var(Z−
n,0) ∼ Cov(Zn,0, Z

−
n,0) ∼

1

12
+ σ2cn

where σ2 = λ+ λ2
∫
Rd(g(w)− 1)dw. In other words,

j−1
n Var((Zn,0, Z

−
n,0)

⊤) → Σ = σ2

(
1 1
1 1

)
(A.2)

which is a matrix with rank 1. By combining this with Assumption (iv), we can
apply Theorem A.2 to get as n → ∞

c−1/2
n

(
Zn,0 − E(Zn, 0), Z

−
n,0 − E(Z−

n,0)
)⊤ → N (0,Σ)

in distribution. Since t−n = E(Z−
n,0) and E(Zn,0)−tn = 1/2−an = o(c

1/2
n ) by definition

of tn, an application of Slutsky’s Lemma yields that

c−1/2
n

(
Zn,0 − tn, Z

−
n,0 − t−n )

)⊤ → N (0,Σ)
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in distribution as n → ∞ whereby we deduce that

P(Zn,0 ≤ tn) → 1/2 and P(Z−
n,0 ≤ t−n ) → 1/2. (A.3)

Rose and Smith (1996) proved that if U = (U1, U2)
⊤ follows a bivariate normal

distribution with mean 0, variance 1 and correlation ρ, P(U1 ≤ 0, U2 ≤ 0) =
1/4 + sin−1(ρ)/2π which equals to 1/2 when ρ = 1. From (A.2), this shows that
P(Zn,0 ≤ tn, Z

−
n,0 ≤ t−n ) → 1/2 as n → ∞. As a consequence, Var(Dn,0) → 0 which

combined with (A.1) leads to k−1
n Var(Dn) → 0 as n → ∞.

Step 2. This step is the core of the blocking technique. We mimic the proof here.
We label the cells C−

n,k by C1, . . . , Ckn such that for any j = 1, . . . , kn, the sequence
(Cj) forms an increasing sequence of domains. Let f denote the bijection f : Kn →
{1, . . . , kn}. Let Vj = eiu(1(Zn,f−1(j)≤t−n )−P(Z

n,f−1(j)≤t−n ))/
√
kn . Then

φ−
n (u) = E

kn∏

j=1

Vj and φ̃−
n (u) =

kn∏

j=1

E(Vj).

and

|φ−
n (u)− φ̃−

n (u)| ≤
kn−1∑

j=1

∣∣E
( j+1∏

s=1

Vs

)
− E

( j∏

s=1

Vs

)
E(Vj+1)

∣∣.

Let Aj =
∏j

s=1 Vs. Clearly, Aj ∈ F(∪j
s=1C

−
n,f−1(s)) and Vj+1 ∈ F(C−

n,f−1(j+1)), | ∪
j
s=1

C−
n,f−1(s)| = j(1−εn)

dcn, |C−
n,f−1(j+1)| = (1−εn)

dcn and d(∪j
s=1C

−
n,f−1(s), C

−
n,f−1(j+1)) ≥

2εnc
1/d
n . Since Aj and Vj+1 are bounded random variables, we have the following

upper-bound on their covariance by means of the strong mixing coefficient, see
Zhengyan and Chuanrong (1996, Lemma 2.1)

Cov(Aj, Vj+1) ≤ 4αj(1−εn)dcn,(1−εn)dcn(2εnc
1/d
n )

≤ 4jcn sup
p

αp,p(2εnc
1/d
n )

p

≤ 4cnknO(ε−d(1+η)
n c−(1+η)

n ) = O(knε
−d(1+η)
n c−η

n )

whereby we deduce that |φ−
n (u) − φ̃−

n (u)| = O(k2
nc

−η
n ε

−d(1+η)
n ). Now we can fix the

sequence (εn)n≥1. Specifically, we set εn = c
(η′−η)/d(1+η)
n for some 0 < η′ < η.

This choice ensures that εn → 0, c
1/d
n εn = c

(1+η′)/d(1+η)
n → ∞ and yields that

|φ−
n (u)− φ̃−

n (u)| = O(k2
n/c

η′

n ) which tends to 0 as n → ∞ by Assumption (i).

Step 3. Since Z̃−
n,k

d
= Z−

n,k and since P(Z−
n,k ≤ t−n ) → 1/2 as n → ∞ from Step 2, we

deduce that

Var(S̃−
n ) =

∑

k∈Kn

P(Z̃−
n,k ≤ t−n )(1− P(Z̃−

n,k ≤ t−n ))

= knP(Z̃
−
n,0 ≤ t−n )(1− P(Z̃−

n,0 ≤ t−n )) ∼ kn/4

as n → ∞. Since (1(Z̃−
n,k ≤ t−n ), k ∈ Kn) is a collection of bounded and independent

random variables, Step 3 follows from an application of Lyapounov Theorem.
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A.3 Proof of Theorem 4.3

Proof. (a) Let us define for any t ≥ 0

An =

√
kn
cn

(
M̂e(Z)−MeZ

)
and Bn(t) =

√
kn
cn

(
FZ(t)− F̂ (t;Z)

fZ(MeZ)

)
.

We have to prove that An − Bn(MeZ) converges in probability to 0 as n → ∞.
The proof is based on the application of Ghosh (1971, Lemma 1) which consists in
satisfying the two following conditions:
(I) for all δ > 0, there exists ε = ε(δ) such that P(|Bn(MeZ)| > ε) < δ.
(II) for all y ∈ R and ε > 0

lim
n→∞

P(An ≤ y, Bn(MeZ) ≥ y + ε) = lim
n→∞

P(An ≥ y + ε, Bn(MeZ) ≤ y) = 0.

(I) is in particular fulfilled if we prove that VarBn(MeZ) = O(1). The proof of

Theorem 4.2 shows in particular that Var F̂ (MeZ ;Z) = O(k−1
n ) as n → ∞. By

Assumption (ii), we are led to

VarBn(MeZ) =
1

cnfZ(MeZ)2
Var(

√
knF̂ (MeZ ;Z)) = O(1).

(II) Let y ∈ R (and without loss of generality assume y ≥ 0). By definition of the
sample median, we have

{An ≤ y} =
{
M̂e(Z) ≤ MeZ + y

√
cn/kn

}

=

{
1

2
≤ F̂

(
MeZ + y

√
cn/kn

)}

=
{
Bn

(
MeZ + y

√
cn/kn

)
≤ yn

}

where

yn =
√
kn/cn

1

fZ(MeZ)

(
FZ

(
MeZ + y

√
cn/kn

)
− FZ(MeZ)

)
.

We now intend to prove that as n → ∞, yn → y and B̃n = Bn(MeZ + y
√

cn/kn)−
Bn(MeZ) → 0 in probability. First, since Z admits a density everywhere, there exists
τn ∈ (MeZ ,MeZ + y

√
cn/kn) such that yn = y fZ(τn)/fZ(MeZ). From (3.2)

fZ(τn)

fZ(MeZ)
=

P(N = ⌊τn⌋)
P(N = ⌊MeZ⌋)

which tends to 1 by Assumption (ii-2) and implies the convergence of yn towards

y. Second, we show that Var(B̃n) → 0 as n → ∞ by decomposing the variance

as follows. Let B̃n,k = 1(MeZ ≤ Zn,k ≤ MeZ + y
√
cn/kn) − P(MeZ ≤ Zn,k ≤

MeZ + y
√

cn/kn)

18



Var(B̃n) =
1

cnfZ(MeZ)2
1

kn

∑

k,k′∈Kn

Cov(B̃n,k, B̃n,k′)

≤ κ

kn

∑

k,k′∈Kn

|k−k′|≤1

|Cov(B̃n,k, B̃n,k′)|+
κ

kn

∑

k,k′∈Kn

|k−k′|>1

|Cov(B̃n,k, B̃n,k′)|. (A.4)

We follow here the proof of Step 1 of Theorem 4.2. For any k, k′ ∈ Kn k 6= k′,
Cov(B̃n,k, B̃n,k′) = O(|k − k′ − 1|−d(1+η)c−η

n ). So

1

kn

∑

k,k′∈Kn

|k−k′|>1

|Cov(B̃n,k, B̃n,k′)| = O(c−η
n )

which tends to 0 as n → ∞. The first double sum of (A.4) is upper-bounded by

3dκVar(B̃n,0) and

Var(B̃n,0) = P(MeZ ≤ Zn,0 ≤ MeZ+y
√
cn/kn)

(
1−P(MeZ ≤ Zn,0 ≤ MeZ+y

√
cn/kn)

)
.

Since MeZ = λcn + o(
√
cn) and MeZ + y

√
cn/kn = λcn + o(

√
cn) for every y ∈ R by

Assumption (i)-(ii), then we can apply (A.3) which leads to P(Zn,0 ≥ MeZ) → 1/2,

P(Zn,0 ≤ MeZ + y
√

cn/kn) → 1/2 and finally to Var(B̃n,0) → 0 and B̃n → 0 in
probability as n → ∞.

We can now conclude. For all ε > 0, there exists n0(ε) such that for all n ≥ n0(ε),
yn ≤ y + ε/2. Therefore for n ≥ n0(ε)

P(An ≤ y, Bn(MeZ) ≥ y + ε) = P(Bn(MeZ + y
√

cn/kn) ≤ yn, Bn(MeZ) ≥ y + ε)

≤ P(Bn(MeZ + y
√

cn/kn) ≤ y+ ε/2, Bn(MeZ) ≥ y + ε)

≤ P
(∣∣∣Bn(MeZ + y

√
cn/kn)− Bn(MeZ)

∣∣∣ ≥ ε/2
)

which tends to 0 as n → ∞ and (II) is proved.

(b) It is sufficient to combine Theorem 4.2 (b) and Theorem 4.3 (a). From Slutsky’s
Lemma and by Assumptions (ii-2)-(ii-3), the following convergence in distribution
holds as n → ∞ √

kn/cnsn

(
M̂e(Z)−MeZ

)
→ N (0, 1/4)

where sn =
√
cnP(N = ⌊λcn⌋). Since M̂e(Z) = cnM̂e(Ž), MeZ = cnMeŽ and |Wn| =

kncn, this can be rewritten as

|Wn|1/2sn
(
M̂e(Ž)−MeŽ

)
→ N (0, 1/4).

From (B.1) and by Assumptions (i)-(ii), MeŽ = λ+O(cℓ−1
n ) and

√
kncnc

ℓ−1
n → 0 as

n → ∞. Hence, a last application of Slutsky’s Lemma concludes the proof.
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A.4 Auxiliary result

We present here an auxiliary result on the control of the covariance of counting
variables. We define Cτ the cube centered at 0 with volume τ dcn, i.e.

Cτ =
{
u = (u1, . . . , ud)

⊤ ∈ Rd : |ul| ≤ τc1/dn /2, l = 1, . . . , d
}
.

Lemma A.1. Under the Assumption (iii), we have the two following statements.
(a) For any τ ∈ (0, 1]

Var(n(XCτ )) ∼ |Cτ |
(
λ+ λ2

∫

Rd

(g(w)− 1)dw

)

as n → ∞.
(b) Let ε ∈ (0, 1) then

Cov(n(XC1−ε
), n(XC1)) ∼ λ|C1−ε|+ λ2|C1−ε/2|

∫

Rd

(g(w)− 1)dw

as n → ∞.
(c) Let (εn)n≥1 be a sequence of real numbers such that εn → 0 and c

1/d
n εn → ∞ as

n → ∞, then

Var(n(XC1−εn
)) ∼ Var(n(XC1)) ∼ Cov(n(XC1−εn

), n(XC1))

∼ cn

(
λ+ λ2

∫

Rd

(g(w)− 1)dw

)

as n → ∞.

Proof. (a) is a classical result, see e.g. Heinrich and Prokešová (2010). As we need
to refer to specific equations, we report the proof here. Using Campbell Theorem
and since X admits a pair correlation function

Var(n(XCτ )) = λ|Cτ |+
∫

Rd

∫

Rd

1(u ∈ Cτ )1(v ∈ Cτ )(g(u− v)− 1)dudv

= λ|Cτ |+ λ2

∫

Rd

|Cτ ∩ (Cτ )−w|(g(w)− 1)dw

= λ|Cτ |+ λ2

∫

C2τ
|Cτ ∩ (Cτ )−w|(g(w)− 1)dw (A.5)

= λ|Cτ |+ λ2

∫

C2τ

d∏

l=1

(τc1/dn − |wl|)(g((w1, . . . , wd)
⊤)− 1)dw1 . . . dwd

(A.6)

∼ |Cτ |
(
λ+ λ2

∫

Rd

(g(w)− 1)dw

)

by Assumption (iii).
(b) For brevity, let Kε denote the covariance to evaluate. Following (a) we have

Kε = λ|C1−ε ∩ C1|+
∫

Rd

∫

Rd

1(u ∈ C1−ε)1(v ∈ C1)(g(u− v)− 1)dudv

= λ|C1−ε|+ λ2

∫

Rd

|C1−ε ∩ (C1)−w|(g(w)− 1)dw.
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Let w = (w1, . . . , wd)
⊤. We can check that

|C1−ε ∩ (C1)−w| =
{

0 if w ∈ Rd \ C2−ε∏d
l=1

((
1− ε

2

)
c
1/d
n − |wl|

)
if w ∈ C2−ε

whereby we deduce using (A.5)-(A.6) and Assumption (iii) that

Kε = λ|C1−ε|+ λ2

∫

C2−ε

d∏

l=1

(
(1− ε/2)c1/dn − |wl|

)(
g((w1, . . . , wd)

⊤)− 1
)
dw1 . . . dwd

= λ|C1−ε|+ λ2

∫

C2−ε

|C1−ε/2 ∩ (C1−ε/2)−w|(g(w)− 1)dw

∼ λ|C1−ε|+ λ2|C1−ε/2|
∫

Rd

(g(w)− 1)dw

as n → ∞.
(c) The assumptions on the sequence (εn) allow us to apply (a)-(b) which leads to
the result since |C1| ∼ |C1−εn | ∼ |C1−εn/2| ∼ cn as n → ∞.

A.5 A central limit theorem

We present here a central limit theorem for stationary random fields with asymptotic
covariance matrix not necessarily positive definite. It is very close to Guyon (1991,
Theorem 3.3.1) and to Karáczony (2006, Theorem 1) but we were not able to find
it in the following form in the literature.

Theorem A.2. Let (Xk, k ∈ Zd) be a stationary random field in a measurable space
S. Let Kn ⊂ Zd with kn = |Kn| → ∞ as n → ∞. For any n ≥ 1 and k ∈ Kn,
we define Yn,k = fn,k(Xk) where fn,k : S → Rp for some p ≥ 1 is a measurable
function. We denote by Sn =

∑
k∈Kn

Yn,k and by Σn = Var(Sn) and assume that for
any n ≥ 1, k ∈ Kn, EYn,k = 0. We also assume that
(I) supn≥1 supk∈Kn

‖Yn,k‖∞ < ∞.

(II)There exists η > 0 such that α2,∞(m) = O(m−d(1+η)).
(III) There exists Σ ≥ 0 a (p, p) matrix with rank 1 ≤ r ≤ p such that k−1

n Σn → Σ
as n → ∞.
Then, k

−1/2
n Sn → N (0,Σ) in distribution as n → ∞.

We present Theorem A.2 for bounded random vectors and with only one mix-
ing coefficient, namely α2,∞. It can obviously be generalized along similar lines as
in Guyon (1991, Theorem 3.3.1).

Proof. Assume Σ > 0, then for n large enough k−1
n Σn ≥ Σ/2 > 0, which com-

bined with Assumptions (I)-(II) allows us to apply Karáczony (2006, Theorem 1) to
conclude the result.

The end of the proof follows the same arguments as the proof of a central
limit theorem for triangular arrays of conditionally centered random fields obtained
by Coeurjolly and Lavancier (2013, Theorem 2). If Σ is not positive definite, we can
find an orthonormal basis (h1, . . . , hp) of Rp where the fi’s are eigenvectors of Σ.
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We let (f1, . . . , fr) be the basis of the image of Σ and (fr+1, . . . , fp) be the basis of
its kernel. Let also HIm (resp. HKer) be the matrix formed by the column vectors
of (f1, . . . , fr) (resp. (fr+1, . . . , fp)). Similarly for v ∈ Rp, we denote by vj its jth
coordinate in the basis of (f1, . . . , fp), vIm = (v1, . . . , vr) and vKer = (vr+1, . . . , vp).

Using the Cramer-Wold device, we need to prove that for any v ∈ Rp, v⊤k
−1/2
n Sn

converges towards a Gaussian random variable. We have

v⊤k−1/2
n Sn = v⊤ImH

⊤
Imk

−1/2
n Sn + v⊤KerH

⊤
Kerk

−1/2
n Sn.

Let S ′
n =

∑
k Y

′
n,k where Y ′

n,k = H⊤
ImYn,k. The random variables Y ′

n,k are bounded

variables for any n ≥ 1 and k ∈ Kn. By assumption (III), k−1
n Var(S ′

n) → H⊤
ImΣHIm

which is a positive definite matrix since r ≥ 1. Therefore from the first part of
the proof, v⊤ImH

⊤
Imk

−1/2
n Sn tends to a Gaussian random variable in distribution as

n → ∞. By Slutsky’s Lemma, the proof will be done if v⊤KerH
⊤
Kerk

−1/2
n Sn tends to 0

in probability as n → ∞. Since, H⊤
KerΣHKer = 0, the expected convergence follows

from

Var(v⊤KerH
⊤
Kerk

−1/2
n Sn) = v⊤KerH

⊤
Kerk

−1
n ΣnHKervKer

= v⊤KerH
⊤
Ker(k

−1
n Σn − Σ)HKervKer

≤ ‖vKer‖ ‖HKer‖ ‖k−1
n Σn − Σ‖

which tends to 0 by Assumption (III).

B Additional comments and figures

This section contains additional comments and several figures related to Section 5.

B.1 The way of jittering a sample of counts

We could think about generalizing (3.1) slightly and introduce a function of a uni-
form random variable, i.e. define for any k ∈ Kn

Zn,k = n(XCn,k
) + ϕ−1(Uk) = Nn,k + ϕ−1(Uk)

where ϕ : [0, 1] → [0, 1] is a continuously differentiable increasing function. The cdf
of Z would be in that case

FZ(t) = FN(⌊t⌋ − 1) + P (N = ⌊t⌋)ϕ(t− ⌊t⌋)
and for any t /∈ N, Z would admit a density fZ at t given by

fZ(t) = P (N = ⌊t⌋)ϕ′(t− ⌊t⌋).
When t ∈ N, since (FZ(t + h) − FZ(t))/h tends to P(N = ⌊t⌋)ϕ′(0) when h → 0+

and to P(N = ⌊t⌋)ϕ′(1) when h → 0−, Z would also admit a density at t if we add
the condition ϕ′(0) = ϕ′(1). Our Theorem 4.3 requires however another assumption.
Namely, we need to assume that for any tn = λcn+O(

√
cn/kn), fZ(tn)/fZ(λcn) tends

to 1. To this end, we would have to combine Assumption (ii-2), with an assumption
like inft ϕ

′(t) = supt ϕ
′(t). This explains why we focused on the case ϕ(t) = t in

Section 3 and in the presentation of our asymptotic results in Section 4.
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B.2 Rule of thumb under the Poisson case

In this section, we want to examine the value of the true median of Z under the
Poisson case. Even if this is useless we also had a look at different functions ϕ.
Figure 1 presents the true median of N and Z = N + ϕ−1(U) where N follows a
Poisson distribution with parameter ν and where U is a uniform random variable on
[0, 1]. We considered the cases ϕ(t) =

√
t, t, t2 and examined the true median minus

ν in terms of ν. First, we recover a result obtained by Adell and Jodrá (2005): when
ν is an integer, the median of N equals ν and for other values of ν, it lies in the
interval [ν − log(2), ν + 1/3]. It is worth interesting to observe that for the three
functions investigated the choice ϕ(t) = t leads us to conjecture that when ν is large
MeP(ν) is very close to ν + 1/3.

So, we could use the rule of thumb derived under the Poisson case and modify
the jittered estimator (3.3) as follows

λ̂J,2 = λ̂J − 1

3cn
= Me

Ž
− 1

3cn
. (B.1)

Since |Wn|1/2/cn =
√

kn/cn → 0 by Assumption (i), this produces no differences

asymptotically: λ̂J,2 has the same behaviour as λ̂J and satisfies the central limit
theorem given by (4.3) or Corollary 4.4. We compared λ̂J and λ̂J,2 in the framework
of the simulation study presented in Section 5. The evidence of better empirical
results was unclear which explains why we did not present λ̂J,2 before and kept λ̂J

in the simulation study.

0 2 4 6 8 10

−
0.

5
0.

0
0.

5
1.

0

ν

M
ed

ia
n

MeP(ν) − ν
MeZ − ν;  ϕ(t) = t
MeZ − ν;  ϕ(t) = t2

MeZ − ν;  ϕ(t) = t
1 3

Figure 1: Plot of sample medians in terms of ν of 106 replications of random variables
following a P(ν) and P(ν) + ϕ−1(U) for ϕ(t) = t, t2 and

√
t.

B.3 Examples of pattern produced in the simulation study

Figure 2 illustrates spatial point processes described in Section 5.
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Figure 2: Simulation of point processes models with intensity λ = 50 generated in
[−1, 1]2 for the first row and in [−2, 2]2 for the second row. Top Left: thomas process with
parameter κ = 10 and σ = 0.05; Top Right: lgcp with exponential covariance function with
variance σ2 = 1 and scale parameter φ = 0.05; Bottom Left: illustrates the contamination
(B). To a realization of a poisson point process (empty circles) is added a configuration
of (here) 10.5% (filled circles) in a small square domain included in the initial domain;
Bottom Right: illustrates the contamination (C). The resulting point pattern corresponds
to the configuration of empty circles which is obtained by thinning the initial pattern (here
a realization of a poisson point process). 18.9% of points are deleted in this example.
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B.4 Boxplots of standard and median-based estimates of λ
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Figure 3: Boxplots of 1000 estimates of the intensity λ = 50 from different models of
spatial point processes generated in [−n, n]2. The point patterns are pure simulations (case
(A) described in Section 5) of poisson (top left), thomas (top right) and lgcp (bottom
left). In each cell of two boxplots the left one (resp. the right one) corresponds to the case
n = 1 (resp. n = 2).
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Figure 4: Boxplots of 1000 estimates of the intensity λ = 50 from different models of
spatial point processes generated in [−n, n]2. The point patterns are contaminated simu-
lations of poisson (first row), thomas (second row) and lgcp (third row) point pattern.
The contamination corresponds to the case (B): a proportion of ρ = 10% (first column) or
ρ = 20% of points is added to the initial configuration. In each cell of two boxplots the left
one (resp. the right one) corresponds to the case n = 1 (resp. n = 2).26
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Figure 5: Boxplots of 1000 estimates of the intensity λ = 50 from different models of
spatial point processes generated in [−n, n]2. The point patterns are contaminated simu-
lations of poisson (first row), thomas (second row) and lgcp (third row) point pattern.
The contamination corresponds to the case (C): a proportion of ρ = 10% (first column) or
ρ = 20% of points from the initial configuration is deleted. In each cell of two boxplots the
left one (resp. the right one) corresponds to the case n = 2 (resp. n = 3).27
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