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Abstract

This paper describes the statistical analysis of recorded data parameters of electrical battery ageing
during electric vehicle use. These data permit traditional battery ageing investigation based on the
evolution of the capacity fade and resistance raise. The measured variables are examined in order
to explain the correlation between battery ageing and operating conditions during experiments.
Such study enables us to identify the main ageing factors. Then, detailed statistical dependency
explorations present the responsible factors on battery ageing phenomena. Predictive battery ageing
models are built from this approach. Thereby results demonstrate and quantify a relationship
between variables and battery ageing global observations, and also allow accurate battery ageing
diagnosis through predictive models.
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1. Introduction

Lithium-ion rechargeable batteries have experienced a rapid growth in electric vehicles utiliza-
tions, due to their high energy and power density [1, 2]. However, the overall performance of
batteries is not constant along the vehicle life. Reduction of battery performances are caused by
various mechanisms and is characterized by a capacity fade as well as an impedance augmentation
[3, 4, 5]. For an electric vehicle (EV) utilization, the battery ageing phenomena are characterized
by a diminution of the global vehicle autonomy available with a full charge, whereas the global
resistance augmentation provokes a reduction of peak acceleration.

These drawbacks are crucial to minimize the cost of the battery for EV uses [6]. Thus, significant
efforts have been achieved in order to understand the battery ageing process [7, 8, 9, 10, 11, 12].
Ageing phenomena are very complex due to the multi-scale and multi-physic phenomena interactions
between the different physico-chemical reaction [13], so it is still challenging to implement a relevant
model [14]. The aim for EV applications is to estimate the ageing level of the battery with few
measurements, and with low complexity algorithms, in order to be compatible with industrial
integration. Furthermore, ageing is a complex phenomenon, difficult to estimate with only few
experiments and online constraints. All these constraints create a complicated compromise between
the model accuracy and its complexity [15].
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Most battery ageing studies are based on direct factors dependency and have limited predic-
tion ability [16, 17, 18, 19, 20, 21]. These investigations mainly rely on simulated data, under
controlled conditions, which is not totally representative of a real EV use [22]. This may occult
ageing factor interactions [23]. Thus, real uses studies are particularly interesting in battery ageing
understanding as it contains complementary informations than laboratory test. On the other hand,
field testing induces major challenges as it requires long and complex protocols. Moreover, EV
real-life utilization, under uncontrolled settings generates a large set of parameters which induces
battery degradations.

In this work, a new method for battery ageing comprehension in EV conditions is presented
to avoid drawbacks of current ageing studies. More precisely, statistical methods are used to
identify the correlation between global ageing phenomena and operating conditions to allow an
ageing estimation. Advantage of such study is that it permits the detection of possible unknown or
misunderstood interactions, because no physical process is taken into account in the first analysis
step. Furthermore, statistical methods enable us to obtain a quantification of dependences between
several variables as well as impacts of each variable on the battery ageing. This approach in a
battery ageing context is introduced in a recent study [24].

In this study, these methods are implemented to analyze the data obtained after a long test
period of real uses. Main objectives of this study are the interpretation of the measured global ageing
results and thereby the quantification of the impact of factors on each battery ageing phenomena.
In order to enhance battery degradation understanding with an innovative statistical approach, this
paper follows major steps :

• Collect entire recorded data during entire battery life

• Analyze the global battery life conditions

• Reduce the data with information conservation

• Identify and quantify the variables responsible of the battery degradation for each part of the
battery life, with possible set interactions

• Develop predictive ageing models based on direct relevant recorded parameters

This paper follows this methodology, presenting in the part 2 the data collection process. Then,
a macro analysis illustrates measured battery ageing results (part 3) followed by an exploration
of utilization conditions during the experiment (part 4), with the aim to explain ageing results.
This study demonstrates complex utilizations and leads to a deeper statistical approach in order
to identify factors responsible of battery ageing (part 5). This permits the construction of battery
ageing predictive models (part 5.4), based on statistical methods. Finally, this methodology is
discussed in part 6.

2. Data collection

2.1. Materials

This experiment is accomplished using an instrumented LiFeO4 (LFP) battery. The battery
uses 10 modules composed of LiFeBatt cells, with the same initial characteristics: a 3.2V nominal
voltage and a 15 Ah capacity. This battery design produces a nominal voltage of 400V with a total
capacity of 75 Ah and an energy density of 80 Wh/kg. Furthermore, the battery operates without
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thermal management. It is important to note that each full charge is done under a constant current,
until the maximal voltage of 3.6V is obtained, and includes a balancing period in order for every
parallel branch to have the same voltage and to avoid loss of the global battery capacity.

During each charge or discharge, numerous variables are recorded at 10 Hz frequency. These
variables are provided from vehicle position (longitude, latitude, altitude), its velocity (speed, GPS
speed), and environment (ambient temperature, altitude, latitude, longitude, velocity...) and inter-
nal battery parameters (cells temperature, voltage, current...). Table 1 presents a detailed presen-
tation of the 25 measured variables. Note that temperatures are measured on the surface of the
elements. The total dataset recorded, available for detailed investigations, represents about 27 Gb
only for utilization parts.

This test is distributed over a total period of 23 months with both uses and storage parts. The
complete process is composed of three different modes. The first one uses a unique electric car
(Figure 1), composed of a full electric power train. These driving experiments were done on the
Michelin private test circuit (Figure 2), with a positive cumulative elevation difference of 255 meters
by each 25 km lap [25]. In the second part of this test, the battery was stored in a controlled area
during five months. The third part consists of power cycles on a test bench. During the fourth
part, the battery had been reimplemented in a the electric car and used on the previous driving
cycle conditions.

To summarize, the experiment is segmented in eight sessions, each of them containing a typical
use period (cycle and/or storages) followed by a complete characterization (Figure 3).

The characterization tests (or check-up) always follow the same process. The tests are realized
on an air conditioned room maintained at 25◦C. Initially the battery is fully charged at C/9 and is
then entirely balanced. The battery is in rest during 1 hour before and after the charging period.
After this charging period, the battery is subject to three power discharge models. The first one
is a classic C/2 discharge and the two others are power discharge profiles chosen in the aim of
performing a characterization under controlled conditions. These driving profiles have been defined
according to the ARTEMIS Urbain [26] and the New European Driving Cycle (NEDC), helping to
obtain an exhaustive diagnosis of the battery ageing. Hence, the capacity values are obtained by
simple current integrations and the resistance values by current pulses.

2.2. Driving cycle

Driving experiments consisted in a repeated speed profile realized in the Michelin test circuit
[25]. Using such private circuit is primordial in order to perfectly control the desired drive cycle. The
same driving profile is realized by a unique professional driver reiterated over the whole experiment.
The vehicle generally runs two consecutive laps (50 km) before a charging period. The objective
and the advantage of a repeated speed profile is the observation of the consequence of battery ageing
over time considering all parameters. Therefore, it helps analyzing the evolution of ageing on all
different signals.

The driving cycle contains each of the different speed profiles to obtain a representative drive,
such as stops and starts, low speed parts, stiff accelerations, constant speed situations etc. Thus,
this profile represents the situations a battery can be faced with during its life in an electric vehicle
use. The driving cycle had been modified at the beginning of the experiment because the battery
elevation temperature was too high. The maximum speed limit initially provided at 140 km/h was
reduced to 100 km/h. This route generates elevated battery temperatures that obliged to modify
this profile to finally suppress such high accelerations and to fix a long period to a constant speed
of 100 km/h after a month of experiments (Figure 4).
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2.3. Storage cycle

During about four months, the battery was stored within a box controlled at a constant tem-
perature of 25◦C. This part of the experiment, done in the middle of the global process (session
5), permits to avoid a too intensive use of the battery which occults the calendar part of a battery
ageing. Furthermore, it is interesting to investigate corresponding ageing results obtained in com-
plete calendar conditions. This part is here important as a battery in use in an EV is stored a large
majority of its life (>90 % of the time), and ageing phenomena still occur during these periods.

2.4. Bench cycle

The bench cycle tests employ the same power profile as in driving cycle experiments, under a
constant ambient temperature fixed at 25◦. This profile is applied to the battery on a test bench
in order to reproduce the power circuit solicitations but in a controlled temperature area. Such
process permits to elude the environment effects (wind, rain, driver’s bias. . . ). Thus, the battery
characterization parts can be assimilated to a bench cycle period, with a different power profile.

This utilization mode is similar to a vehicle to grid (V2Grid) use, where it is a stationary
battery utilization. In this mode, some parameters such as distance or speed cannot be considered.
This induces the non continuity of these parameters depending on a driving utilization. However,
despite this particular stationary cycle, ageing process occurs during this kind of utilization, and
consequently the battery performances are altered.

3. Experiments results

3.1. General observations

A total of 13 077 kWh are delivered by the battery through the experiment, with a distance
of approximately 44 038 km covered by a unique electric vehicle, and the other part resulting of
bench tests. This corresponds to an average consumption of 218 Wh/km in vehicle uses. The
driving sessions consumptions are close to each other which produces a direct linearity between
the consumed energy and the distance. This notion induces our future choice during the ageing
analysis.

Furthermore, the regeneration part amounted to some 6% of the total output energy. Hence,
the total battery efficiency is near 91% which is a remarkable result [27, 28] (Table 2).

The battery was cycled a total time of 565 cumulative cycling days which represents around
20% of the global experiment time. To have an order of magnitude, in common vehicles the cycling
time is less than 8% [3]. Thus, in this experiment, the utilization was intensive compared to an
individual use, but the storage is still the main period of the battery life. Consequently, battery
storage has an important part on ageing for real vehicle utilization. Therefore, it is primordial to
examine these storage conditions for the ageing observations.

3.2. Capacity fade

A global consequence of an aged battery is the capacity fade [29, 30, 31, 32]. This characteristic
corresponds to a loss of active lithium ions over time and a decrease of the electrodes active surface
[33]. The obtained results show this phenomenon as the battery nominal capacity decrease over
days of use (Figure 5). Results also illustrate a loss of battery capacity in a nonlinear way with
delivered energy which induces a complex ageing process due to the linearity of every driving cycle
(Figure 6). However, the capacity fade is nearly a linear function of the experimental days. The
fluctuations are here probably the consequences of different use conditions. This point will be more
detailed in the following parts.
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3.3. Resistance growth

The other major impact of battery ageing is an augmentation of the global battery resistance
[34, 35, 36]. The achieved evolution of the resistance is a nonlinear evolution of the battery resistance
(Figure 5). Resistance evolution is here a major issue due to its complex behavior (Figure 6). The
resistance evolution decreased during the first session and increased after 2000 kWh delivered by
the battery, followed by a diminution during the long storage period (session 5), and finally in the
last two sessions the resistance value is relatively stable.

Chemically, an explanation of the battery resistance augmentation is, inter alia, the SEI (Solid
Electrolyte Interphase) formation and its expansion through the battery life [37, 38, 39]. This
phenomenon induces a diminution of the maximum available power that implies a lower maximum
acceleration of the vehicle. However, the chemical studies cannot totally explain the resistance be-
havior obtained here under real use conditions. Consequently, the aim of the paper is to understand
the factors responsible for these battery ageing variables evolutions.

4. Data analysis

The objective of the following part is to analyze more precisely the previous results and to
identify the most influent variables in battery degradations over time for both ageing consequences.
In order to pinpoint the impacting factors on the battery ageing, it is significant to study the
environmental conditions that the battery has undergone during its life. This part aims to explore
battery life conditions whether the battery is used or not, and to identify factors impacting the
battery health.

4.1. Calendar life conditions

Calendar conditions refer to the storage periods of the battery. According to several studies,
the relevant factors during battery storage are the initial State Of Charge (SOC), the storage time
and the ambient temperature [40, 41, 42]. In this experience the storage conditions are not fully
controlled. Hence, storages follow a real life use as the temperature is most often subject to climate
changes and the SOC is not controlled.

The most important notion in a calendar life is the storage time. Results presented in Table 3
represent longer cumulative storage time during fifth session which is composed only of a storage
period and of a complete characterization.

Furthermore, the storage temperatures study confirms the trend that most severe conditions
during the last part of experiments have been observed (sessions 5, 6 and 7). More specifically,
the battery storage temperatures are similar during the three first experiments. During the fourth
and eighth session of the experience, there is a considerable decrease of storage temperatures, due
to external climate, but is still an acceptable level for a battery [40]. On the contrary, during
the fifth, sixth and seventh sessions, the storage temperatures are high because of the test room
control temperature. This observation is in good agreement with the linear decrease of capacity
loss observed during these sessions (Figure 5, 6).

The storage initial SOC level is also one of the admitted factors of battery ageing during its
calendar life. According to these studies [32, 43], a high SOC level (> 70%), or a low one (< 30%),
engenders a huge potential disequilibrium on the electrode/electrolyte interface and this accelerates
chemical reactions. All through this experiment, the battery was under extreme SOC (> 90% or
<10%) quite often during each use session. However, most of storages happened during the fifth
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session (Table 3), and the SOC level is here considered at a critical low level (Figure 7). This
observation can also explain the ageing results of the fifth session.

Thus, these storage variables observations illustrate the important interactions between ageing
factors and storage conditions. It produces complex interactions, hence it is difficult to estimate
individually the impact of these variables in order to quantify the calendar life influencing on the
global battery ageing.

4.2. Duty cycle conditions

The level of constraints imposed on the battery during a driving test or a bench test leads
to different degradations. The variables known as impacting cycle ageing directly come from the
internal battery. Moreover, these variables result from the interaction between the utilization mode
and the environment conditions. To illustrate these interactions, the battery temperature is directly
impacted by the ambient temperature and the power delivered by the battery is affected by wind,
slope etc.

Firstly, the battery temperature during driving periods produces similar results as calendar
temperature study. The main observation is the high battery temperature during the bench test
sessions (6 and 7) due to the room temperature (Figure 8).

The peak current measured drops significantly over time (Figure 9). This is quite notable as this
maximum current instantly delivered takes place at the same time in the driving cycles. Thus the
battery is supposed to be subject to the same constraints for the driving sessions due to the constant
velocity profile. It is important to note that the bench sessions are not represented here because
the bench material limit reduces the peak demand. This diminution of the maximum current is
here interesting, as it is directly related to the battery degradations over time.

Moreover, ∆SOC represents the state of charge variation during a charge or a discharge [44].
It is an indicator of the battery use in term of the amount of charge transited. A high value of
∆SOC provokes a battery power loss [45, 46] and consequently the development of SEI which is
engendered by high discharge (or charge). The ∆SOC repartition illustrates the driving process
as most are between 30 and 50%, which is characteristic of the average discharge by each vehicle
run. Note that these conditions of a medium ∆SOC are not the most constraining situation for the
battery in terms of degradations. Moreover, there are no significant differences of this parameter
between each session (Figure 10). For the stationary cycles (sessions 6 and 7), the battery are
mainly used shortly, which explains the low ∆SOC values (∆SOC<10). Consequently there is no
possible conclusion based on the ∆SOC due to the close conditions between the sessions.

In order to examine the accuracy of the driving cycle through sessions, a driving pattern esti-
mator is calculated. This indicator is the Positive Kinetic Energy (PKE) [47]. This parameter is a
positive value resulting of the profile accelerations. Positive Kinetic Energy (PKE) is defined as the
sum of the differences between the squares of the final and initial speeds in successive acceleration,
divided by total trip distance D, where the speed v is expressed in meters per second:

PKE =

∑

i(v
2
i+1 − v2i )

D
, vi+1 > vi (1)

Thus, the obtained PKE values demonstrate the regularity of the driving profile through sessions
(Figure 11). The only exception occurs in the first session as the speed profile was initially defined
with accelerations through 140 km/h. Thereby, battery degradations differences between driving
sessions cannot be associated to the use mode or to the driver’s behavior, but to other parameters
variations.
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Other variables as average speed or charging voltage, may induce accelerated battery degrada-
tions. It is not the case here as during this experiment the charging strategy is always the same.
Hence, this does not permit the investigation of these ageing factors.

The obtained results are complex to interpret, based on a simple variables analysis due to the
several interactions inducing the battery degradation.

4.3. Summary of battery life conditions

This part of the study focuses on experiment conditions and highlights long and constraining
storage periods. Thus, it is primordial to consider the calendar ageing in a global ageing survey
since this represents a large part of the entire battery life. Many models exist to predict a calendar
ageing approximation but none help to obtain a good accuracy due to the interaction of each storage
condition [29].

The cycle ageing analysis produces illustrations of both ageing causes and consequences. Through
the experiments the peak power declines and on the other hand the ∆SOC repartition shows a rea-
sonable utilization in term of discharge depth. It is quite difficult to quantify the impact of each
factor on the global ageing phenomena obtained. Main interactions between variables could not
be identified with direct variables study. Nevertheless, this method is largely used to identify the
impactful variables and to quantify their respective effects. Indeed, battery ageing is known as a
complex phenomenon resulting from numerous and various factors coming from utilization mode
and environment. Hence, a simple variable analysis cannot perform well to detect interactions.

All these reasons justify the complexity of an exhaustive ageing comprehension. Thus, models
can hardly perform very precisely on ageing estimation and diagnostic on account of the involvement
of many different factors. Furthermore, such methods as well as electrochemical models require the
absolute identification of each interaction in order to be accurate.

5. Statistical study

The multiple interactions during the whole battery life made a real remaining challenge of the
battery ageing estimation. In this manner, it is necessary to study every variable in order to cover
all the phenomena. This brings the concept of statistical studies, as such methods could discover
hidden interactions and thus can allow a battery ageing comprehension. Furthermore, a statistical
study also permits to quantify the factors effects on the battery degradation, and can generate
predictive ageing models.

5.1. Factors interactions

The first aim of this kind of method is to reduce the number of variables without loss of in-
formation. In this method, there is no assumption about variables coming from battery measures
or from the environment conditions (ambient temperature, GPS position...), during the utilization
test on the circuit. The initial principle of considering each variable permits to avoid preliminary
error and to not delete potential interactions. According to this idea each measured variable is
considered at the beginning of this study. The methods used are correlation [48] as well as mutual
information investigations [49, 50].

A battery cycle is here defined as both charging and discharging period. Concerning the dis-
charging part, some results are expected as it is always the same cycle profile and thus the energy
transit, utilization time and distance are constant in each driving cycle. Consequently, it is implicit
to find a complete correlation between variables representing in a certain way these notions. Indeed,
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the results confirm that the test time and the distance traveled are directly related in this intensive
test. These results are illustrated by the linear correlations approach [48], presented in Figure 12.

During the battery charging time, few variables reveal a complete linear relationship. This is
due to the charging voltage that is constant through the whole experiment and therefore the energy
transit is linear with time. Moreover, some results are the same on both battery cycle parts. Mainly,
these results show that variable measurements at a cell level are not necessary and it does not add
information compared to the same variable measured at a global battery level. For example the
temperature, the current, the voltage and the transit energy taken from the battery level contain
the same information as the ones taken from a cell (Figure 12). Thus for example, the correlation
coefficient is higher of 95% between a cell temperature and the battery temperature.

After this correlations study, it appears that some variables contain the same information as
others. For example, the accessories voltage is correlated to the kilometers and the charges number
and the transited battery energy values are dependent.

All these results permit to create a reduced group of relevant variables and minimize the fac-
tors dimension without loss of information. Hence, from the 25 initial variables remain only 14
parameters.

5.2. Factors impacting battery ageing

The main objective of this study is the battery ageing comprehension according to the exper-
imental data. This part consists of a study of the dependency exploration. It concerns directly
battery ageing diagnosis obtained from characterizations. More specifically, the investigation is
focused on the correlation between each variable and the results of battery ageing.

Firstly, measured variables signals are compressed to a value per session. In some cases, a
simple value is not representative of the signal distribution and other variables are introduced. For
example, the current profile oscillates and an average value would erase important information.
In order to consider every notion, other concepts are explored: the maximum of current peak,
the number of current sign changes, ∆SOC repartition, storage conditions (duration, temperature,
SOC).

A new database is formed from all of these variables and values of capacity and resistance
measured at each characterization. A preliminary study permits to remove factors identified as
independent to both battery ageing phenomena: capacity fade and resistance growth.

Consequently, observations can be made on the ageing impact of each remaining variables. This
approach and the conclusion obtained can be divided into two parts: the reasons of the capacity
fade and the resistance raise. In order to explore the whole battery life, studies are done with two
point of views: both degradation phenomena separately for each session and the global degradations
together, sustained by the battery during each session.

• Each degradation phenomena separately : in the first case, a correlation is calculated on both
ageing phenomenon measured. Hence, the impact of variable units is related to a level of
degradation. Figure 13 presents the relationship between capacity fade and the variable units
for each session. For each variable and each session, the calculated correlation coefficient is
representative of the variable impact in the capacity loss in this particular session. Thus,
Figure 13 reveals a high correlation between the capacity loss during the fifth session and its
duration (storage or experience days). Similarly, the capacity fade occurring in the seventh
session seems to be linked to the high temperatures.
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The same approach with the resistance growth induces more complex interpretations (Figure
14). With the same interpretations, the seventh session appears to be constrained in the sense
of current alternation and cycle numbers. On the contrary, in the first session each parameter
has the same impact and no interpretation can be made.

• Ageing phenomena together : the aim is to obtain information based on multi-interactions.
The approach is here a normalized Principal Component Analysis (PCA) [51] study. This
method permits to explore ageing factors and their respective impact. Thus, each ageing
phenomenon is associated with different relevant variables. The interpretation of such results
is that the capacity loss seems to be related to ambient temperature and storage conditions.
However, the resistance evolution is highly dependent on the current signal and the energy
transit. The normalized PCA confirms these observations and permits to obtain an illustration
of factors dependences (Figure 15). Thus in this Figure 15, variables that neighbor each other
generally have positive correlations while those that linearly oppose generally have negative
correlations. Hence, this analysis highlights two distinct groups related to battery ageing :

– The capacity fade : time, temperatures and storage time etc.

– Resistance raise : current profile (speed, I max, ∆SOC), energy transit and cycles number
etc.

5.3. Understanding battery degradations through battery life conditions

This part is a summary and interpretation of results obtained through these studies for each
main battery ageing phenomenon with real electric vehicle utilization.

• Capacity fade: The measured loss of capacity resulting from the test shows a difference be-
tween sessions. Results previously presented demonstrate a strong linear relationship between
the capacity evolution and time dependent variables. Moreover, the capacity diminution is a
function of temperatures and storages. Time impacts directly the capacity whereas the cycle
stress seems to slightly interact with the battery resistance.

• Resistance raise: According to this work, resistance is significantly related to the driving cycle.
More precisely, the resistance raise seems in interaction with the maximum current delivered
by the battery and with the power profile in general. Thus, during the storage fifth session,
the resistance decreases which confirms this hypothesis. Hence, the resistance evolution is
here related to the constraint imposed by the use mode: power profile, speed, ∆SOC cycle
number. This notion is important for the ageing comprehension.

5.4. Battery ageing degradations predictive models

Based on these conclusions, the natural extension is to construct an ageing model from few
variables measured by the battery. The method considered here is a linear model, in the aim to
predict a real-valued output Y based on a vector of inputs X = (X1, ..., Xn), following the Equation
(2).

Y = f(X) = β0 +

n
∑

j=1

Xjβj (2)
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In the specific application of this study, X is an input matrix (P × n), corresponding to the
n relevant variables measured during the P sessions. The equation (2) provides a degradation
prediction Ŷ = f(W ), from new observations vector W . The aim is to estimate the parameters
β of this linear model. The applied methods, presented in the following parts correspond to the
automatic model-building algorithms.

5.4.1. Forward selection

The forward selection is a stepwise regression, starting with no variables in the model and adding
one-by-one variables until some accuracy criterion is fulfilled. The next variable to be included can
be chosen based on a number of criteria. In this study, the method chooses the variable that has
the highest absolute correlation with the residual vector [52].

5.4.2. Least angle regression

Least Angle Regression (LARS) is a regression method providing a soft method of forward
selection [53]. The LARS algorithm also starts with empty an set of active variables. As the forward
selection, the correlation between each variable and the response are measured, the variable with the
highest correlation becomes the first variables included into the model. The first direction is then
towards the least squares solution using this single active variable. Going in this direction, the angles
between the variables and the residual vector are measured. Along this, the angles will change;
in particular, the correlations between the residual vector and the active variable shrinks linearly
towards zero. At some moment before this point, another variable obtains the same correlation
with respect to the residual vector as the active variable. The walk stops and the new variable
is added to the active set. The new direction of the walk is towards the least squares solution of
the two active variables, and so on. After a number of steps, the full least squares solution will be
reached.

5.4.3. Ridge regression

The ridge regression shrinks the regression coefficients by imposing a penalty on their size [54].

The optimal parameters β̂ridge minimize a penalized residual sum of squares, with s ≥ 0 a tuning
parameter (Equation (3)).

β̂ridge = argmax
β

P
∑

i=1



yi − β0 −

n
∑

j=1

xijβj





2

, subject to

n
∑

j=1

β2
j ≤ s (3)

5.4.4. Last absolute shrinkage and selection operator

The Last Absolute Shrinkage and Selection Operator (lasso [55]), like the ridge regression, is
a technique implementing coefficient shrinkage and selection. The L2 ridge penalty

∑n
j=1

β2
j is

replaced by the L1 lasso penalty
∑n

j=1
|βj |. The optimal parameters β̂lasso are defined by Equation

(4), with t ≥ 0 a bound parameter.

β̂lasso = argmax
β

P
∑

i=1



yi − β0 −

n
∑

j=1

xijβj





2

, subject to

n
∑

j=1

|βj | ≤ t (4)
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5.4.5. Elastic net

As an automatic variable selection method, the elastic net method overcomes the precedent
methods limitation, combining the L1 and L2 penalties of the lasso and ridge methods [56]. The
estimation from the elastic net method are defined by Equation (6), using Equation (5).

β̂∗ = argmin
β

P
∑

i=1



yi − β0 −
n
∑

j=1

xijβj





2

− λ1

n
∑

j=1

|βj | − λ2

n
∑

j=1

β2
j , with λ1 > 0, λ2 > 0 (5)

β̂ElasticNet = (1 + λ2)β̂
∗ (6)

5.4.6. Predictive models results

In the battery ageing context, as explained in the previous sections, both battery ageing phenom-
ena have different evolutions. Then, different mathematical models are built, one to predict battery
capacity and one to estimate battery resistance. In order to obtain these models, the presented
methods are applied on ageing results, with input variables coming from the battery utilizations
measured at each session.

This methodology permits to construct models based on the measurements from the 1st session
to the ith, and predicts the battery ageing values from the i+ 1th session. Hence, the models are
build with the first recordings, and tested at different instants, providing a comparison of models
performances through data considered to build the models (Table 4).

Results illustrate the accuracy of models for capacity evolution prediction, as the prediction
error rate is lower than 1%, for most of estimated degradations, in the presented models. This can
be explained as the capacity evolution is constantly decreasing and the variations of the capacity
evolution slope are low. Only the LARS method does not perform significantly before the last
prediction.

On the contrary, the resistance evolution is more complex and models require larger learning
data to perform with a good accuracy. Hence, the estimation of the battery resistance made after
the characterization five are far from the real resistance evolution. However, from the prediction
made after the characterization five, the lasso method provides very low error rates (Table 4).

Figure 16 presents, for each method, the estimated capacity of the characterizations 6, 7 and
8, based on previous observations. This results illustrate the good accuracy of the predictive
models in the battery capacity prediction, especially with the forward selection. Figure 17 presents
the predictions of the battery resistance made after the characterization six, clearly showing the
performances of the lasso technique in these estimations.

The presented methods do not use all of the considered variables to construct models, this
point is particularly interesting in the battery ageing context, permitting the identification of the
variables related to the ageing phenomena. Table 5 presents the selected variables by the best
models of ageing phenomena : forward selection for capacity evolution, and lasso for resistance
evolution. The interesting point is the low number of variable selected by these algorithms. Thus,
selected variables illustrate and confirm the points demonstrated in part 5.1, here is a summary of
these impacting parameters :

• Capacity evolution : time (experimental days, output energy, distance) and storage conditions
(temperature)
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• Resistance evolution : time (output energy, cycles number, distance), usage conditions (ambi-
ent and battery temperature), utilization profiles constraint (I sign alternation, PKE, ∆SOC)

It it important to observe the perfect agreement with the conclusion made in the part 5.1 and the
selected variables, separating both ageing phenomena and their respective impacting parameters.
Furthermore, battery ageing predictive accuracy provides high confidence in these results. Thus,
presented statistical methods demonstrate high accuracy level in predictions, associated with an
interesting interpretation of selected variables.

6. Discussion

The proposed statistical approach provides an innovative way to explore the battery ageing
comprehension and estimation. Simple data analysis presented in part 4. does not allows the sub-
stantiation of the obtained battery ageing (Figure 5, 6). Thus, deeper data study, introduced in
part 5, demonstrates the ability of statistical methods to identify the influential variables of both
battery ageing phenomena, in accordance with electrochemical investigations. Hence, the paper
methodology selects these variables, allowing the comprehension of obtained battery ageing. Both
battery ageing phenomena, capacity fade and resistance growth, are respectively associated to dif-
ferent measured variables. This point is particularly interesting in the aim of avoiding premature
battery ageing, by applying limitations of certain variables, identified as impacting battery perfor-
mance degradations. Indeed, the methodology leads to the understanding of the detailed battery
degradation causes (part 5.3), which is primordial in the EV use context.

The predictive ageing models introduced in part 5.4 provide a high accuracy in both battery
ageing phenomena estimation, permitting a battery diagnosis with only few measurements. More-
over, this approach is also particularly adapted in the ageing comprehension study as the models
use only a part of the input variables to make a prediction. Hence, the selected variables supply
the demonstration of part 5.2, as both conclusions are in total agreement. Thus, the capacity fade
prove to be associated to time and storage conditions. Similarly, the resistance growth proves to
be related to the utilization conditions (temperatures, current profile...). This result isextremely
important as it demonstrates the causes of both battery ageing phenomena.

The next step of this methodology is to study data coming from a large fleet of EV, providing an
amount of informations permitting a better accuracy of these conclusions. Different uses conditions
could permit to obtain more accurate and robust predictive models. Moreover, predictive models
are here used on a unique type of battery and it will be interesting to observe their performances
and robustness on other battery designs and chemistry.

7. Conclusion

This paper describes a battery life experiment for an electric vehicle use. The aim of our
work is to study the main causes of battery ageing through data analysis. A huge dataset has
been recorded during a real vehicle usage over twenty-three months of intensive use. Due to the
experimental aspect of such experiment, a large amount of data has been retained to inform about
both battery parameters and environmental conditions.

The specificity of the presented approach is to base the analysis on statistical tools. This kind of
algorithms is particularly adapted to deal with multivariate time signals and helps us pinpoint the
main variables responsible for battery ageing. Then we propose to identify over time the evolution of
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all of these variables influence. Another major advantage of such an approach resides in the ability
to identify independently both resistance and capacity evolution causes. Based on this study, the
evoked methodology creates simple and accurate battery ageing prediction models.

Pure statistical methods have demonstrated a good ability to give a proof of a-priori opinions
and thus quantify the impact of each ageing factor. These analyses clearly illustrate the existence
of multiple interactions between ageing phenomena. Furthermore, results demonstrate the huge
complexity of the battery ageing diagnosis and the identification of impacting factors. This kind
of method looks very promising in terms of better ageing comprehension and prediction. However,
results are based on data from one battery and it would require more diversity to be effective in
every context.

Therefore it would be very interesting to apply this methodology with larger data, coming from
a large vehicle fleet, thereby obtaining more accurate results in order to discover and understand
ageing phenomena. Indeed, more data will allow deeper statistical methods and consequently
enable better battery ageing mechanisms. This would allow the construction of more precise ageing
prediction models, with only few measurements done in real time during the battery life. As more
and more data are saved, it will be interesting to oversee the development of such methods in
battery ageing comprehension and estimation over time.
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Origin Variables description
Vehicle Distance covered and time of the current discharge (distance, time),

vehicle speed (speed), cumulative kilometers covered (kilometers)
GPS Vehicle position (longitude, latitude, altitude), and speed (GPS speed)

Battery Cumulative number of charges (charges number), SOC (SOC ),
measures instantaneous battery temperature, current and voltage (T battery, I battery, U battery),

input, output and consumed energy (E bat input, E bat output, E bat consumed)
Cell Minimum and maximum cell temperature (T cell min, T cell max ),

measures and voltage (U cell min, U cell max )
Others Ambient temperature (T ambient), wheels informations (wheels thorque)

Accessories voltage (U accessories), traction current (I traction), I battery acc??????????

Table 1: Names and descriptions of all measured variables during experiments

Session Type Distance Given energy (kWh) Capacity loss Consumption Cycles
(km) Total Check-up (%) (Wh/kg) numbers

Dr.1 Driving 9304 2019 248 1.95 190 189
Dr.2 Driving 10318 2431 171 3.46 220 279
Dr.3 Driving 9623 1993 126 1.85 140 267
Dr.4 Driving 5714 1300 75 0.85 215 164
St.5 Storage x 205 205 1.32 x 14
Be.6 Bench x 1482 152 1.41 x 197
Be.7 Bench x 943 122 0.95 x 234
Dr.8 Driving 10079 2704 200 1.71 248 343

Table 2: Summary of the global performances results by session
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Cumulative Average Average
Name time initial SOC temperature

(days) (%) (◦C)
Dr.1 59 61.17 18.67
Dr.2 56 53.71 21.23
Dr.3 54 92.01 19.85
Dr.4 46 46.56 12.22
St.5 151 39.21 25.16
Be.6 46 72.03 27.70
Be.7 29 72.05 26.00
Dr.8 115 57.99 16.16

Table 3: Summary of the calendar storage conditions of the battery by session

Method Prediction error rate (%)
Capacity Resistance

Name Check-Up 6 7 8 6 7 8

0-5 -0.30 -0.20 0.46 -5.47 -31.62 37.91
Forward 0-6 X 0.06 0.12 X -29.70 37.78

0-7 X X -0.44 X X 2.62
0-5 -0.29 -1.36 1.06 -6.37 -0.43 15.19

LARS 0-6 X -2.87 2.45 X 5.37 8.57
0-7 X X -0.33 X X 3.25
0-5 -0.37 -0.53 0.20 -3.76 3.03 7.68

Ridge 0-6 X -0.22 -0.31 X 5.31 4.53
0-7 X X -0.86 X X 7.38
0-5 -0.51 1.27 -0.77 -7.95 -3.47 11.43

Lasso 0-6 X 1.45 -1.45 X 0.14 -0.14
0-7 X X 0 X X 0
0-5 0.21 0.61 -0.83 -8.89 -5.28 17.53

Elastic 0-6 X 0.53 -0.63 X 0.35 4.35
Net 0-7 X X -0.32 X X 5.04

Table 4: Error rate of battery ageing prediction models
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Capacity Resistance
Method Forward Lasso

Variables Check-Up 0-5 0-6 0-6 0-7

Output energy X X X X

I sign alternation X X X X

Distance X X X X

Storage temperature X X

Experimental days X

Ambient temperature X X

Cycles number X X

PKE X X

∆SOC X X

Battery temperature X

Table 5: Selected variables of predictive battery ageing models
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