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Introduction

Tail index estimation is one of the most important issues in extreme value theory. The tail index measures the thickness of the tail of a probability distribution function and thus plays a crucial role for evaluating the risk of occurrence of extremes events. In particular, estimation of the tail index constitutes usually a first step in an extreme value analysis. A vast literature has been dedicated to this topic. Recent overviews can be found in the monographs [START_REF] Beirlant | Statistics of Extremes[END_REF] and [START_REF] De Haan | Extreme Value Theory[END_REF].

Let F be the cumulative distribution function (cdf) of some non-negative random variable Y . We assume that F is heavy-tailed, that is, there exists a constant α > 0 such that

1 -F (x) = x -α (x), (1) 
where is a slowly varying function at infinity:

lim x→∞ (tx) (x)
= 1 for all t > 0.

If (1) holds, we have:

lim x→∞ 1 -F (tx) 1 -F (x) = t -α
for all t > 0 and we say that F is regularly varying at infinity with tail index α, which we denote by F ∈ R -α . The positive number γ := α -1 is called the extreme value index (EVI) of F . The conditions above amount to assuming that the distribution function F is in the max-domain of attraction of a Fréchet distribution. Such distribution functions are useful in practice for investigating phenomena where exceptional values have a significant occurrence frequency. Examples include the number of claims in insurance [START_REF] Embrechts | Modelling Extremal Events[END_REF], transmission times in telecommunications [START_REF] Resnick | Heavy-Tail Phenomena[END_REF], log-returns of price speculation [START_REF] Embrechts | Modelling Extremal Events[END_REF]. Several estimators have been proposed for the tail index α, or equivalently, for the EVI γ, such as Pickands estimator [START_REF] Pickands | Statistical Inference Using Extreme Order Statistics[END_REF], Dekkers et al. (or moment) estimator [START_REF] Dekkers | A moment estimator for the index of an extremevalue distribution[END_REF] and Hill's estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], which is the most popular estimator of γ in model [START_REF] Andersen | Statistical Models Based on Counting Processes[END_REF]. Let X 1 , X 2 , . . . , X n be independent and identically distributed (iid thereafter) random variables with common cdf F . Let k ∈ {2, . . . , n} and X n,1 ≤ X n,2 ≤ . . . ≤ X n,n be the ordered statistics associated to the sample X 1 , X 2 , . . . , X n . Hill's estimator is defined as

H(k) := 1 k k i=1 log(X n,n-i+1 ) -log(X n,n-k ). (2) 
Consistency of Hill's estimator was proved in [START_REF] Mason | Laws of large numbers for sums of extreme values[END_REF] under the regular variation condition [START_REF] Andersen | Statistical Models Based on Counting Processes[END_REF]. Its asymptotic normality was further established under an additional condition known as the second-order regular variation condition (see [START_REF] De Haan | Extreme Value Theory[END_REF], page 117).

In this paper, we address estimation of the tail index α when observations X 1 , X 2 , . . . , X n are randomly right-censored. Censoring commonly occurs in the analysis of event time data. For example, X may represent the duration until the occurrence of some event of interest, such as death of a patient. If a patient is still alive or has dropped out of the study for some reason when the data are collected, the variable of interest X is not available. An appropriate way to model this situation is to introduce a random variable Y (called a censoring random variable) such that the observations consist of pairs (Z i , δ i ), 1 ≤ i ≤ n where Z i = min(X i , Y i ), δ i = 1 {Xi≤Yi} and 1 is the indicator function. Estimation of the EVI with censored data was considered in [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF], [START_REF] Brahimi | On the asymptotic normality of Hill's estimator of the tail index under random censoring[END_REF], [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF], [START_REF] Gomes | Estimation of the extreme value index for randomly censored data[END_REF] and [START_REF] Gomes | Censoring estimators of a positive tail index[END_REF]. For example, [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF] [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF] proposed to estimate γ by the following modified version of Hill's estimator:

H C (k) := k i=1 log(Z n,n-i+1 ) -log(Z n,n-k ) k i=1 δ [n-i+1] , (3) 
where Z n,1 ≤ Z n,2 ≤ . . . ≤ Z n,n are the ordered statistics associated to the censored sample Z 1 , Z 2 , . . . , Z n and δ [n-i+1] is the concomitant value of δ associated with Z n,n-i+1 . More generally, Einmahl et al. (2008) [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] and Gomes and Neves (2011) [START_REF] Gomes | Estimation of the extreme value index for randomly censored data[END_REF] proposed to estimate γ by γ(C)

Z (k) = γZ (k) p , (4) 
where γZ (k) is any of the classical EVI estimators calculated on the censored observations Z 1 , . . . , Z n and p = 1

k k i=1 δ [n-i+1]
is the proportion of uncensored values in the k largest observations of Z. Obviously, the estimator (4) coincides with the adapted Hill's estimator (3) when γZ (k) is Hill's estimator [START_REF] Beirlant | Statistics of Extremes[END_REF]. In this paper, we adopt a completely different approach and investigate Bayesian estimation of the tail index α := γ -1 .

Bayesian estimation provides an alternative to frequentist methods. In the context of extreme values analysis without censoring, Bayesian estimators have been investigated in [START_REF] Cabras | A Bayesian approach for estimating extreme quantiles under a semiparametric mixture model[END_REF], [START_REF] Coles | Bayesian methods in extreme value modelling: a review and new developments[END_REF], [START_REF] Diebolt | Quasi-conjugate bayes estimates for gpd parameters and application to heavy tails modelling[END_REF], [START_REF] Do Nascimento | A semiparametric Bayesian approach to extreme value estimation[END_REF], [START_REF] Stephenson | Bayesian inference for extremes: accounting for the three extremal types[END_REF], [START_REF] De | Parameter estimation of the generalized Pareto distribution-Part II[END_REF]. See also [START_REF] Beirlant | Statistics of Extremes[END_REF] (chapter 11). Applications include operational risk modeling [START_REF] Ergashev | A Bayesian approach to extreme value estimation in operational risk modeling[END_REF], hydrology [START_REF] Liang | Application of Bayesian approach to hydrological frequency analysis[END_REF] and market indices modeling [START_REF] So | Bayesian analysis of tail asymmetry based on a threshold extreme value model[END_REF]. But to the best of our knowledge, no Bayesian estimator of the tail index α has been proposed when censoring is present. The present work intends to fill this gap.

We construct several Bayesian estimators of α in model [START_REF] Andersen | Statistical Models Based on Counting Processes[END_REF]. Bayesian estimation requires specifying a prior distribution for the unknown parameter. We investigate various priors (Jeffreys, maximal data information and conjugate Gamma priors), leading to several maximum a posteriori and mean posterior estimators of α. We establish consistency of these estimators and asymptotic normality of their posterior distribution. Their finite-sample performance are assessed via simulations. Tail index estimation requires choosing an appropriate threshold for defining excesses. We propose a randomization method for tackling this issue. This procedure is evaluated by simulations. Finally, we illustrate our methodology on a set of AIDS survival data.

The paper is organized as follows. In Section 2, we construct our estimators and we establish their asymptotic properties. All proofs are deferred to an appendix. Section 3 reports the results of a comprehensive simulation study. The randomization procedure of the threshold is proposed and assessed by simulations in Section 4. Application to AIDS data is carried out in Section 5. A discussion and some perspectives are given in Section 6.

Bayesian estimation of the tail index

We first introduce some notations. Let X 1 , X 2 , . . . , X n be n iid copies of a non-negative random variable X with cdf F . The probability density function of X is denoted by f . We assume that F is heavy-tailed with tail index α, i.e. F ∈ R -α . Let Y 1 , Y 2 , . . . , Y n be an iid sample of the non-negative censoring random variable Y with cdf G and density function g. We assume that G is also heavy-tailed, with positive tail index β, i.e. G ∈ R -β . We assume that X and Y are independent and that we observe the n independent pairs

(Z i , δ i ), 1 ≤ i ≤ n,
where Z i = min(X i , Y i ) and δ i = 1 {Xi≤Yi} . We let Z n,1 ≤ Z n,2 ≤ . . . ≤ Z n,n be the ordered statistics associated to the sample (Z 1 , Z 2 , . . . , Z n ) and δ [n-i+1] be the concomitant value of δ associated with

Z n,n-i+1 , that is, δ j = δ [n-i+1] if Z j = Z n,n-i+1
. Let H be the cdf of Z. Note that by independence of X and Y , H is also heavy-tailed and H ∈ R -(α+β) . Now, we define the random variables E j,u = Zj u given Z j > u, which represent relative excesses over the threshold u. Let N u denote the number of such excesses. Then we can obtain the partial likelihood of α based on the sample (E, ∆) = (e j,u , δ [n-Nu+j] ) j=1,...,Nu (see [START_REF] Andersen | Statistical Models Based on Counting Processes[END_REF], [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF]):

L(E, ∆|α) = Nu j=1 αe j,u -(α+1) δ [n-Nu +j] e j,u -α 1-δ [n-Nu +j] = α Nu j=1 δ [n-Nu +j]   Nu j=1 e j,u   -α   Nu j=1 e j,u -δ [n-Nu+j]   . (5) 
In the Bayesian framework, unknown parameters are considered as random variables whose probability density function (the so-called prior density) represent the initial set of beliefs about the parameters. The prior distribution is updated by using the information contained in the data, yielding the so-called posterior density of the parameters. In our setting, we provide the unknown tail index α with a prior density π(α). Then, using Bayes' theorem, we obtain the posterior density π(α|E, ∆) of α, which writes as:

π(α|E, ∆) = L(E, ∆|α)π(α) Λ L(E, ∆|α)π(α)dα
, where Λ is the support of the distribution of α and the denominator Λ L(E, ∆|α)π(α)dα is a normalization constant independent of α. The posterior distribution of α is proportional to the product of the partial likelihood (5) and the prior, namely:

π(α|E, ∆) ∝ L(E, ∆|α)π(α).
Choosing the prior density is a central issue in Bayesian estimation. When the information available for prior elicitation is minimal, one can use objective (or non-informative) priors, such as Jeffreys prior [START_REF] Jeffreys | Theory of Probability[END_REF] and the maximal data information (MDI) prior introduced by Zellner (1971) (see [START_REF] Zellner | An Introduction to Bayesian Inference in Econometrics[END_REF] and [START_REF] Zellner | Models, prior information, and Bayesian analysis[END_REF]). On the other hand, when prior choice can be based on experts opinion, so-called subjective prior distributions can be used, such as conjugate priors. Conjugate priors are such that the posterior distribution of the parameter is in the same family as the prior. In Subsections 2.1 and 2.2, we investigate MDI and Jeffreys priors for the estimation of the tail index α under random censoring. In Subsection 2.3, we investiagte a conjugate Gamma prior.

Maximal data information (MDI) prior

The MDI prior was defined so as to maximize the average information in the data density relative to that in the prior (see [START_REF] Zellner | An Introduction to Bayesian Inference in Econometrics[END_REF]). If L(E, ∆|α) is the likelihood of a single observation (E, ∆), then π(α) ∝ exp [E(log L(E, ∆|α)]. In our setting, the MDI prior for α is:

π(α) ∝ exp log(α) - 1 α . (6) 
Using ( 5) and ( 6), the posterior density of α based on MDI prior is given by: (α|E, ∆)

π(α|E, ∆) ∝ α Nu j=1 δ [n-Nu+j] exp   -α
∝ (1 + b u ) log(α) -a u α - 1 α .
From this, we can define the maximum a posteriori (or MAP) tail index estimator as:

α(MDI) M AP = arg max α (α|E, ∆) := B + √ B 2 + 4A 2A , (7) 
where A = a u and B = 1 + b u . Letting u = Z n,n-k in [START_REF] Deheuvels | Almost sure convergence of the Hill estimator[END_REF], we obtain the following formal definition of our MAP estimator of α under MDI prior:

Definition 2.1. Let k := k n be a sequence such that k → ∞ and k n → 0 as n → ∞.
Then the MAP estimator of the tail index α under MDI prior is given by: α(MDI)

M AP := B + √ B 2 + 4A 2A , (8) 
where

A = k i=1 log Z n,n-k+i Z n,n-k and B = 1 + k i=1 δ [n-k+i] .
Remark 2.1. In order to simplify notations, the dependency of α(MDI) M AP on k and n is not made explicit. This convention will also be adopted for the other estimators defined below.

Jeffreys prior

A second kind of non-informative prior is Jeffreys prior [START_REF] Jeffreys | Theory of Probability[END_REF], which has an interesting invariant reparametrization property. This prior is proportional to the square root of Fisher's information. If L(E, ∆|α) is the likelihood of a single observation (E, ∆), Jeffreys prior can be written as:

π(α) ∝ -E ∂ 2 ∂α 2 log L(E, ∆|α) 1 2 ∝ 1 α . (9) 
Using ( 5) and ( 9), the posterior density of α based on Jeffreys prior is given by:

π(α|E, ∆) ∝ α ( Nu j=1 δ [n-Nu +j] )-1 exp   -α Nu j=1 log e j,u   ,
which coincides (up to some normalizing constants) with the probability density function of the Gamma distribution Γ(

Nu j=1 δ [n-Nu+j] ,
Nu j=1 log e j,u ). Based on this posterior, we construct two classical Bayesian estimators of α, namely the mean posterior estimator (MPE) and the maximum a posteriori (MAP) estimator.

• mean posterior estimator (MPE): this estimator is defined as the mean of the posterior distribution of α:

α(J) M P E := Nu j=1 δ [n-Nu+j] Nu j=1 log e j,u . (10) 
Letting u = Z n,n-k in [START_REF] Diebolt | Quasi-conjugate bayes estimates for gpd parameters and application to heavy tails modelling[END_REF], we obtain the following formal definition of our MP estimator of the tail index α:

Definition 2.2. Let k := k n be a sequence such that k → ∞ and k n → 0 as n → ∞.
Then the MP estimator of the tail index α under Jeffreys prior is given by: α(J)

M P E := k i=1 δ [n-i+1] k i=1 log Z n,n-i+1 Z n,n-k . ( 11 
)
We note that ( α(J) M P E ) -1 coincides with the estimator of the EVI γ proposed by Einmahl [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] when censoring occurs.

• maximum a posteriori estimator (MAP): this estimator is defined as the mode of the posterior distribution of α:

α(J) M AP := arg max α π(α|E, ∆) = Nu j=1 δ [n-Nu+j] -1 Nu j=1 log e j,u . (12) 
Letting u = Z n,n-k in [START_REF] Embrechts | Modelling Extremal Events[END_REF], we obtain the following formal definition of our MAP estimator of the tail index α under Jeffreys prior:

Definition 2.3. Let k := k n be a sequence such that k → ∞ and k n → 0 as n → ∞.
Then the MAP estimator of the tail index α under Jeffreys prior is given by: α(J)

M AP := k i=1 δ [n-i+1] -1 k i=1 log Z n,n-i+1 Z n,n-k . ( 13 
)

Conjugate prior

In Subsections 2.1 and 2.2, prior elicitation is essentially data-driven since Jeffreys and MDI priors only take account of the information provided by the observations for estimating the tail index α. On the other hand, subjective priors (such as conjugate priors) attempt to bring prior knowledge about the phenomenon under study into the problem. Conjugate priors are particularly useful due to their mathematical convenience. Here, we propose a conjugate prior from the Gamma family Γ(•, •). If α ∼ Γ(a, b) (with a, b > 0), we can easily obtain the posterior distribution of α given the observations (E, ∆), as:

α|(E, ∆) ∼ Γ   Nu j=1 δ [n-Nu+j] + a, Nu j=1 log e j,u + b   .
Based on this, we propose two estimators of α under a conjugate Gamma prior. Definition 2.4. Let k := k n be a sequence such that k → ∞ and k n → 0 as n → ∞. Let the prior density π(α) be a Γ(a, b) distribution. Then:

1. the MP estimator of the tail index α is given by: α(c)

M P E := k i=1 δ [n-i+1] + a k i=1 log Z n,n-i+1 Z n,n-k + b , (14) 
2. the MAP estimator of the tail index α is given by:

α(c) M AP := k i=1 δ [n-i+1] + a -1 k i=1 log Z n,n-i+1 Z n,n-k + b . (15) 

Asymptotic properties of the Bayesian estimators

In this section, we investigate asymptotic properties of the proposed estimators. We first establish their strong consistency. Proof is given in Appendix A.

Theorem 2.1. Let k := k n be a sequence such that k → ∞ and k n → 0 as n → ∞. Then the estimators α(MDI) M AP , α(J) M P E , α(J) M AP , α (c) 
M P E and α(c) M AP given by ( 8), ( 11), ( 13), ( 14) and ( 15) respectively converge almost surely to α as n → ∞. Now, we discuss the limiting behavior of the posterior distribution of the proposed estimators. We need some further notations. Let

L k (α) = log α k i=1 δ [n-k+i] -α k i=1 log e [n-k+i] - k i=1 δ [n-k+i] log e [n-k+i] be the log-likelihood L(E, ∆|α) calculated with the threshold u = Z n,n-k . Let I k (α) = -1 k ∂ 2 ∂α 2 L k (α), I(α) = lim k→∞ I k (α)
and α 0 denote the "true" tail index value. We assume that α 0 belongs to an open interval A = (a 1 , a 2 ) of R, where 0 < a 1 < a 2 < ∞. Finally, let p := P(X < Y ) be the probability that X is uncensored and d -→ denote convergence in distribution. Then the following holds:

Theorem 2.2. Let k := k n be a sequence such that k → ∞ and k n → 0 as n → ∞.
Let π(α) be a prior density with finite expectation and such that π(•) is continuous and positive at α 0 . Let α• be any of the estimators α(MDI) M AP , α(J)

M P E , α(J) M AP , α(c) M P E , α(c) M AP . Then as n → ∞, √ k (α 0 -α• ) d -→ N 0, 1 pI(α 0 )
.

Proof is given in Appendix A.

Simulation study

In this section, we assess the finite-sample performance of the proposed estimators ( 8), ( 11), ( 13), ( 14) and ( 15) of the tail index of a heavy-tailed distribution under random censoring. More precisely, we assess influence of the censoring proportion and threshold choice on the behaviour of our estimators.

Study design. The simulation design is as follows. Let X and Y be independent random variables with cdf F and G respectively. X is the variable of interest and Y is the censoring random variable. We assume that F and G are heavy-tailed with tail index α > 0 and β > 0 respectively. Let p := P(X < Y ) be the probability that X is uncensored. Some straightforward calculations yield β ≈ α 1-p p (e.g., [START_REF] Gomes | Estimation of the extreme value index for randomly censored data[END_REF]). Our simulation process is as follows:

1. We simulate a sample of n independent copies of (Z, δ), where Z = min(X, Y ), δ = 1 {X≤Y } and the censoring proportion is 1 -p. We consider various values for p, namely p = 0.9, 0.75, 0.5, 0.25 (that is, we allow the percentage of censoring in the right tail of X to be 10%, 25%, 50% and 75% respectively).

2.

For each p, we compute the various proposed estimates, by incrementing the threshold (or fraction level) k n from kmin n to kmax n . For notational simplicity, we use the following notations:

• α1 (k) is the MPE estimator (11) in Definition 2.2, • α2 (k) is the MAP estimator (13) in Definition 2.3, • α3 (k) is the MAP estimator (8) in Definition 2.1, • α4 (k) is the MPE estimator (14) in Definition 2.4,
• α5 (k) is the MAP estimator (15) in Definition 2.4.

3.

Steps 1-2 are repeated m times, so that we obtain m realisations of each α (k), for each p.

4.

For each p, we calculate the empirical bias and RMSE (Root Mean Square Error) of each α (k) (for k = k min , . . . , k max and = 1, 2, 3, 4, 5) over the m estimates.

We consider the following two simulation settings:

• X and Y are both distributed as Fréchet random variables, with cdf F (x) = exp(-x -α ) and

G(x) = exp(-x -β ) respectively,
• X and Y are both distributed as Generalized Pareto Distribution (GPD) with cdf

F (x) = 1 -(1 + 1 α x) -α and G(x) = 1 -(1 + 1 β x) -β respectively.
In either case, we take α = 0.5 and α = 0.75 and for each p = 0.9, 0.75, 0.5, 0.25, we take β = α 1-p p . The simulations are conducted using the statistical software R [START_REF]R: A language and environment for statistical computing[END_REF]. Results are provided for a sample size n = 1000 and m = 1000 simulated samples, with k min = 20 and k max = 250.

Results for Fréchet model. For each = 1, . . . , 5, we plot the empirical bias and RMSE of α as functions of k for p = 0.9, 0.75, 0.5, 0.25 (Figure 1: α = 0.5 and Figure 2 : α = 0.75). From these figures, it appears as expected that the bias and RMSE of the proposed estimators decrease when the censoring proportion decreases. The MAP estimator under MDI prior α3 (see [START_REF] Dekkers | A moment estimator for the index of an extremevalue distribution[END_REF], Definition 2.1) might be regarded as the best among all estimators α . In particular, this estimator outperforms all others in terms of RMSE for almost every k.

In Tables 1 and2, we report the averaged (over the m simulated samples) value, empirical bias and RMSE of each α at the optimal fraction level k opt = arg min k RM SE[α (k)] (Table 1: α = 0.5 and Table 2: α = 0.75). These tables confirm the superiority of the MAP estimator under MDI prior α3 . In particular, at the optimal fraction level k opt , α3 appears to be less biased than all other estimators, for every p.

Results for the GPD model. Results for the GPD are given in Appendix B. The conclusions are similar to conclusions for Fréchet model. 

Randomizing the fraction level

In the previous section, the (n -k)-th order statistic Z n,n-k was used as threshold in the excesses e j,u and k (or equivalently, the fraction level k/n) was chosen so as to minimize the RMSE. Obviously, this procedure cannot be applied in a practical data analysis since the true tail index α used to calculate the RMSE is unknown. Thus, in this section, we develop an alternative approach for tackling this threshold issue.

We propose to consider the fraction level t := k/n as a random quantity. As k/n lies in ]0, 1[, we suggest to use a Beta distribution for t, with probability density function:

π u (t) = 1 B(a, b) (t -t min ) a-1 (t max -t) b-1 (t max -t min ) a+b-1 1 {tmin t tmax} , (16) 
where B(a, b) :=

1 0 s a-1 (1 -s) b-1 ds (a > 0, b > 0)
is the Beta function and t min and t max are suitable bounds for the fraction level. Then we propose the following Monte Carlo approach for infering on α from a sample of observations (Z i , δ i ) i=1,...,n .

First, we simulate x ∼ Beta(a, b) and we calculate t x = (t max -t min )x + t min . Then we obtain k x = [nt x ] (where [ • ] denotes the integer part) and we calculate the estimate α with k = k x . This procedure is repeated N times, which yields N Monte Carlo realisations α(1) , . . . , α(N) of α . Finally, α can be estimated from these N realisations (by taking their empirical mean, median or mode, for example).

We illustrate this procedure in a short simulation study. A sample of size n = 1000 of (Z, δ) is obtained by simulating n observations of X and Y from Pareto distributions with tail index α = 2 and β = α 1-p p respectively, where p = 0.25, 0.5, 0.75 and 0.9 (that is, the censoring fraction is 75%, 50%, 25% and 10% respectively). Based on results of Section 3, we restrict our attention to objective priors. Hence, the proposed randomization procedure is applied to the MP estimator of α under Jeffreys prior (i.e., α1 ) and to the MAP estimator under Jeffreys and MDI priors ( α2 and α3 respectively). We take t min = 0.01 and t max = 0.4. Note that under these values, k is allowed to range from 10 to 400, with a higher concentration of values around k = 300. This is a reasonable choice in view of the sample size. We also take a = 4 and b = 1.5 (a procedure for choosing a and b will be discussed in Section 5). Finally, we let N = 10000.

For each p ∈ {0.25, 0.5, 0.75, 0.9} and l ∈ {1, 2, 3}, we obtain the empirical mean, median and mode of the N Monte Carlo estimates α(j) , j = 1, . . . , N (see Table 3) and we plot their histogram and estimated density (see Figure 3). From Figure 3, histograms are concentrated around the true tail index value α = 2 (represented by the vertical dotted line) in every case. Moreover, the empirical mean, median and mode of the α(j) , j = 1, . . . , N appear to provide satisfactory approximations of α, for every p and = 1, 2, 3.

Overall, combining the proposed Bayesian estimators with the randomization tool described above seems to provide a relevant approach for estimating α. This approach is now illustrated on a real data set. 

Jeffreys prior (MPE)

An application to AIDS survival data

In this section, we illustrate our methodology on a set of AIDS survival data. The dataset contains n = 2843 patients diagnosed with AIDS in Australia before 1 July 1991. The source of the data is Dr P.J. Solomon and the Australian National Centre in HIV Epidemiology and Clinical Research (see [START_REF] Venables | Modern Applied Statistics with S[END_REF]). The data are available in the R package "MASS" [START_REF]R: A language and environment for statistical computing[END_REF]. Information on each patient includes gender, date of diagnosis, age at diagnosis, date of death or end of observation and an indicator which equals 1 if the patient died and 0 otherwise. 1761 patients died. The other survival times are right-censored. Our objective is to estimate the tail index α of the cdf F of the survival time. We calculate our estimators on the whole dataset of patients, without distinction of sex or age.

Considering only objective priors for α, we calculate the MP and MAP estimators under Jeffreys prior ( α1 and α2 respectively) and the MAP estimator under MDI prior ( α3 ). To choose the fraction level k/n, we first rely on a method proposed by [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF]. Then we use the randomizing approach described in Section 4. [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] propose to plot the proportion p(k) = Three distinct phases can be distinguished on Figure [START_REF] Brahimi | On the asymptotic normality of Hill's estimator of the tail index under random censoring[END_REF]. In phase (A), the behaviour of k → p(k) is somewhat erratic. Then, there is stable part (phase (B), where k ranges approximately from 70 to 170 and the average p(k) is approximately 0.261) and an increasing part (phase (C)). Einmahl et al. (2008) [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] suggest to estimate α based on the k-values of phase (B). Indeed, the estimate of α should be quite stable within this range of k. On Figure [START_REF] Cabras | A Bayesian approach for estimating extreme quantiles under a semiparametric mixture model[END_REF], we plot the α1 (k), α2 (k) and α3 (k) as functions of k. We clearly distinguish the same three phases (A), (B) and (C) as in Figure [START_REF] Brahimi | On the asymptotic normality of Hill's estimator of the tail index under random censoring[END_REF]. All three estimates appear to be close to each other and quite stable in phase (B). The average value of α (k) on phase (B) is approximately 1.26 (for = 1, 2, 3). Based on Einmahl et al. [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] empirical methodology, one may thus retain 1.26 as an estimate of α.

Australian Aids Survival Data

Australian Aids Survival Data

We now apply our randomization procedure. We take t min = 0.01 and t max = 0.4, so that k ranges from 28 to 1137 (this range includes and goes far beyond the stable phase (B)). We consider several values for the parameters a, b > 0 of the Gamma distribution used to randomize the fraction level, namely (a, b) ∈ S := {1, 1.5, 2, 2.5, 3, 3.5, 4} × {1, 1.5, 2, 2.5, 3, 3.5, 4}. For every (a, b) ∈ S, we apply the proposed randomization procedure with N = 10000 and we the standard deviation (Std.) of the resulting N Monte Carlo estimates α(j) , j = 1, . . . , N . Then, we retain the value (a * , b * ) such that the standard deviation is minimum. Finally, we propose to infer on α from the α(j) , j = 1, . . . , N obtained with (a, b) = (a * , b * ).

Table 4 reports standard deviations for α1 . The minimum is achieved when (a, b) = (4, 3) (Std. = 0.117). Standard deviations for the pairs (4, 2) (Std. = 0.120) and (4, 2.5) (Std. = 0.118) are close to the minimum, thus we also retain these values for making inference on α. The minimum standard deviations for α2 and α3 are achieved for the same values of (a, b). The corresponding tables are omitted for conciseness. We can now infer on α from the α(j) , j = 1, . . . , N obtained with (a * , b * ) (by taking their empirical mean, median or mode, for example). We report some summary statistics for α1 , α2 and α3 when (a * , b * ) = (4, 2), (4, 2.5), (4, 3) (see Table 5). We also plot the corresponding histograms of the α(j) , j = 1, . . . , N (see Figure 6). From Figure 6, histograms are quite symmetric and show limited spread. Thus, it seems reasonable to estimate α by any of the usual measures of central tendency. Moreover, from Table 5, the empirical means and medians of the α ( = 1, 2, 3) are close to each other, for every (a, b) = (4, 2), (4, 2.5), [START_REF] Brahimi | On the asymptotic normality of Hill's estimator of the tail index under random censoring[END_REF][START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF]. From these results, one may retain 1.4 as a reasonable and consensual (over the α , = 1, 2, 3) approximation of α.

Std

Conclusion and perspectives

In this paper, we address estimation of the tail index of a heavy-tailed distribution when data are randomly right-censored. We constructed two kinds of Bayesian estimators, namely mean posterior and maximum a posteriori estimators, for various objective and subjective prior distributions. Our simulation results indicate better performance of estimators based on objective MDI and Jeffreys priors. We also proposed an original automatic procedure for selecting the threshold (or fraction level k/n) required to estimate the tail index. The whole procedure was applied to a set of real data and provided coherent results. Now, several issues still deserve attention. First, we mentioned in introduction that estimation of the tail index constitutes usually a first step in an extreme value analysis. Extreme quantile estimation often comes as a second step. Extreme quantiles of the distribution of X are quantities of the form

F ← (1 -p) = inf{y : F (y) ≥ 1 -p},
where p is so small that this quantile falls beyond the range of the observed data X 1 , . . . , X n . Estimation of extreme quantiles has become a crucial issue in many domains (e.g., determination of the value at risk in financial risk management, determination of the return period of extreme precipitation in meteorology. . . ). We are currently working on Bayesian estimation of extreme quantiles from censored data.

In practice, it often arises that some covariate information W is available to the investigator and the distribution of X depends on W . In this case, interest turn to estimation of the conditional tail index α(w). Adapting our Bayesian approach to this setting also constitutes a topic for our future research.

Appendix A. Proofs.

In this appendix, we outline the proofs of Theorem We first establish asymptotic normality of α(J) M P E . Proof proceeds along the same lines as proof of Theorem 4.2 in [START_REF] Ghosh | An Introduction to Bayesian Analysis[END_REF], which establishes asymptotic normality of the posterior distribution of a strongly consistent solution of a likelihood equation (note that α(J) M P E coincides with the solution of the likelihood equation ∂L k (α) ∂α = 0 and is strongly consistent by Theorem 2.1). Some regularity conditions are needed. First, we note that the support of the density of (Z, δ) is the same for all α ∈ A. Moreover, L 1 (α) is thrice differentiable with respect to α and if U = (α 0 -δ, α 0 + δ) is a neighborhood of α 0 , we have

sup α∈U ∂ 3 L1(α) ∂α 3 
< M (Z, δ), where EM (Z, δ) < ∞. Finally, for any δ > 0, there exists an > 0 such that for all sufficiently large k, we have

sup |α-α(J) M P E |>δ 1 k L k (α) -L k (α (J) M P E ) < -. (17) 
To see this, consider the Taylor expansion

L k (α) = L k (α (J) M P E ) + (α - α(J) M P E ) ∂L k (α (J) M P E ) ∂α + (α - α(J) M P E ) 2 2 ∂ 2 L k (α) ∂α 2 ,
where α belongs to the line segment between α and α(J)

M P E . Then 1 k L k (α) -L k (α (J) M P E ) = - (α - α(J) M P E ) 2 2α 2 1 k k i=1 δ [n-k+i] .
Let ξ > 0 be arbitrary small. For k sufficiently large, 1 k k i=1 δ [n-k+i] < p + ξ and thus, for all α such that |α -α(J)

M P E | > δ, 1 k L k (α) -L k (α (J) M P E ) < - δ 2 2a 2 2 (p + ξ).
Finally, [START_REF] De Haan | Extreme Value Theory[END_REF] follows by letting := δ 2 2a 2

2

(p + ξ). We now establish asymptotic normality of

W k := √ k(α 0 - α(J) M P E ).
The posterior density of W k can be written as

π W k (w|E, ∆) := C -1 k π(α (J) M P E + k -1/2 w) exp L k (α (J) M P E + k -1/2 w) -L k (α (J) M P E ) , where C k = R π(α (J) M P E +k -1/2 w) exp[L k (α (J) M P E +k -1/2 w)-L k (α (J)
M P E )]dw. We show that π W k (w|E, ∆) converges in L 1 to the probability density function of the random variable N (0, 1 pI(α0) ), that is, we show that

I k := R π W k (w|E, ∆) - pI(α 0 ) 2π exp - w 2 2 pI(α 0 ) dw -→ 0 as k → ∞.
Convergence in L 1 -norm will imply that W k converges in distribution to N (0, 1 pI(α0) ). Let

g k (w) = π(α (J) M P E + k -1/2 w) exp L k (α (J) M P E + k -1/2 w) -L k ( α(J) M P E ) -π(α 0 ) exp - w 2 2 pI(α 0 ) .
Then we have:

I k ≤ C -1 k R |g k (w)| dw + R C -1 k π(α 0 ) - pI(α 0 ) 2π exp - w 2 2 pI(α 0 ) dw. (18) 
We first prove that

R |g k (w)| dw → 0 as n → ∞ (and thus, as k → ∞). Let R = R 1 ∪ R 2 , where R 1 = {w : |w| > k 1/2 δ} and R 2 = {w : |w| < k 1/2 δ} for some δ > 0. We show that Rj |g k (w)| dw → 0 as n → ∞, for j = 1, 2. Note first that R1 |g k (w)| dw ≤ R1 π( α(J) M P E + k -1/2 w) exp L k (α (J) M P E + k -1/2 w) -L k (α (J) M P E ) dw + R1 π(α 0 ) exp - w 2 2 pI(α 0 ) dw ≤ exp(-k ) + π(α 0 ) R1 exp - w 2 2 pI(α 0 ) dw,
where the second inequality follows from [START_REF] De Haan | Extreme Value Theory[END_REF]. The term R1 exp -w 2 2 pI(α 0 ) dw is proportional to Ψ(-k 1/2 δ), where Ψ is the cdf of the normal distribution N (0, 1 pI(α0) ). Therefore, this term converges to 0 as n → ∞ and finally, R1 |g k (w)| dw → 0 as n → ∞. The proof that R2 |g k (w)| dw → 0 as n → ∞ is similar and is therefore omitted. Now, we consider the second term on the right-hand side of [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]. Note first that

C k -π(α 0 ) 2π pI(α 0 ) ≤ R |g k (w)| dw.
This implies that C -1 k π(α 0 ) → pI(α0)

2π
as n → ∞ and thus, R |C -1 k π(α 0 )-pI(α0) 2π | exp[-w 2 2 pI(α 0 )] dw → 0 as n → ∞. Finally, I k → 0 as n → ∞ and thus, W k := √ k(α -α(J) M P E ) converges in distribution to N (0, 1 pI(α0) ).

We now establish asymptotic normality of α(J) M AP , α(MDI) M AP , α(c) M P E and α(c) M AP . Let α• be any of these estimators. We first show that a condition similar to [START_REF] De Haan | Extreme Value Theory[END_REF] converges a.s. to 0 as n → ∞. Morever, α(J) M P E maximizes L k (α), thus for k sufficiently large, we have:

1 k L k ( α(J) M P E ) -L k (α • ) < 2 ,
where is as in [START_REF] De Haan | Extreme Value Theory[END_REF]. Now,

1 k [L k (α) -L k ( α• )] = 1 k L k (α) -L k ( α(J) M P E ) + 1 k L k (α (J) M P E ) -L k (α • ) .
For k sufficiently large, |α -α(J) M P E | > δ and |α -α• | > δ hold simultaneously since α(J) M P E -α• converges to 0 a.s.. Thus, for k sufficiently large, we have:

sup |α-α•|>δ 1 k [L k (α) -L k (α • )] < -+ 2 = - 2 .
Weak convergence of √ k(α 0 -α• ) can now be proved along the same lines as for α(J) M P E . Details are omitted.

Appendix B. Results for the GPD model.

Results are provided for a sample size n = 1000 and m = 1000 simulated samples. For each = 1, 2, 3, 4, 5, we plot the empirical bias and RMSE of α as a function of k for p = 0.9, 0.75, 0.5, 0.25 (Figure 7: α = 0.5 and Figure 8: α = 0.75).

In Table 6, we provide the averaged value (over the m simulated samples), empirical bias and RMSE of each α at the optimal fraction level k opt = arg min k RM SE[α (k)] (for α = 0.5). Results for α = 0.75 yield similar conclusions and are therefore omitted. 
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  letting a u := Nu j=1 log e j,u and b u := Nu j=1 δ [n-Nu+j] , the log-posterior density (•|E, ∆) of α satisfies:

Figure 1 :

 1 Figure 1: Empirical bias (left) and RMSE (right) of α (l = 1, . . . , 5) for α = 0.5 and p = 0.25 (1st line:), p = 0.5 (2nd line), p = 0.75 (3rd line) and p = 0.9 (4th line).

Figure 2 :

 2 Figure 2: Empirical bias (left) and RMSE (right) of α (l = 1, . . . , 5) for α = 0.75 and p = 0.25 (1st line:), p = 0.5 (2nd line), p = 0.75 (3rd line) and p = 0.9 (4th line).

  α1

Figure 3 :

 3 Figure 3: Randomization of the fraction level: histograms of the Monte Carlo estimates α(j) , j = 1, . . . , N of the tail index α = 2 for p = 0.25 (1st line), p = 0.5 (2nd line), p = 0.75 (3rd line), p = 0.9 (4th line).

δ i 1

 1 {Zi>Z n,n-k } of non-censored observations in the k largest Z i 's as a function of k (see Figure (4)).

Figure 4 :

 4 Figure 4: Proportion of uncensored Z i 's among the k largest observations.

Figure 5 :

 5 Figure 5: Tail index estimation for Australian AIDS survival data.

Table 5 :

 5 Summary statistics for the Monte Carlo estimates α(j) , j = 1, . . . , N obtained with (a, b) = (4, 2) (see ( * )), (a, b) = (4, 2.5) (see ( * * )) and (a, b) = (4, 3) (see ( * * * )).

Figure 6 :

 6 Figure 6: Randomization of the fraction level: histograms of the α ( = 1, 2, 3) with (a * , b * ) = (4, 2) (1st line), (a * , b * ) = (4, 2.5) (2nd line), (a * , b * ) = (4, 3) (3rd line).

  holds for α• . Since α• and α(J) M P E are strongly consistent,1 k L k (α (J) M P E ) -L k (α • ) = log α(J) M P E -log α• 1 k k i=1 δ [n-k+i] -α(J) M P E -α• 1 k k i=1 log e [n-k+i]

Figure 7 :

 7 Figure 7: Empirical bias (left) and RMSE (right) of α (l = 1, . . . , 5) for α = 0.5 and p = 0.25 (1st line:), p = 0.5 (2nd line), p = 0.75 (3rd line) and p = 0.9 (4th line).

Figure 8 :

 8 Figure 8: Empirical bias (left) and RMSE (right) of α (l = 1, . . . , 5) for α = 0.75 and p = 0.25 (1st line:), p = 0.5 (2nd line), p = 0.75 (3rd line) and p = 0.9 (4th line).

Table 1 :

 1 Optimal results for Fréchet model with n = 1000, m = 1000 and α = 0.5.

			k opt Estimator	RMSE	Bias
		α1 133 0.4701402 0.04985720 -0.02985977
	p=0.9	α2 133 0.4663334 0.05199783 -0.03366664 α3 137 0.4804375 0.04398932 -0.01956245 α4 133 0.4703423 0.04950047 -0.02965768
		α5 133 0.4665644 0.05162741 -0.03343560
	p=0.75	α1 131 0.4610741 0.05884770 -0.03892594 α2 131 0.4565036 0.06172861 -0.04349636 α3 131 0.4752784 0.05071124 -0.02472156 α4 130 0.4616714 0.05834371 -0.03832862
		α5 130 0.4571051 0.06120118 -0.04289495
		α1 113 0.4428444 0.08150309 -0.05715557
	p=0.5	α2 113 0.4349585 0.08687673 -0.06504148 α3 118 0.4639250 0.06592663 -0.03607495 α4 111 0.4480398 0.08020518 -0.05196024
		α5 113 0.4359118 0.08560104 -0.06408818
	p=0.25	α1 α2 144 0.3704152 0.1468569 -0.12958479 89 0.3979008 0.1343862 -0.10209924 α3 86 0.4656990 0.0900378 -0.03430104 α4 89 0.4017657 0.1292944 -0.09823434
		α5 144 0.3734453 0.1434458 -0.12655470
			k opt Estimator	RMSE	Bias
		α1 137 0.7102997 0.07354345 -0.03970025
	p=0.9	α2 137 0.7048372 0.07626555 -0.04516285 α3 137 0.7233166 0.06780636 -0.02668343 α4 137 0.7079724 0.07410573 -0.04202759
		α5 120 0.7076827 0.07689530 -0.04231728
	p=0.75	α1 132 0.6930671 0.08929557 -0.05693289 α2 132 0.6863281 0.09336546 -0.06367190 α3 132 0.7093273 0.08017017 -0.04067273 α4 132 0.6904320 0.09015946 -0.05956802
		α5 132 0.6837832 0.09433285 -0.06621679
		α1	74	0.6909873 0.1176917 -0.05901272
	p=0.5	α2 105 0.6599687 0.1265239 -0.09003127 α3 115 0.6940075 0.1005289 -0.05599250 α4 74 0.6839079 0.1178655 -0.06609215
		α5 105 0.6558685 0.1277539 -0.09413154
	p=0.25	α1 α2 177 0.5438101 0.2246926 -0.20618988 89 0.5910295 0.2071481 -0.15897046 α3 89 0.6687678 0.1513115 -0.08123217 α4 89 0.5854156 0.2064865 -0.16458441
		α5 177 0.5424875 0.2248853 -0.20751253

Table 2 :

 2 Optimal results for Fréchet model with n = 1000, m = 1000 and α = 0.75.

Table 3 :

 3 Randomization of the fraction level: empirical mean, median and mode of the Monte Carlo estimates α(j) , j = 1, . . . , N of the tail index α = 2.

Table 4 :

 4 Standard deviations of the Monte Carlo estimates α(j)

	.353 0.381	0.410	0.443	0.456 0.463 0.469
	1.5 0.243 0.282	0.315	0.342	0.372 0.395 0.409
	2.0 0.194 0.202	0.233	0.263	0.286 0.312 0.341
	2.5 0.156 0.166	0.175	0.194	0.121 0.244 0.263
	3.0 0.134 0.141	0.144	0.152	0.167 0.187 0.205
	3.5 0.127 0.130	0.127	0.128	0.134 0.141 0.159
	4.0 0.122 0.123 0.120 0.118 0.117 0.124 0.127

1 , j = 1, . . . , N for various values of (a, b). The minimum standard deviations are indicated in bold.

  . Min. 1st Qu. Mode Median Mean 3rd Qu. Max.

		α1 0.120 1.112	1.272	1.293	1.390	1.381	1.470 2.602
	( * )	α2 0.119 1.111 α3 0.121 1.116	1.268 1.277	1.287 1.298	1.386 1.398	1.378 1.388	1.466 2.570 1.478 2.645
		α1 0.118 1.119	1.306	1.327	1.398	1.402	1.487	2.614
	( * * )	α2 0.117 1.118 α3 0.119 1.122	1.303 1.314	1.436 1.307	1.395 1.405	1.398 1.410	1.483 2.583 1.495 2.657
	( * * * )	α1 0.117 1.124 α2 0.117 1.123 α3 0.119 1.128	1.323 1.317 1.335	1.361 1.458 1.471	1.425 1.422 1.435	1.419 1.414 1.427	1.506 1.502 2.557 2.589 1.511 2.633

  2.1 and Theorem 2.2.

	Proof of Theorem 2.1.				
	We prove strong consistency of	α(MDI) M AP . First, it follows from [9] (Theorem 2.3) and [11] that 1 k	k i=1 δ [n-i+1]
	converges almost surely (a.s.) to α α+β as n → ∞. From [7], 1 k	k i=1 log	Zn,n-i+1 Z n,n-k	converges a.s. to the
	EVI 1 α+β of Z, as n → ∞. By the continuous mapping theorem (see [28], for example),	α(MDI) M AP converges
	a.s. to α α+β • (α + β) = α as n → ∞. Proofs for	α(J) M P E ,	α(J) M AP ,	α(c) M P E and	α(c) M AP are similar and are thus
	omitted.				
	Proof of Theorem 2.2.				
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Bias p=0.9 α1 241 0.4871029 0.03316159 -0.012897068 α2 241 0.4848721 0.03397750 -0.015127864 α3 242 0.4937372 0.03125152 -0.006262834 α4 241 0.4871525 0.03301891 -0.012847470 α5 241 0.4849317 0.03383208 -0.015068322 p=0.75 α1 197 0.4813512 0.04283156 -0.01864877 α2 174 0.4817153 0.04407021 -0.01828467 α3 229 0.4820538 0.03934719 -0.01794616 α4 175 0.4853335 0.04255187 -0.01466651 α5 174 0.4818332 0.04375507 -0.01816682 p=0.5 α1 149 0.4650962 0.06667390 -0.03490379 α2 148 0.4593110 0.06983460 -0.04068903 α3 196 0.4655255 0.05698297 -0.03447449 α4 149 0.4654849 0.06588210 -0.03451512 α5 148 0.4597745 0.06900169 -0.04022548 p=0.25 α1 114 0.4453977 0.09310355 -0.05460229 α2 150 0.4228396 0.10027361 -0.07716037 α3 144 0.4660381 0.07223843 -0.03396190 α4 114 0.4467343 0.09076946 -0.05326572 α5 150 0.4242566 0.09843514 -0.07574341 Table 6: Optimal results for GPD model with n = 1000, m = 1000 and α = 0.5.